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ABSTRACT

Cell-to-cell variations in protein abundance, called
noise, give rise to phenotypic variability between
isogenic cells. Studies of noise have focused on
stochasticity introduced at transcription, yet the
effects of post-transcriptional regulatory processes
on noise remain unknown. We study the effects of
RyhB, a small-RNA of Escherichia coli produced on
iron stress, on the phenotypic variability of two of
its downregulated target proteins, using dual
chromosomal fusions to fluorescent reporters and
measurements in live individual cells. The total
noise of each of the target proteins is remarkably
constant over a wide range of RyhB production
rates despite cells being in stress. In fact, coordin-
ate downregulation of the two target proteins by
RyhB reduces the correlation between their levels.
Hence, an increase in phenotypic variability under
stress is achieved by decoupling the expression of
different target proteins in the same cell, rather than
by an increase in the total noise of each. Extrinsic
noise provides the dominant contribution to the
total protein noise over the total range of RyhB
production rates. Stochastic simulations reproduce
qualitatively key features of our observations and
show that a feed-forward loop formed by transcrip-
tional extrinsic noise, an sRNA and its target genes
exhibits strong noise filtration capabilities.

INTRODUCTION

The origins and functional roles of the phenotypic
variability of genetically identical cells, or noise, have
attracted intense attention in recent years (1–4). This

variability, which plays a key role in determining develop-
mental decisions and fates (5–7), is expected to grow under
conditions of stress (8–11), allowing cells to adapt to
changing environments. Noise sources, stemming from
fluctuations in the number of proteins and RNA mol-
ecules, have been classified into intrinsic and extrinsic
types (4,12–14). Intrinsic noise, originating from the
stochastic nature of biochemical processes, such as
transcription and translation (15), manifests itself as
differences in expression between two copies of the same
promoter, each labeled with a different reporter, within
the same cell. Cell-to-cell variations in factors, such as
RNA polymerases, ribosomes and metabolites, affect the
expression of all genes equally; therefore, they constitute
sources of extrinsic noise (4,12–14).
Gene expression in both prokaryotes and eukaryotes

can also be controlled by layers of regulation beyond
transcription, e.g. through changes in the levels of
mRNAs competent for translation. In bacteria, such as
Escherichia coli, this is carried out by small RNA
(sRNA) regulators, which are found to be involved in a
wide range of responses to environmental cues and stress
(16,17). Downregulation of gene expression by sRNAs,
their most prevalent mode of action, occurs primarily by
the association of an sRNA with a target mRNA,
mediated by the RNA chaperone Hfq. Coupled stoichio-
metric degradation of the paired sRNA–mRNAs then
ensues (18). Stoichiometric degradation gives rise to
unique regulatory features, such as a linear-threshold
switching behavior between an efficiently silenced regime
in which the rate of production of the sRNA exceeds that
of an mRNA, and thus to low levels of protein, and
a regime in which the production rate of the sRNA is
smaller than that of the mRNA, leading to a linear
increase of mRNA levels with the transcription rate
(19,20). Stoichiometric degradation can also lead to an
indirect interaction between different targets of an

*To whom correspondence should be addressed. Tel: +972 8 9342615; Fax: +972 8 9344109; Email: joel.stavans@weizmann.ac.il

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Published online 21 March 2013 Nucleic Acids Research, 2013, Vol. 41, No. 9 4825–4834
doi:10.1093/nar/gkt184

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



sRNA termed cross-talk, as targets with a higher affinity
for the sRNA may reduce the latter’s level (19,20).
The possible consequences of stoichiometric-coupled

systems, such as sRNA regulation on noise, have been
explored theoretically in a regime dominated by intrinsic
noise (19–22). It was found that protein noise �2p=�

