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Abstract: The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely dis-
tributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic
components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic,
antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering
properties, and its documented anticancer properties have been attributed to the induction of apop-
tosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the
regulation of cellular responses to oxidative stress and DNA damage. The most well-known mech-
anism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by
autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such
as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential
of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms
in the compound’s chemopreventive properties.
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1. Introduction

Cancer is a globally important health issue and is the second leading cause of death
in the United States, where 1,898,160 new cancer cases and 608,570 cancer deaths were
expected in 2021. Cancer mortality increased during the 20th century but decreased by
31% from 1991 to 2018 [1]. However, even though cancer treatment has been advanced
significantly over the past two decades (e.g., development of safer, more effective, and
more precise drugs) and molecular approaches have been used to treat neoplasms and
reduce mortality, the side effects of such treatments remain a major problem [2], and some
cancer cells develop resistance or evasion mechanisms [3]. Furthermore, modern cancer
treatments are expensive. Therefore, chemoprevention is attracting increasing attention as
a cheaper and more effective strategy for reducing cancer-related mortality [2].

Chemopreventive strategies involve the use of natural, synthetic, or biological agents
to prevent, inhibit, or reverse the early stages of carcinogenesis or to prevent invasion by
premalignant cells. Natural compounds may also reduce side effects [4]. Clinically, these
strategies are classified as primary, secondary, or tertiary and are used to reduce the risk of
cancer incidence in high-risk populations, to reduce the progression of cancer (via drug
treatment) in patients with premalignant lesions, and to prevent cancer recurrence, respec-
tively [5,6]. The definitions of primary and secondary chemoprevention change, and some
researchers do not distinguish between primary and secondary chemoprevention. How-
ever, typical examples of primary chemoprevention agents include dietary phytochemicals
and nonsteroidal anti-inflammatory drugs.

Recently, both herbal and phytochemical-based medicines have attracted attention for
their effectiveness against cancer, as well as a wide variety of other diseases [7–15]. Indeed,
researchers around the world are focusing on the chemopreventive, antioxidant, and anti-
inflammatory properties of bioactive compounds [16–18], and natural products and their
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derivatives account for one-third of all new drugs approved by the United States Food
and Drug Administration (FDA) [19–21]. Plant-based medicines contain multiple bioactive
compounds (e.g., alkaloids, carotenoids, diterpenoids, flavonoids, phenolic compounds,
and tannins) that impart unique medicinal properties [22,23], and accordingly, plant-
derived compounds play important roles in increasing the sensitivity of cells to standard
chemotherapy and in reducing cancer risk, invasion, and metastasis [22,24–26].

The naturally occurring flavonoid apigenin (4′,5,7-trihydroxyflavone), in particular,
which is one of the most widely distributed phytochemicals in the plant kingdom, is one
of the most thoroughly researched phenolic compounds [27]. The compound has very
low toxicity, is abundant in fruits and vegetables, has many potential biological activities,
including anticancer effects, and can simultaneously exert multiple anticancer effects
through the modulation of important molecular targets [28,29]. The aim of this paper is to
review the therapeutic potential of apigenin as a chemopreventive agent, as well the roles of
programmed cell death (PCD) mechanisms in the compound’s chemopreventive properties.

2. Apigenin

The common name of apigenin (i.e., 4′,5,7-trihydroxyflavone; C15H10O5, 270.24 g/mol)
is derived from the genus Apium (Apiaceae or Umbelliferae). The yellow crystalline
compound possesses hydroxyl groups at the C-5 and C-7 positions of the A-ring and at the
C-4′ position of the B-ring and is insoluble in water but soluble in dimethyl sulfoxide and
hot ethanol [5,30].

Apigenin is considered an important flavonoid, due to its abundance in a variety
of natural sources, including fruits and vegetables, and major sources include parsley,
chamomile, celery, spinach, artichoke, and oregano. Dried parsley contains 45,035 µg/g
of apigenin, whereas chamomile (dried flowers), celery seed, vine spinach, and Chinese
celery contain 3000–5000, 786.5, 622, and 240.2 µg/g, respectively. Glycosylated derivatives
(e.g., apiin and apigetrin) and dimers (e.g., amentoflavones, such as 3′,8”-biapigenin) of
apigenin have also been isolated from natural sources [5].

3. Physiological Functions of Apigenin

Apigenin has been used in traditional medicines, owing to its anti-inflammatory and
antioxidant [29,31], blood-pressure-lowering [32], antibacterial and antiviral [33], antidia-
betic [34], and anti-allergic properties [35]. Recently, apigenin has also been demonstrated
to possess tumor-suppressive effects, and since Birt et al. [36] first reported the anticancer
activity of apigenin in 1986, the compound has been reported to exert anti-tumor effects in
a variety of cancer types in both in vitro cell lines and in vivo mouse models (Figure 1).
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4. Apigenin in Cancer Therapy

Carcinogenesis is a multi-step process that involves a series of genetic and epigenetic
changes that contribute to the initiation, promotion, and development of cancer [37–39].
Cancer treatment strategies include the induction of cell apoptosis to eradicate tumor cells
and the induction of cell cycle arrest to prevent cancer cell proliferation, thereby prolonging
patient survival [40–42], and strategies involving the promotion of apoptosis/autophagy,
control of the cell cycle, prevention of tumor cell migration and invasion, and induction of
patient immune responses have also been proposed [43–46].