2
p,

where �p is the standard deviation and �p the mean of
protein number, goes through a maximum at a finite
value of �p that corresponds to the regime where the pro-
duction rates of the sRNA and mRNAs are comparable.
This prediction has not been experimentally tested yet.
We report the results of a study of the effects of regu-

lation by an sRNA on protein noise and on the mutual
correlation between its targets, using the iron homeostasis
network of E. coli as a model system. The network is
controlled by the master repressor Fur, a transcription
factor that senses the intracellular free iron concentration.
In its iron-bound form, Fur represses the expression of
genes involved in iron acquisition, storage, oxidative
stress and more. When iron is limiting, Fur becomes
iron-free, relieving the repression of its target genes,
including RyhB, an sRNA that coordinately regulates
the expression of �20 iron-using proteins (16), by
promoting the degradation of their mRNAs (18,23). We
focus on the coupled degradation of RyhB with the tran-
scripts of sodB and fumA, coding for iron-superoxide
dismutase and fumarase A, an iron-binding enzyme
within the trichloroacetic acid cycle, respectively. The con-
centrations of both proteins were measured simultan-
eously in individual cells, using chromosomal fusions
to fluorescent reporters, sodB-cfp and fumA-yfp, after
prolonged exposure to different levels of iron-limiting
conditions. This system has allowed us to address the
key question of how post-transcriptional regulation by
RyhB affects the noise of the two target genes, as well
as their mutual correlation under coordinate downregula-
tion (1).
The major findings of our study are that the total noise

remains constant within experimental error for most of the
natural range of expression of sodB and fumA; second,
extrinsic noise sources are the main contribution to the
total noise even for the highest levels of RyhB production
induced by iron deprivation; third, RyhB production
reduces the correlation between the expression levels of
the SodB and FumA target proteins in the same cells,
and we propose a mechanism that accounts for this
behavior under transcriptional extrinsic noise dominance;
finally, our stochastic simulations incorporating both
extrinsic and intrinsic noise sources show that a feed-
forward loop formed by transcriptional extrinsic noise,
an sRNA and its target genes strongly attenuates noise,
and reproduce qualitatively the key features of our experi-
mental observations.

MATERIALS AND METHODS

Growth conditions

Cells were propagated in LB medium at 37�C overnight
from a single-colony inoculum. The cultures were diluted
1:100 into fresh LB medium and grown to OD600 of

0.2–0.4 before the indicated treatment. Cells were then
diluted 1:100 into LB medium with different concentra-
tions of diethylene triamine pentaacetic acid (DTPA)
(Sigma) and were allowed to grow for 3–4 h to OD600 of
0.2–0.4. Cells were deposited on an agarose gel pad (1.5%)
prepared with M9 medium supplemented with casamino
acids (0.1%), biotin (1mg/ml) and glucose (0.5%) and
covered with glass slides before mounting on the
microscope.

Construction of E. coli reporter strains

The E. coli reporter strain contains sodB::cfp and
fumA::yfp genes that bear a translational cfp-fusion to
the chromosomal sodB allele and yfp-fusion to the
chromosomal fumA allele (Gene Bridges), for additional
details see Supplementary Methods.

Experimental set-up

Microscopy was performed on a Zeiss Axiovert 135
epifluorescence microscope with an NA 1.4 phase
contrast objective (Zeiss, Germany). Images were
recorded with an iXon EMCCD camera (Andor
Technology, Northern Ireland). For additional details
on the experimental set-up, image acquisition and process-
ing, see Supplementary Methods.

Data corpus and analysis

Images were recorded in four independent runs carried out
on different days, probing �600 cells per DTPA concen-
tration per run. Means and standard deviations of protein
concentrations were calculated from descriptive statistics,
whereas error bars were calculated using 1000 bootstrap
samplings of the data. For details on correction for cell
auto-fluorescence, calculation of fluorescence protein con-
centrations, parameter estimation and stochastic simula-
tions see Supplementary Methods.

RESULTS

Protein distributions change with iron deprivation

We show in Figure 1 histograms of protein concentrations
of SodB-CFP and FumA-YFP (CFP and YFP: cyan and
yellow fluorescent protein respectively) measured in the
same individual cells (Supplementary Figure S1), grown
under different levels of iron deprivation that allow
cells to maintain logarithmic cell growth, although with
a reduced growth rate (Supplementary Figure S2). As
E. coli cells exposed to sudden low-iron conditions
exhibit oscillations in the expression of RyhB and other
Fur-controlled genes that die out six to seven generations
later (25), fluorescence levels were measured 3.5 h after
exposing cells to different concentrations of the cell-
impermeable iron chelator DTPA (Supplementary
Figure S3). The yield of both fluorescently labeled
proteins decreased as iron is decreased, as illustrated by
a plot of the mean protein concentration �p, normalized
by the mean value �p0 when no DTPA is added (Figure 2).
�p0 is equal to 350±50nM and 130±13nM for SodB-
CFP and FumA-YFP, respectively; the corresponding
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numbers of mRNA molecules [4.9±0.6 and 1.2±0.2
(mean±standard error from seven experiments)] as
measured by smFISH (single-molecule fluorescence
in situ hybridization) techniques are much smaller
(Supplementary Figure S4).