Apigenin has been demonstrated, in both in vitro and in vivo models, to exert broad
anticancer effects in a variety of cancer types, including colorectal cancer, breast cancer, liver
cancer, lung cancer, melanoma, prostate cancer, and osteosarcoma [47–52]. The compound
can prevent cancer cell proliferation by triggering apoptosis, which leads to autophagy and
cell cycle regulation, and can also reduce cancer cell motility, thereby preventing cancer
cell migration and invasion. It was also recently reported that apigenin can inhibit cancer
by stimulating patient immune response [53] and that the compound can regulate several
protein kinases and signaling pathways, including PI3K/AKT, MAPK/ERK, JAK/STAT,
NF-κB, and Wnt/β-catenin pathways [28].

5. Effect of Apigenin on Apoptosis
5.1. Apoptosis

The term apoptosis was first used by Kerr et al. [54] in 1972 to describe a morpho-
logically distinct type of cell death. Apoptosis, or Type I PCD, is a closely linked cellular
process that plays an important role in the development and homeostasis of multicellular
organisms [5]. Because tissue homeostasis involves a balance between apoptosis and cell
proliferation, disruption of this balance (e.g., uncontrolled apoptosis) may be implicated in
a variety of human diseases, including cancer [55,56]. Apoptosis is mainly induced through
the intrinsic (mitochondrial) and extrinsic (death receptor) pathway.

5.2. Types of Apoptosis
5.2.1. Intrinsic (Mitochondrial) Pathway

The intrinsic pathway, also known as the mitochondrial pathway of apoptosis, in-
volves various stimuli that act on multiple cellular targets within the cell. This form of
apoptosis depends on factors that are released from the mitochondria and begins in either
a positive or a negative pathway. Negative signals are caused by the absence of cytokines,
hormones, and growth factors in the cell’s immediate environment. In the absence of
these survival signals, pro-apoptotic molecules within cells, such as Bax, Noxa, and the
p53-upregulated modulator of apoptosis (PUMA), which are normally restrained, are ac-
tivated to initiate apoptosis. Other factors initiating apoptosis are positive and include
exposure to viruses and various toxic substances, radiation, hypoxia, reactive oxygen
species (ROS), and toxins [57].

The intrinsic apoptotic pathway is controlled by the mitochondria, including key
apoptotic factors, such as cytochrome c [58]. The intrinsic pathway is also controlled by
the members of the Bcl-2 family. Pro- and anti-apoptotic Bcl-2 proteins are localized in
mitochondria to manage the release of apoptogenic factors [59]. The pro-apoptotic Bcl-2
protein induces permeability of the outer mitochondrial membrane, allowing cytochrome
c to be released from the mitochondrial intermembrane space [60]. Consequently, in the
presence of ATP, it binds to apoptotic protease activating factor 1 (Apaf-1) and partici-
pates in the formation of a multimeric Apaf-1/cytochrome c complex. Subsequently, the
Apaf-1/cytochrome c complex binds to procaspase-9 to generate an apoptosome [61]. Con-
sequently, procaspase-9 is cleaved, activated, and dissociated from the apoptosome. Once
activated, caspase-9 is activated by cleaving executive caspase-3, -6, and/or -7 [62].
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5.2.2. Extrinsic (Death Receptor) Pathway

The extrinsic apoptotic pathway relies on cell surface death receptors, such as tu-
mor necrosis factor (TNF), which are controlled by the expression levels of triggering
ligands [63–65]. Ligands that stimulate cell surface death receptors contain cytokines, such
as transforming growth factor beta 1 (TGF-β1), TNF-α, and interferon gamma [65]. Cell
surface death receptors initiate procaspases via ligand binding [66]. Death domains play
an important role in the transduction of death signals from the cell surface to intracellular
signaling pathways. Therefore, when cell surface death receptor–ligand binding occurs,
cytoplasmic adapter proteins are recruited and associated with procaspase-8 via dimeriza-
tion of the death effector domain [65]. Next, a death-inducing signaling complex (DISC)
is formed, which triggers the autocatalytic activation of procaspase-8. Once activated,
caspase-8 prompts executioner caspases, such as caspase-3, -6, and -7, which mediate the
execution stage of apoptosis [65,67].

5.3. Induction of Apoptosis by Apigenin

The modulation of apoptosis has significant implications for cancer therapy, and thus,
the effects of apigenin on molecular targets have attracted extensive investigation (Table 1).

Table 1. Molecular targets of apigenin-induced apoptosis.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

Bladder

T24
PARP cleavage, caspase-3, -7 and -9

cleavage, Bax, Bak, Bad, p–p53, p53, p21,
p27, Cyt c (cytosol)

p-Akt, PDK, PI3K, Bcl-2, Bcl-xL,
cyclin A, B1, and E, CDK2, Cdc2,

Cdc25c, Bcl-xL, Mcl-1, Cyt c
(mitochondrial)

[68,69]

RT112 PARP cleavage [70]

Breast

SK-BR-3 p53, p21, Bax, Cyt c, caspase-8 and -3,
PARP, DFF45 cleavage, p27

cyclin A, B, D, and E, CDK1,
p-JAK, p-STAT3, VEGF, cyclin D1

and D3, CDK4
[71–73]

MDA-MB-231 and MDA-MB-231
xenograft

p-p53 (Ser-15), p21, Bax, PARP cleavage,
IκBα, caspase-3 and -7, FOXO3a, p27,

Cyt c

Bcl-xL, cyclin B1, Bcl-2, PI3K,
PKB/AKT [74–77]

MCF-7
p53, p-p53 (Ser-15), p21, caspase-8 and
PARP cleavage, ROS, Cyt c, caspase-3,