To ascertain that the observed reduction in mean ex-
pression is due to RyhB and not to a possible iron-induced
decrease in sodB and fumA transcription, we compared the
steady-state fluorescence production from YFP fusions
with the promoters of sodB, fumA and ryhB (PsodB–YFP,
PfumA–YFP and PryhB–YFP, respectively) at different iron
levels, under the same conditions as in the experiments
aforementioned (Supplementary Figure S5). The measure-
ments show that production from both PsodB–YFP and
PfumA–YFP varies less than a factor of two over the
range of the DTPA concentrations used, which is much

less than the change in SodB-CFP and FumA-YFP con-
centrations with added DTPA. In contrast, the average
fluorescence production from PryhB–YFP increases by a
factor of �20 over the same range of DTPA concentra-
tions. Finally, measurements of the mean SodB-CFP and
FumA-YFP concentrations in a strain in which RyhB has
been deleted show little dependence on iron concentration
(Supplementary Figure S6). Together, these findings
support the notion that the effects seen in Figures 1 and
2 can largely be attributed to RyhB-induced degradation
of its targets.
We note that the difference in magnitude between the

effects of iron deprivation on the cell concentrations
of SodB and FumA in Figure 2 is accounted for by the
difference in activity of their respective promoters
(Supplementary Figure S5). Normalization of the mean
FumA-YFP concentration by the ratio of the fluorescence
production in cells bearing plasmids with PsodB–YFP and
PfumA–YFP reporters closely follows the behavior of the
mean SodB-CFP concentration (Figure 2).

Extrinsic sources provide the dominant contribution to
protein noise

To analyze cell-to-cell variability, we calculated the mean
�p and standard deviation �p from the data. In most
studies of phenotypic variability, noise is quantified by
the ratio �2p=�

2
p. This quantity exhibits large fluctuations

for small �p, i.e. when fluorescence intensities are close to
the background, which occurs when iron levels are very
low. To avoid dividing by small numbers, we plotted �p
as a function of �p. We plot �p as a function of �p for
distributions of SodB-CFP and FumA-YFP concentra-
tions measured under different levels of iron deprivation
in Figure 3. There are two salient features in the data.
First, the dependence of �p on �p is approximately
linear in both cases, implying that the noise ratio �2p=�

2
p

should be rather insensitive to the level of iron deprivation
(Supplementary Figure S7). Second, linear fits to the data
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Figure 1. Protein concentration histograms of FumA-YFP and
SodB-CFP for different DTPA concentrations in a typical experiment.
The concentrations of FumA-YFP (dark gray) and SodB-CFP (light
gray) were measured in the same individual cells �3.5 h after exposure
to the indicated concentrations of DTPA. In a typical run, �600 cells
were probed on average per DTPA concentration. Protein concentra-
tions were determined from measured fluorescence levels using
properties of the binomial distribution (24). Fits of the histograms by
Gamma distributions serve as a guide to the eye.
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Figure 2. Effects of iron deprivation on mean protein concentration of
RyhB targets. Mean intracellular concentrations �p=�p0 of SodB-CFP
(full circles) and FumA-YFP (empty circles), normalized by their values
at 0mM DTPA as a function of DTPA concentration. The data for
FumA-YFP have also been normalized (crosses) by the ratio of fluor-
escence density of cells bearing promoter fusion plasmids with either
PsodB–YFP or PfumA–YFP (Supplementary Figure S5). Data points rep-
resent an average over three independent experimental runs, and error
bars represent standard errors.
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of both proteins coincide within experimental error: both
the slopes (0.33±0.02 for SodB-CFP and 0.31±0.04
for FumA-YFP), as well as their intercept on the �p axis
(�7 nM for both proteins, equivalent to approximately
seven copies of each protein per cell), are essentially the
same (Supplementary Text). Together, these features
suggest a common gene-independent mechanism gov-
erning the protein phenotypic variability of the two
RyhB target genes, as iron deprivation is changed
(Supplementary Text).
Intrinsic noise constitutes the dominant source of