DFF45 cleavage, p27, FOXO3a

p-MDM2, p-JAK1, p-STAT3,
NF-κB/p65, p-IκBα, cyclin D1

and D3, CDK4, PI3K, PKB/AKT
[72,77–80]

BT-474 caspase-8 and -3, PARP, Cyt c, DFF45
cleavage, p27

p-JAK1, p-JAK2, p-STAT3, VEGF,
HIF-1α, cyclin D1 and D3, CDK4 [72,81]

Hs578T FOXO3a, p21, p27, PARP, Cyt c release PI3K, PKB/AKT [77]

MDA-MB-453 caspase-3, -6, -7, -8, and PARP cleavage,
Cyt c release, DFF45 cleavage, p27 procaspase-9, p-JAK2, p-STAT3 [72,82,83]

T47D caspase-3 and PARP cleavage, Bax Bcl-2, Bcl-xL [75]
HBL-100 Cyt c, caspase-3, DFF45 cleavage, p27 cyclin D1 and D3, CDK4 [72]

Cervical

HeLa
p53, p21, caspase-2 and -3, Fas,

mitochondrial redox impairment, PARP,
ROS, AIF, Endo G, Cyt c

Bcl-2, MMP, superoxide dismutase [84–86]

SiHa, CaSki, and C-33A mitochondrial redox impairment, ROS MMP [85]
Colon

HCT116 p21, p53, NAG-1, Bim-EL, Bim-L, PARP
cleavage

cyclin B1, Cdc2, Cdc25c,
procaspase-3, -8, and -9, Mcl-1,
Bcl-xL, STAT3, p-AKT, p-ERK

[87–90]

LoVo p21, NAG-1 [88]

DLD-1 PARP cleavage Mcl-1, p-AKT, p-ERK, Bcl-xL,
Mcl-1, STAT3 [87,90]

SW480 Cdc2, cyclin B1 [91]

HT-29 Bax, PARP cleavage, caspase-3 and -8
Cdc2, Bcl-2, m-TOR/PI3K/AKT,
Bcl-xL, Mcl-1, STAT3, caspase-3

and -8, cyclin D1
[90–93]

Caco-2 Cdc2 [91]
COLO320 PARP cleavage Bcl-xL, Mcl-1, STAT3 [90]
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Table 1. Cont.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

Esophageal

KYSE-510 p21, PIG3, p63, p73, caspase-3 and -9,
Bax cyclin B1, Bcl-2 [94]

Eca-109 and KYSE-30 PARP cleavage, caspase-8 IL-6, VEGF [95]

Gastric
HGC-27 and SGC-7901 Bax, Bcl-2, caspase-3 MMP [96]

Glioblastoma
U-1242MG PARP cleavage MAPK, AKT, mTOR, Bcl-xL [97]

T98G and U-87MG
p-p38 MAPK, c-Jun1, caspase-3, -8, and

-9, Bax, tBid, Smac (cytosol), SBDP, CAD
(nuclear)

ROS, MMP, Bcl-2, Cyt c
(mitochondrial), Smac

(mitochondrial), calpastatin,
ICAD

[98]

Head and Neck

SCC-25 TRAIL, TRAIL-R1, and -R2, Fas, TNF-α,
TNF-R1 and -R2, Bax, caspase-3 Bcl-2 [99]

Melanoma

A375 and C8161 Cyt c release, Bax, Apaf-1, caspase-3, -9,
and PARP cleavage

Bcl-2, Cyt c (mitochondrial),
p-ERK1/2, p-AKT, p-mTOR [50,100,101]

Leukemia

THP-1 caspase-3 activity, p-p38, p-ERK, PKCδ
activity, p-ATM caspase-9 activity, p-H2AX [102,103]

U937 caspase-3, -7, -9, and PARP cleavage,
p-JNK, Bcl-2 cleavage

hTERT, c-Myc, Mcl-1, p-AKT,
AKT, p-Bad, p-mTOR, p-GSK3β,

JNK, Mcl-1, Bcl-2
[104,105]

HL60 p-Cdc2, p-p38, caspase-3, -8, and PARP
cleavage

PI3Kp85, p-AKT, p-GSK3β,
p-JAK2, p-Src, p-STAT3 [106,107]

TF-1 LMWPTP CDK6, p-Src, p-JAK2, p-SHP2,
p-STAT3 and 5, p-p70S6K [106]

Liver

Huh-7 caspase-3, -8, and -9 cleavage, PARP,
Bax/Bcl-2 ratio [108,109]

HepG2
caspase-3, -7, -8, -9, and -10, Bid, p21,
p16, PARP cleavage, Bax, DR5, ROS,

TNF-α, IFN-γ

Bcl-2, PI3K/AKT/mTOR, p-LRP6,
Skp2 [48,110–114]

Hep3B DR5, ROS, caspase activation [115]
SK-HEP-1 ROS, caspase 3, PARP MMP, Bcl-2 [116]

BEL-7402 and BEL-7402 xenograft ROS, caspase 3, PARP MMP, Bcl-2, Nrf2 [116,117]

Lung

A549

p21, Cyt c release, Bax, p53, p-p53, Wee1,
Chk2, Bid, GRP78, caspase-3, -9, and

PARP cleavage, GADD153, AIF, MAPK,
DR4, DR5

XIAP, Bcl-2, MMP, cyclin B,
Cdc25c, procaspase-8, Bcl-xL,

NF-κB, ERK, AKT, Cyt c
(mitochondrial)

[81,100,118–120]