cell-to-cell variability of proteins expressed at low levels
(26,27). In E. coli, the crossover regime between intrinsic-
ally and extrinsically dominated regimes lies at a concen-
tration of �10 protein copies per cell (26). As SodB-CFP
and FumA-YFP protein levels reach �350 and 130 copies
per cell, respectively, under iron-rich conditions (Figure
1), their cell-to-cell variability is expected to be dominated
by extrinsic sources. The levels of both proteins remain at
>10 copies per cell (one protein within a typical E. coli
volume corresponds to a concentration of �1 nM), even at
the lowest intracellular levels of iron probed by our ex-
periments (Figure 3). Furthermore, under iron-rich condi-
tions, the global extrinsic noise extracted from the
normalized correlation function of SodB-CFP and
FumA-YFP concentrations (Supplementary Methods)
yields 0.08±0.01, a value that agrees well with the
average value 0.09±0.03 obtained for 13 different pairs
of independent protein combinations in doubly labeled
strains (26). It has been shown that extrinsic noise when
calculated from two independent genes rather than by two
copies of the same gene depends solely on global extrinsic
sources, such as RNA polymerase and ribosome fluctu-
ations affecting the expression of all genes, and not on
sources, such as gene-specific upstream transcription
factors (26). Together, these facts constitute further
evidence for the fundamental role extrinsic noise sources

play in determining the phenotypic variability of RyhB-
controlled genes under iron deprivation.

Global extrinsic fluctuations are insensitive to iron
deprivation

To test whether global extrinsic fluctuations are directly
affected by iron deprivation, we studied cell-to-cell vari-
ations in the expression of a gene outside the iron homeo-
stasis network. We show in Figure 4A a scatter plot of
normalized fluorescence levels of CFP and YFP reporters
measured in the same individual cells for different DTPA
concentrations in a representative experimental run. The
reporters were expressed from two identical Lac pro-
moters in the chromosome (4). There is considerable
overlap between the clusters of points corresponding to
different DTPA concentrations. Given that extrinsic
noise is measured by the extent of the clusters along the
main diagonal, this suggests a low sensitivity of extrinsic
noise on iron deprivation. This is confirmed by calculating
the extrinsic noise �2ext for each DTPA concentration
(Figure 4B), following previous methods (4). We note
that also the means of both CFP and YFP themselves
are rather insensitive to changes in DTPA concentration
(Supplementary Figure S8), as expected for genes outside
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the iron homeostasis network. One can account for this
insensitivity by the balance between a reduction in the
number of global factors, such as RNA polymerases and
ribosomes (28), and the slower cell growth rate observed in
our experiments (Supplementary Figure S2).

RyhB reduces the correlation between SodB-CFP and
FumA-YFP concentrations

Evidence for RyhB-mediated cross-talk between two
RyhB targets has been reported in a study using
plasmids that allow independent expression of RyhB and
of one of its target genes from inducible promoters (20).
To study the effects of extrinsic noise sources on cross-
talk, we quantified the extent of correlation between
SodB-CFP and FumA-YFP concentrations when
expressed in single copy from their native locations.
Scatter plots of SodB-CFP and FumA-YFP concentra-
tions measured in the same cells for different concentra-
tions of DTPA are shown in Figure 5A. The clusters of
points contract as the DTPA concentration is increased,

whereas the slopes of the main diagonals become progres-
sively smaller (Figure 5A).
The degradation of both sodB and fumA transcripts by

a common factor, namely, RyhB, led us to expect
increasing correlation between SodB-CFP and FumA-
YFP concentrations as iron conditions become more
limiting and the amount of RyhB increases. Contrary to
these expectations, we observe that RyhB-induced degrad-
ation actually reduces correlations. The Pearson correl-
ation coefficient � between SodB-CFP and FumA-YFP
concentrations measured within the same cells is plotted
as function of the geometric mean of the respective mean
concentrations in Figure 5B. The correlation decreases
from a value � � 0:5 set by extrinsic noise sources when
RyhB is low, to � � 0:25 when RyhB is high, because
of iron depletion.