H460 p21, Bax, FasL, p53, AIF, Cyt c,
caspase-3, GRP78, GADD153 XIAP, Bcl-2, Bid, procaspase-8 [118,121,122]

H1299 MAPK, DR4, DR5, Bax, Bad Bcl-xL, Bcl-2, NF-κB, ERK, AKT [120]

Diffuse large B-cell lymphoma

U2932 and OCI-LY10 caspase family, PARP cleavage Bcl-xL, PI3K/mTOR, p-GS3K-β,
MCL-X, p38, p-p65, p-AKT [123]

Mesothelioma

MM-B1, H-Meso-1 and MM-F1 Bax/Bcl-2 ratio, p53, caspase-8, -9, and
PARP-1 cleavage

p-ERK1/2, p-JNK, p-p38 MAPK,
p-AKT, c-Jun, p-c-Jun, NF-κB

nuclear translocation
[124]

Multiple myeloma

U266 and RPMI 8226 PARP cleavage
p-STAT3, p-ERK, p-AKT, NF-κB,

Mcl-1, Bcl-2, Bcl-xL, XIAP,
survivin

[125]

Neuroblastoma

SK-N-DZ, SK-N-BE2, SK-N-DZ
and SK-N-BE2 xenograft

caspase-3, -8, and PARP cleavage, Bax,
Bid, tBid, calpain, ICAD fragment, p21,

Noxa, PUMA, p53, ICAD, SBDP

N-Myc, E-cadherin, Notch-1,
hTERT, PCNA, Smac, survivin,

SBDP, Bcl-2, Mcl-1
[126–129]
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Table 1. Cont.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

NUB-7 PARP cleavage, p53 (NE), p21, Bax, p-ERK [130]
IMR-32 Bax, Noxa, PUMA, p53, caspase-3, ICAD Bcl-2, Mcl-1 [128]

Oral

SCC-25 TRAIL, TRAIL-R1 and -R2, Fas, TNF-α,
TNF-R1 and -R2, Bax, caspase-3 cyclin D1 and E, CDK1 [99]

Osteosarcoma

U-2 OS Bax, PARP cleavage, p53, AIF procaspase-3, -8, and -9, GADD153
(NE) [131]

Ovarian
SKOV-3 caspase-3 and -9, Bax, Bcl-2, COX-2, ROS [132–134]

A2780 and OVCAR-3 ROS, MDA, caspase-3 and -9 [133]

Pancreatic

BxPC-3 Ac-p53, p21, PUMA, Cyt c release, caspase-3
cleavage

Bcl-xL/p53 interaction, Bcl-xL/PUMA
interaction, cyclin B1, Bcl-2, XIAP,

p-GSK3β, NF-κB/p65 (NE)
[135–137]

MIA PaCa-2 Ac-p53, p21, PUMA, Cyt c release, PARP
cleavage

Bcl-xL/p53 interaction, Bcl-xL/PUMA
interaction [135,138]

PANC-1 Cyt c release, caspase-3 cleavage cyclin B1, XIAP, p-GSK3β,
NF-κB/p65 (NE) [136]

PEL
BC3, BCBL1, and B p53 STAT3, ROS [139]

Prostate

22Rv1 and 22Rv1 xenograft p53, p-p53, p21, p14, Cyt c release, Bax,
Apaf-1, caspase-3, -8, -9, and PARP cleavage

MDM2, MMP, Bcl-2, Bcl-xL, p-IKKα,
NF-kB/p65, PCNA, HDAC1 and 3,

Bcl-2
[140–142]

PC-3 and PC-3 xenograft caspase-3, -9, and PARP cleavage, Bax, Bad,
Ku70, Cyt c release, p27, p21

XIAP, cIAP-1, -2, Bcl-2, Bcl-xL,
survivin, HDAC1, procaspase-3, -7,

and -9, cyclin D1, p-IKKα,
NF-kB/p65, PCNA, ER-β, PSMA5,

PLK-1, HDAC1, and 3, Bcl-2

[141–147]

LNCaP p21, p27, Bax, PARP cleavage, Cyt c release
cyclin D1, D2, and E, CDK2, 4, and 6,

Bcl-2, procaspase-3, -8, and -9,
NF-κB/p65, PLK-1

[51,145,147]

DU145 caspase-3, -9, and PARP cleavage, DR5, Cyt c
release

XIAP, cIAP-1 and -2, survivin,
procaspase-3, -7, and -9 [143,145,148]

Renal
ACHN, 786-O, and Caki-1 p53, Bax, caspase-3 and -9 [149]

Thyroid

FRO c-Myc, Bid, Fas, p-p53, caspase-3 and PARP
cleavage Bcl-2, p27, p21 [150]