Stochastic simulations that include extrinsic noise
reproduce the observed experimental behavior

We simulated the stochastic dynamics of a network
consisting of two protein-coding genes and a third gene
encoding for an sRNA that promotes the mutual degrad-
ation of each of the target transcripts with itself, using
Gillespie’s method (29) (Supplementary Methods). It is
noteworthy that the protein-coding genes are transcrip-
tionally independent, as no upstream common regulatory
components, such as transcription factors correlate their
transcription. Pathway-specific extrinsic noise is only
introduced by RyhB. In addition to the intrinsic noise
stemming from stochastic effects in transcription, transla-
tion, sRNA–mRNA interaction and degradation, we
introduced extrinsic cell-to-cell variations in either tran-
scription or translation by multiplying the respective
rates in each cell by a random number drawn from a
Gamma distribution with mean equal to one and the
variance chosen so that protein noise is comparable with
the measured values. Plots of �p as function of the mean
protein number �p in simulations, including intrinsic noise
alone, or intrinsic noise with extrinsic noise added either
in transcription or in translation, are shown in Figure 6A.
The dependence of �p on �p when intrinsic noise alone is
included exhibits the expected Poissonian scaling
�p / �

1=2
p . When extrinsic noise in translation is included

in addition to intrinsic noise, the behavior of �p is linear
for large enough �p as experimentally observed and
expected from a theoretical argument (Supplementary
Text). At small �p, intrinsic noise becomes dominant,
and the data deviate from linearity, so that �p approaches
zero asymptotically with �p. A straight line fit to the large
�p portion of the data crosses the y-axis at a non-zero
value of �p (Figure 6A), as observed experimentally
(Figure 3). Finally, when extrinsic noise in transcription
is included, the behavior of �p approaches linearity asymp-
totically for large �p and deviates from linearity at small
and intermediate values of �p because of the coupled
sRNA–mRNA degradation terms (21). The behavior of
the standard deviation �m of the transcript distribution
as a function of the mean transcript number �m under
the three sources of noise is illustrated in Supplementary
Figure S9.
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We also studied the correlated behavior between protein
numbers of the two target genes as function of sRNA
production. We show in Figure 6B the Pearson correlation
coefficient � as function of �p corresponding to the simu-
lations shown in Figure 6A. When intrinsic noise is the
only source of stochasticity and no sRNA is present, the
expression from the two target genes is uncorrelated.
However, a non-zero number of sRNA molecules that
induce the degradation of the genes’ transcripts can cor-
relate their protein numbers when the sRNA is limiting.
Consequently, � increases from a small value and then
peaks. Conversely, when the number of sRNA molecules
is abundant relative to the number of target transcripts,
the correlation decreases again.

The behavior of � when extrinsic noise sources are
present and dominant over intrinsic noise is different.
The expression from the two targets is correlated by the
extrinsic noise sources and is maximal in the absence of
sRNA. As sRNA synthesis is not affected by extrinsic
noise sources in translation, � is rather insensitive to the
presence of sRNA and only decreases when the influence
of intrinsic noise of target proteins kicks in. In contrast,
extrinsic noise sources in transcription affect not only the
transcription from the target genes but also sRNA pro-
duction, leading to a significant decrease in correlation as
sRNA synthesis increases. Although we have analyzed
separately the contribution of extrinsic noise at the levels
of transcription and translation, both contributions play a
role in live cells. They may both be correlated and their
relative contributions, which are unknown, may vary
with iron deprivation (we plot for illustration purposes
the results of simulations, including equal contributions
of transcriptional and translational extrinsic noise, in
Figure 6B). Even with these caveats in mind, our simula-
tions reproduce the trend observed in our experiments.
We note in passing that including more than two targets
in our simulations do not affect our conclusions
(Supplementary Figure S10).