AIF, apoptosis-inducing factor; Apaf-1, apoptotic protease activating factor-1; ATM, ataxia telangiectasia mutated;
Bad, Bcl-2-associated death promoter; Bax, Bcl-2 associated X protein; Bcl-2, B-cell lymphoma-2; Bcl-xL, B-cell
lymphoma extra-large; Bid, BH3-interacting-domain death agonist; Bim-EL, Bcl-2-interacting mediator of cell
death (Bim)-extralong; Bim-L, Bim-long; CAD, caspase-activated DNase; Cdc2, cell division control protein
2; Cdc25c, cell division cycle 25c; CDK, cyclin-dependent kinase; Chk2, checkpoint kinase 2; cIAP, cellular
inhibitor of apoptosis protein; COX-2, cyclooxygenase-2; Cyt c, cytochrome c; DFF45, DNA fragmentation factor
45; DR4, death receptors 4; DR5, death receptors 5; Endo G, endonuclease G; ER-β, estrogen receptor-beta;
ERK, extracellular signal-regulated protein kinases; FasL, apoptosis stimulating fragment (Fas) ligand; FOXO3a,
forkhead box O3a; GADD153, growth-arrest- and DNA-damage-inducible gene 153; GRP78, glucose-regulated
protein 78; GSK-3β, glycogen synthase kinase-3 beta; H2AX, histone H2A, X; HDAC, histone deacetylase; hTERT,
human telomerase reverse transcriptase; HIF-1α, hypoxia-inducible factor 1 alpha subunit; IκBα, nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; JAK, Janus family of tyrosine kinase; JNK,
c-Jun N-terminal kinases; LMWPTP, low-molecular-weight protein tyrosine phosphatase; MAPK, mitogen-
activated protein kinase; Mcl-1, myeloid cell leukemia-1; MDA, malondialdehyde; MDM2, mouse double minute
2; mTOR, mammalian target of rapamycin; MMP, mitochondrial membrane potential; NAG-1, nonsteroidal anti-
inflammatory drug (NSAID)-activated gene-1; NE, nuclear extract; Nrf2, nuclear factor erythroid 2-related factor 2;
NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; p70S6K, 70-kDa ribosomal protein S6 kinase;
PARP, poly(ADP-ribose) polymerase; PCNA, proliferating cell nuclear antigen; PDK, phosphoinositide-dependent
protein kinase; PEL, primary effusion lymphoma; PI3K, phosphoinositide 3-kinase; PIG3, p53 induced gene 3;
PKB, protein kinase B; PKC, protein kinase C; PUMA, p53-upregulated modulator of apoptosis; ROS, reactive
oxygen species; SBDP, spectrin breakdown product; SMAC, second mitochondria-derived activator of caspases;
STAT, signal transducer and activator of transcription; TNFR, TNF receptor; TNF-α, tumor necrosis factor alpha;
TRAIL, TNF-related apoptosis-inducing ligand; TRAIL-R, TRAIL receptor; VEGF, vascular endothelial growth
factor; XIAP, X-linked inhibitor of apoptosis protein. Adapted in part from Sung, B.; Kim, N.D. Apigenin and
Naringenin; Nova Science Publishers, Inc.: New York, NY, USA, 2015; pp. 75–106.



Int. J. Mol. Sci. 2022, 23, 3757 7 of 22

5.3.1. Effect of Apigenin on Caspase-Mediated Apoptosis

Caspases are a family of cysteine proteases that provide important connections in the
cellular networks that control inflammation and apoptosis. More than 12 caspases have
been reported to date, and caspase-2, -3, -6, -7, -8, -9, and -10 have been implicated in
apoptosis. Depending on their mechanism of action, these enzymes are broadly catego-
rized as initiator caspases (caspase-2, -8, -9, and -10) and effector (or executioner) caspases
(caspase-3, -6, and -7). Initiator caspases activate effector caspases, which modulate their ac-
tivity to destroy key structural proteins and to activate other enzymes. In addition, caspase
activation is mediated by both intrinsic and extrinsic pathways. Therefore, caspase function
and expression are downregulated in tumors, which suggests that caspase activation may
be an effective strategy for cancer treatment [151].

The ability of apigenin to induce caspase activation and caspase-dependent apoptosis
has been demonstrated in cell lines associated with a variety of cancer types, including
bladder cancer, breast cancer, cervical cancer, colon cancer, esophageal cancer, gastric can-
cer, glioblastoma, head and neck cancer, melanoma, leukemia, liver cancer, lung cancer,
mesothelioma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate
cancer, renal cancer, and thyroid cancer. For example, many studies have demonstrated
the apoptotic effect of apigenin, via caspase activation, on breast cancer cells. In MDA-
MB-453 breast cancer cells, apigenin activates caspase-8, -9, and -3 and causes the cleavage
of poly(ADP-ribose) polymerase (PARP), which results in apoptosis [82,83], and apopto-
sis is also induced by apigenin-mediated caspase-3 activation in MDA-MB-231, BT-474,
SKBR3, T47D, and HBL-100 breast cancer cells [71–77,80]. Seo et al. [80] reported that
extrinsic caspase-dependent apoptosis upregulates levels of cleaved caspase-8 and -3 in
apigenin-treated BT-474 breast cancer cells, and consequently, the induction of PARP cleav-
age was confirmed. In addition, treatment with the caspase-8 inhibitor Z-IETD-FMK and
the caspase-9 inhibitor Z-LEHD-FMK, together with apigenin, induced caspase-dependent
apoptosis in BT-474 cells, and apigenin has been reported to trigger apoptotic cell death
in caspase-3-deficient MCF-7 cells [152]. This can be demonstrated by the activation of
caspase-8 by apigenin, which results in proteolytic cleavage of PARP [72,77–79]. Further-
more, using the caspase-9-specific inhibitor Z-LEHD-FMK and the general caspase inhibitor
Z-VAD-FMK, apigenin was confirmed to induce apoptosis caspase-dependent apoptosis in
PC3 and DU145 cells in a dose-dependent manner [153]. A similar effect was demonstrated
in 22Rv1 human prostate cancer epithelial cells treated with apigenin, using the general
caspase inhibitor Z-VAD-FMK [140]. Das et al. [100] demonstrated that reduced cytochrome
c levels, owing to apigenin-induced increases in caspase-3 and -9 levels, induce apoptosis
in A375 melanoma cells. Furthermore, apigenin with poly(lactide-co-glycolide)-containing
nanoparticles was reported to improve the regulation of cell death and cytochrome c re-
lease and the expression of Apaf-1, Bax, Bcl-2, caspase-9, caspase-3, and PARP cleavage in
A375 cells [101], and apigenin nanoparticles have been reported to contribute to the inhi-
bition of ultraviolet (UV)-B-induced skin tumor growth by inducing caspase-3-mediated
apoptosis [154].

5.3.2. Effect of Apigenin on Tumor Suppressor p53-Dependent Apoptosis

The tumor suppressor protein p53 is a transcription product of the anti-oncogene TP53
and is an important factor in the termination of cellular cancerization and induction of
apoptosis in cancer cells. As such, p53 is described as the “guardian of the genome” [155].
The ability of p53 to regulate apoptosis is one of the most widely studied areas, and studies
have shown that apoptosis contributes to the tumor-suppressive activity of p53. As a
proapoptotic mediator, p53 can activate the transcription of proapoptotic genes, and p53
includes BH-3-specific proteins that encode members of the Bcl-2 family, such as Bax, Noxa,
and PUMA. However, p53 may also promote caspase activation by inhibiting anti-apoptotic
genes, such as survivin, upregulating apoptosis-inducing gene products, including Fas,
TRAIL receptor DR5, Bid, and Apaf-1 [156]. Torkin et al. [130] reported that apigenin
induces apoptosis in human neuroblastoma cells but not in untransformed cells. The action
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of apigenin appears to be mediated by p53, since it increases the levels of p53 and p53
target genes, p21WAF1/CIP1 and Bax. Furthermore, apigenin-mediated apoptotic cell death
has been reported to occur in wild-type p53 cells, but not in non-functional mutant p53 cells.
Shukla et al. [140] used p53 antisense oligonucleotide experiments to demonstrate that a
p53-associated pathway is required for apigenin-mediated apoptosis. In prostate cancer
22Rv1 cells, apigenin treatment increased the expression and transcriptional activation
of p53. Therefore, increased p53 protein expression correlated with an increase in the
level of the transcriptional target p21WAF1/CIP1. Moreover, consistent with in vitro findings,
the uptake of apigenin by 22Rv1-transplanted nude mice was reported to increase wild-
type p53, p53-Ser15 phosphorylation, cytochrome c, and cleaved caspase-3 expression in
a dose-dependent manner, and the resulting up- and down-regulation of Bax and Bcl-2
levels, respectively, suggest that the inhibited growth of 22Rv1 tumor xenografts is due to
the induction of p53 pathway-mediated apoptosis. According to Shendge et al. [152], the
apoptosis of apigenin-treated MCF-7 cells involved increased p53 expression, Bax/Bcl-2
ratio, caspase activation, and PARP cleavage. Meanwhile, treatment with both apigenin
and the p53-mediated apoptosis inhibitor pifithrin-µ reduced the apoptotic cell population,
thereby revealing the important role of p53 in apigenin-induced apoptosis in MCF-7 cells.

5.3.3. Effect of Apigenin on Tumor Suppressor p53-Independent Apoptosis

Mutations in p53 have been identified in more than 50% of human tumor tissues.
In certain tumor types, the loss of p53 function is associated with chemoresistance, and
cancers with p53 mutations generally respond poorly to therapeutics [157], thereby prompt-
ing the investigation of anticancer agents that act independently of p53 status. Zhang
et al. [94] reported that apigenin induced apoptosis in p53 mutants of human esophageal
squamous cell carcinoma KYSE-510 cells via the mitochondrial apoptosis pathway and
induction of p21WAF1/CIP1. Meanwhile, in prostate cancer cells, DU145 (with mutated
p53) and PC-3 (with null p53), apigenin treatment increased p21WAF1/CIP1 expression and
induced apoptosis. These results demonstrate that apigenin exerts a p53-independent
chemopreventive effect [141–148]. King et al. [135] reported that, in human pancreatic
cancer cells (BxPC-3 and MIA PaCa-2), the p53 DNA binding-specific inhibitor pipitrin-α
blocked transcription-dependent p53 activation and, thus, apigenin’s anti-proliferative and
pro-apoptotic effects. Even though there was little reversal of this effect, the p53-regulated
apoptosis p21WAF1/CIP1 and PUMA was inhibited by pifithrin-α. Therefore, apigenin can
activate p53 through a parallel and transcriptionally independent pathway of PCD.

6. Effect of Apigenin on Autophagy
6.1. Autophagy

Autophagy, or Type 2 PCD [158], is characterized by the sequestration of cytoplasmic
material into vacuoles for mass degradation by lysosomal enzymes and is defined as the
cellular process through which cytoplasmic macromolecules and organelles are delivered to
lysosome for degradation [159]. Much evidence supports the hypothesis that autophagy has
a complex and contradictory relationship with cancer. [160] During starvation, autophagy
provides recycled metabolic substrates and may promote cell survival by maintaining
energy homeostasis. However, autophagy can either cooperate with apoptosis or trigger
apoptosis as a backup mechanism [161]. Autophagy involves a variety of proteins that are
encoded by autophagy-related genes (ATGs), of which more than 30 have been reported. In
general, autophagy is induced by the activation of AMP-activated protein kinase (AMPK),
which results from a lack of energy in the form of ATP. However, the process is also
negatively regulated by mammalian target of rapamycin (mTOR), and the activation
of mTOR complex 1 (mTORC1) has been reported to prevent autophagy, whereas its
inhabitation has been reported to trigger autophagy when growth factors and/or amino
acids are insufficient [162].
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6.2. Types of Autophagy