Incoherent feed-forward loop motif formed by
transcriptional extrinsic noise, the sRNA and its targets

Our system can also be viewed as a multi-output incoher-
ent type 1 feed-forward loop (I1-FFL) (30), with global
transcriptional control positively regulating the synthesis
of both sRNA and mRNA, and the sRNA down-
regulating the target transcripts (Figure 6C). A similar
motif incorporating a transcription factor instead of an
sRNA has been shown to reduce transcriptional extrinsic
noise in simulations (31). In such an I1-FFL, extrinsic
transcriptional fluctuations increase or decrease the tran-
scription rates of both mRNA and sRNA in a coordinated
fashion. To study the characteristics of this I1-FFL, we
monitored both the protein noise at the output, as well
as the Pearson correlation between the levels of two target
proteins in response to changing levels of transcriptional
extrinsic noise.

Plots of protein noise �2p=�
2
p as function of the mean of

one of the target proteins �p are shown in Figure 6D for
three different levels of transcriptional extrinsic noise.
These levels were set by changing the variance of the
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Figure 6. Stochastic simulations of protein variability of two genes
downregulated by the same sRNA. (A) Standard deviation of protein
number �p as a function of the mean protein number �p of one of the
two target proteins (the behavior of the second protein is qualitatively
similar), in simulations including intrinsic noise alone (cyan); intrinsic
plus extrinsic noise in translation (red); intrinsic plus extrinsic noise in
transcription (blue). The red line is a linear fit to the four points
obtained with intrinsic plus extrinsic noise in translation, with largest
value of �p. (B) Pearson correlation coefficient r between the protein
concentrations of two genes whose transcripts are targets of the same
sRNAs, as a function of the mean protein number �p. Empty circles
represent simulation results including in addition to intrinsic noise both
transcriptional and translational extrinsic noise of comparable contri-
bution. (C) Transcriptional extrinsic noise affects directly the transcrip-
tion of target genes, as well as indirectly, via the sRNA in one of the
arms of an incoherent feed-forward loop configuration. (D) Total
protein noise �2p=�

2
p as function of �p of one of two target proteins

for three different levels of transcriptional extrinsic noise, set by three
values of the variance of the Gamma distribution out of which random
numbers multiplying transcription rates are drawn: 0.10 (asterisks), 0.25
(empty circles) and 0.50 (full circles). Simulations were carried out
when sRNA transcription is subject to transcriptional extrinsic noise
in addition to intrinsic noise (blue) and when sRNA production fluc-
tuates due to intrinsic noise alone (red). (E) Pearson correlation coef-
ficient r between the concentrations of two target proteins as a function
of the geometric average of the respective mean concentrations. Colors
and symbols are as in D. The simulations include transcriptional
bursting, as well as stochasticity effects due to binomially distributed
partition of mRNA and proteins during cell division. All the simulation
parameters are listed in Supplementary Table S1.
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Gamma function out from which the random numbers
that multiply transcription rates are drawn. Each plot
shows a moderate decrease in noise, as �p decreases due
to sRNA production. As expected, noise at the output
increases with noise at the input. We compare this
response with that obtained when sRNA production is
refractory to transcriptional extrinsic noise and thus is
only subject to intrinsic fluctuations, also shown in
Figure 6D. This breaks the feed-forward loop by
de-correlating the transcription rates of the sRNA and
target genes. The protein noise in this case is markedly
higher than in the I1-FFL configuration for the same
level of input noise, demonstrating the strong filtering
capabilities of the I1-FFL motif. The peak in noise when
sRNA production is only subject to intrinsic fluctuations
is a direct result of the stoichiometric degradation of the
sRNA and mRNA (see Supplementary Figure S11).
Moreover, this peak is unrelated to the theoretically pre-
dicted peak in noise that results when only intrinsic
sources affect the production of the sRNA and its
mRNA targets (21).

We plot in Figure 6E the Pearson correlation coefficient
� between the levels of two target proteins as a function
of the geometric average of the mean protein concentra-
tions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p1�p2
p

, for three different levels of transcriptional
extrinsic noise. When sRNA production is subject to tran-
scriptional extrinsic noise, fluctuations in sRNA levels
largely cancel out those in mRNA by mutual degradation,
thereby reducing the correlations between the target
proteins induced by extrinsic noise. Consequently, � de-
creases with increasing sRNA production and the con-
comitant reduction of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p1�p2
p

. In contrast, when sRNA
production is only subject to intrinsic noise, the correl-
ation induced between the two target transcripts and
their respective proteins by transcriptional extrinsic noise
is preserved and thus � is nearly independent of sRNA
production. Further support for viewing transcriptional
extrinsic noise, an sRNA and target genes as forming an
I1-FFL is provided by studying the correlation between
the levels of the sRNA and one of its target mRNAs
(Supplementary Figure S12). The mutual degradation of
the sRNA and its target mRNA is expected to cause a
negative correlation. However, transcriptional extrinsic
noise correlating their expression largely cancels out this
negative correlation.