The main types of autophagy (i.e., microautophagy, macroautophagy, and chaperone-
mediated autophagy (CMA)) are characterized by their functions and by the way cargo is
delivered to lysosomes [163]. The most well-known type, macroautophagy, involves the
formation of double-membrane vesicles (i.e., autophagosomes) that swallow other vesicles
(such as proteins, mitochondria, and peroxisomes) and fuse with other lysosomes and
lysosomal hydrolases to degrade their contents [164]. Meanwhile, microautophagy is a
non-selective lysosomal degradation process by which cytoplasmic cargo are engulfed
directly from the boundary membrane via autophagy tubes that mediate endoluminal
incorporation and vesicle cleavage [165], and CMA, which only occurs in mammalian cells,
differs from other forms of autophagy in both the way transport proteins are perceived
for lysosome transfer and the way these proteins reach the lysosomal lumen. In CMA,
the internalization of substrate proteins precedes deployment, a step that is not necessary
for other types of autophagy [166]. Several recent studies have highlighted the significant
role of microautophagy and CMA in tumor growth and progression. However, nearly all
studies of the role of autophagy in cancer development, progression, and treatment refer to
macroautophagy [5].

6.3. Induction of Autophagy by Apigenin

The diverse molecular targets of apigenin-induced autophagy are summarized in
Table 2. The induction of non-apoptotic autophagy by apigenin treatment was first re-
ported by Ruela-de-Sousa et al. [106] in erythroleukemia TF1 cells, in which the autophagy
inhibitor mTOR and its downstream 70-kDa ribosomal protein S6 kinase (p70S6K) were
inhibited. The treatment failed to affect beclin 1 levels but strongly reduced Atg5, 7, and 12
and induced the production of both non-electron-dense vacuoles and double-membrane
vacuoles, which constitute strong evidence of TF-1 cell autophagy. Subsequent studies
have confirmed that apigenin can induce autophagy and have reported that apigenin can
function as either a tumor suppressor or protector [5,167]. In one study [89], apigenin-
induced autophagy was characterized by an increase in the level of LC3-II, which is a
processing form of LC3-I, the appearance of autophagosomes, and the accumulation of
acid vesicles. In addition, the autophagy inhibitor 3-methyladenine (3-MA) significantly
enhanced apigenin-induced apoptosis, with increased levels of PARP cleavage, but re-
versed apigenin-induced LC3 puncta, which suggested that apigenin induced apoptosis
and autophagy simultaneously and that apigenin-induced autophagy plays a cytoprotec-
tive role in apigenin-caused apoptosis. Similarly, Yang et al. [111] reported that apigenin
increased the expression of LC3-II and the number of GFP-LC3 puncta in HepG2 cells. In
addition, it has been reported that the inhibition of autophagy by 3-MA and Atg5 gene
silencing enhances the apigenin-induced inhibition of proliferation and apoptosis and that
apigenin induces both apoptosis and autophagy by suppressing the PI3K/Akt/mTOR
pathway. Most importantly, in vivo data demonstrate that apigenin can reduce tumor
growth, and the inhibition of autophagy by 3-MA notably enhances the anticancer effect
of apigenin. Chen et al. [92] reported that apigenin induces autophagy and apoptosis in
cisplatin-resistant colon cancer cells by inhibiting the m-TOR/PI3K/AKT signaling path-
way, increases levels of the autophagy-related proteins Beclin-1 and LC3-II, and inhibits p62
expression. In vivo data have also demonstrated that apigenin can inhibit tumor growth in
xenografted mouse models.

According to Kim et al. [168], apigenin treatment increases the phosphorylation of
ATG5, LC3-II, AMPK, and ULK1 and downregulates p62, thereby promoting autophagic
cell death, in gastric cancer AGS and SNU-638 cell lines under hypoxic conditions. Appar-
ently, apigenin can also induce autophagic cell death by activating protein kinase R-like
endoplasmic reticulum kinase (PERK) signaling, which is indicative of the endoplasmic
reticulum (ER) stress response, and induces ER stress and autophagy-related apoptosis
by inhibiting hypoxia-inducible factor 1, alpha subunit (HIF-1α), and enhancer of zeste
homolog 2 (Ezh2) under both normoxic and hypoxic conditions. Therefore, apigenin clearly
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activates autophagic cell death by suppressing HIF-1α and Ezh2 in gastric cancer cells
under hypoxic conditions.

Table 2. Molecular targets of apigenin-induced autophagy.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

Breast
T47D and MDA-MB-231 LC3-I, LC3-II [75]

Cevical
HeLa GRP78 [169]

Colon

HCT116 LC3-II
Wnt, c-Myc, Axin2, cyclin D1,
β-catenin, p-AKT, p70S6, p-p70,

S6, 4EBP1, p-4EBP1
[89,170]

SW480 LC3-II Wnt [170]
HT-29 Beclin-1, LC3-II p62, p-mTOR, p-PI3K, p-AKT [92]

Gastric

AGS and SNU-638
Atg5, Beclin1, LC3-II AMPKα

ULK1, GRP78, p-PERK, p-eIF2α
ATF4, CHOP, GRP78, CD63

p62, p-mTOR, Ezh2 [168]

Liver

HepG2 and HepG2 xenograft LC3-I, LC3-II, Atg5, Beclin1,
LC3-II/I ratio, AMPK

SQSTM1/p62, p-PI3K, p-AKT,
p-mTOR, p-mTOR/mTOR ratio,

NQO2
[111,171–173]