DISCUSSION

Protein noise is the final outcome of variability introduced
at all stages in gene expression. In the present study, we
addressed the question of how post-transcriptional regu-
lation by an sRNA affects noise and the correlation
between two proteins corresponding to mRNA targets in
isogenic cells, within the iron homeostasis network of
E. coli. Our results show that extrinsic noise sources are
the dominant mechanism driving phenotypic variability
of RyhB-controlled genes over most of the natural range
of expression of these genes. Extrinsic noise gives rise to a
linear dependence between the standard deviation and
mean protein concentration, in accordance with another
study (32); therefore, the protein noise �2p=�

2
p is rather

insensitive to RyhB production. Cellular parameters are
tuned so that intrinsic noise effects become appreciable
only at levels of iron deprivation for which growth is
impaired. Such robustness of protein noise to reductions
in iron levels over a large range is surprising, given the
essential character of iron as a trace element and the stress
to which cells are submitted in its scarcity. Noise is widely
expected to increase under situations of stress (8–11).
Our stochastic simulations reproduce both the linear

dependence of distribution width �p on mean protein
concentration �p for large �p, and the fact that this
linear dependence does not cross the origin. As �p must
tend to zero with �p, this is a signature of a regime in
which intrinsic noise effects should become dominant.
This regime is not accessible because of cell toxicity at
high-chelator concentrations and low–signal-to-noise
considerations. Although extrinsic noise sources intro-
duce variability both through transcription and transla-
tion processes, the precision of our experiments does
not allow us to determine the relative weight of these
two contributions, given that the respective depend-
ences of �p on �p seen in the simulations are so close
(Figure 6).
The predominance of extrinsic noise has also precluded

the observation of the predicted enhanced fluctuations in
the crossover regime separating the strongly repressed
from the expressing regime, characteristic of intrinsic
noise in stoichiometrically dominated systems (19,21,
33,34). Direct fluorescence measurements using strains
bearing two chromosomal copies of sodB genes tagged
with different fluorescent reporters could not separate
intrinsic noise from other effects under our experimental
conditions (Supplementary Text). We argue that the
observation of this non-monotonic behavior of intrinsic
noise is unlikely within the context of the iron homeosta-
sis network for two reasons. First, measurements of the
protein abundance of genes whose expression is
controlled by RyhB (35–37) (e.g. acnB, iscS and
sdhCDAB) show that these proteins are present in more
than a hundred copies per cell in rich medium
(Supplementary Table S3); therefore, their noise is also
expected to be dominated by extrinsic sources. Indeed,
RyhB downregulates the expression of non-essential
iron-using proteins to channel iron to indispensable
pathways (38). This function of RyhB is effective only
if the downregulated proteins are abundant. Second,
the effects of RyhB on transcripts other than
mRNAsodB are expected to be weaker (23).
Our simulations also show that a multi-output I1-FFL

in which extrinsic noise affects target gene expression
both directly and indirectly via an sRNA, effectively
reduces input fluctuations of transcriptional extrinsic
noise. Noise reduction in I1-FFLs incorporating sRNAs
has also been observed when studying their response as a
function of the strength of the sRNA–mRNA coupling
(39). Finally, we note that filtration of fluctuations in the
presence of extrinsic noise sources takes place in I1-FFLs
consisting solely of transcription factors (31).
The observed reduction in correlation between SodB

and FumA concentrations as RyhB production increases
is unexpected. FumA and SodB play roles in distinct
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biological pathways. We, therefore, expected their degree
of correlation, as measured by the Pearson coefficient, to
increase when an upstream common factor, i.e. RyhB,
downregulates their production in a coordinate fashion.
The Pearson correlation coefficient we obtained in
our simulations under conditions in which only intrinsic
noise sources are present indeed conforms to this expect-
ation: genes that are uncorrelated in the absence of the
sRNA become correlated in its presence, at low-to-
intermediate levels. When production of sRNA is high,
the levels of mRNA are consequently small, increasing
intrinsic noise significantly, and thus decreasing the cor-
relation between the concentrations of both proteins
(Figure 6B).
Extrinsic noise sources correlate the expression of two

target proteins even in the absence of sRNA, drastically
altering the picture expected from intrinsic noise alone.
For simplicity, we discuss the two contributions, extrinsic
noise in translation and transcription separately.
Translational extrinsic noise strongly correlates the con-
centrations of the two proteins by fluctuations in the
translation rate, overshadowing the weak intrinsic correl-
ation induced by fluctuations in RyhB levels. Note that
sRNA production is refractory to extrinsic noise in trans-
lation. The Pearson correlation is rather insensitive
to changes in sRNA levels except at high sRNA produc-
tion rates, when mRNA levels are very low, and intrinsic
noise effects lead to a minor decrease in correlation
(Figure 6B).
Extrinsic noise in transcription, which affects sRNA

synthesis in addition to protein production, does lead
to a reduction in the Pearson correlation with sRNA
synthesis as observed experimentally. We outline now
the mechanism behind the reduction in correlation we
observe. Under transcriptional extrinsic noise dominance,
there is a positive correlation between the production rates
of the sRNA and its target transcripts. Therefore, the
sRNA-induced degradation rate of the target transcripts
will be larger in cells that have a higher transcription
rate. Assuming translation to be proportional to the
amount of transcript for each protein, the correlation
is preserved for the respective proteins. Consequently, a
cigar-shaped cluster of cells in a scatter of protein concen-
trations obtained under iron-rich conditions will tend to
become more circular under iron-poor conditions, thereby
reducing the Pearson correlation between both target
proteins. This mechanism is illustrated schematically in
Supplementary Figure S13.
The behavior of SodB and FumA observed in our ex-

periments does not depend on any specific features of
these proteins, but only on their being abundant and
downregulated by an sRNA. We, therefore, expect our
conclusions to be more general and applicable to other
proteins in E. coli that are downregulated by an sRNA,
and whose abundance is such that cell-to-cell differences
are dominated by extrinsic noise sources. Further support
for this claim is provided by the fact that our simulations
depend only on generic features of sRNA regulation, and
that the qualitative nature of the results is robust to
changes in parameters over a wide range. We have
compiled a list of diverse sRNAs, some of their respective

target genes and their abundance, for which the same
behavior might be observed in the Supplementary Table
S3. It is also noteworthy that the reduction in correlation
we observed both in experiments and in the simulations
does not depend on features unique to sRNA regulation,
such as the stoichiometric degradation with their target
transcripts. It is, therefore, conceivable that a reduction
in correlation may also be observed between proteins
in incoherent feed-forward loops that incorporate repres-
sors instead of sRNAs. In the case of a transcriptional
repressor, which also requires translation for the synthesis
of the repressor protein, extrinsic noise in translation
can be similarly filtered out by the I1-FFL as transcrip-
tional noise.

In this study, we addressed the question of how the
post-transcriptional downregulation of gene expression
by an sRNA affects the cell-to-cell variability of target
proteins. The picture that emerges is that protein noise
is highly robust to downregulation by sRNA over a
wide range of sRNA production rates, in spite of consid-
erable metabolic remodeling revealed by the large reduc-
tion in the mean concentrations of the iron-using proteins
we probed. An unexpected reduction in the correlation
between the concentrations of two RyhB protein targets
in the same cells was observed under iron deprivation.
Extrinsic noise affecting the expression of all genes
in the cell, particularly in transcription, affords the most
parsimonious explanation for these results. Intrinsic
effects stemming from the very small numbers of the mo-
lecular species involved only become significant for severe
iron-limiting conditions, under which toxicity effects
cannot be neglected. The reduction in the correlation
between FumA and SodB under iron deprivation allows
for larger independent variations of both proteins within
cells, leading to a wider range of cell variants in a popu-
lation. Thus, an increase in phenotypic variability is
achieved by decoupling between protein concentrations
in the same cell, rather than by an increase in the total
noise of each protein. This increase in phenotypic variabil-
ity may enhance the probability of survival under stress
conditions (9), an advantage from an evolutionary
standpoint.
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