Hep3B LC3-II, Atg7, ROS [115]
SMMC-7721 and SK-HEP-1 LC3B-II, ULK1 p62 [174]

Leukemia

TF-1 LC3-II, Atg5, Atg12, LMWPTP p-Src, p-JAK2,p-STAT3, p-STAT5,
p-SHP2, p-mTOR, p-p70S6K [106]

Lung

H1975 LC3-II p-EGFR, Kras, c-Myc, HIF-1α,
p-AMPKα [175]

Multiple myeloma
NCI-H929 Beclin1, LC3B-II [176]

Neuroblastoma
SH-SY5Y LC3-II, p-AKT, mTOR Beclin 1, TLR-4, Myd88 [177]

Pancreatic

PANC-1 LC3-I, LC3-II, p-AKT p62, NRF2, SOD, CATALASE,
HSP90, p-4EBP1 [178]

PaCa-44 LC3-I, LC3-II, p62, NRF2, SOD,
catalase, HSP90, 4EBP1, p-AKT [178]

Renal

ACHN and OS-RC-2 Beclin1, LC3-II, p-AMPKα, p-JNK Ki-67, PCNA, p62, p-PI3K, p-AKT,
p-mTOR [179]

Skin

COLO-16 and HEK ATM, ATR, UPR, BiP, IRE1α,
PERK, Atg, LC3-I, LC3-II [180]

Thyroid
BCPAP Beclin1, LC3-I, LC3-II, Nrf2, HO-1 p62 [181]

AMPK, 5′ adenosine monophosphate-activated protein kinase; ATR, ATF4, activating transcription factor 4; ATR,
ataxia telangiectasia and Rad3-related protein; ATM, ataxia-telangiectasia mutated; Atg5, autophagy-related
5; Atg7, autophagy-related 7; Atg12, autophagy-related 12; Axin2, axis inhibition protein 2; CHOP, C/EBP
homologous protein; 4EBP1, eukaryotic translation initiation factor 4E binding protein 1; EGFR, epidermal
growth factor receptor; Ezh2, enhancer of zeste homolog 2; GRP78, binding immunoglobulin protein; HIF-1α,
hypoxia-inducible factor 1-alpha, HO-1, heme oxygenase-1; Hsp90, heat shock protein 90; IRE1α, inositol requiring
transmembrane kinase endoribonuclease-1α; JAK2, Janus kinase 2; LMWPTP, low-molecular-weight protein
tyrosine phosphatase; mTOR, mammalian target of rapamycin; MYD88, myeloid differentiation primary response
88; Nrf2, nuclear factor erythroid 2-related factor 2; NQO2, NRH-quinone oxidoreductase 2; p70S6K, 70-kDa
ribosomal protein S6 kinase; PI3K, phosphoinositide 3-kinase; PCNA, proliferating cell nuclear antigen; PERK,
protein kinase RNA-like endoplasmic reticulum kinase; ROS, reactive oxygen species; SHP2, Src homology
region 2 domain-containing phosphatase-2; SOD, superoxide dismutase; STAT, signal transducer and activator of
transcription; TLR-4, Toll-like receptor 4; ULK1, autophagy-activating kinase 1.
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7. Effect of Apigenin on Necroptosis
7.1. Necroptosis

Necroptosis is a novel form of PCD with morphological features similar to necroptosis,
as described by Degterev et al. [182] in 2005. Necroptosis has several features, such as
apoptosis and necrosis. For example, morphological signs, such as increased cell size,
expanded organelles, translucent cytoplasm, premature plasma membrane destruction,
and apoptosis, can be reversed [183]. Even though necroptosis plays an important role in
the efficacy of several cancer therapeutics, several signaling pathways have been impli-
cated in the activation of necrosis [184,185]. Necroptosis is a caspase-independent process
that is involved in the activation of death receptors [186]. During necroptosis, substrate
mixed-lineage kinase domain-like (MLKL)/receptor-interacting serine/threonine kinase 3
(PIRK3) plays an important role in the activation and execution of cell death [187]. After the
phosphorylation of MLKL by PIRK3, MLKL is oligomerized and translated into the plasma
membrane, where it improves membrane permeability by interacting with phospholipids.
Permeability is the main difference between apoptosis and necrosis. To further characterize
necroptosis, as well as the difference between apoptosis and necrosis, apoptotic cells are
surrounded by adjacent cells or antigen-presenting cells, whereas in necroptosis, perme-
ability increases the release of cytokines and chemokines to induce immune responses and
inflammation [188].

7.2. Necroptosis in Cancer

Necroptosis has been described as both a friend and an enemy of cancer and has been
reported to exert this dual effect on the growth of tumors associated with various types
of cancers. As an unsafe form of cell death that occurs in non-apoptotic cells, necroptosis
can stop tumor development. Nevertheless, as a form of necrotic cell death, necroptosis
can induce inflammatory responses and has been reported to promote cancer metastasis
and immunosuppression [189,190]. Therefore, the manipulating and/or induction of
necroptosis in anticancer therapy represent promising therapeutic approaches that could
bypass acquired or intrinsic apoptosis resistance and serve as alternatives for eliminating
apoptosis-resistant cancer cells. A growing number of compounds and chemotherapeutic
agents have been reported to induce necroptosis in cancer cells [191].

7.3. Induction of Necroptosis by Apigenin

Even though few studies have investigated the role of apigenin in necroptosis, the
several molecular targets of apigenin-induced necroptosis are summarized in Table 3.
Necroptosis involves activation of receptor-interacting protein kinase (RIPK) 1, which
binds to RIPK3 to form a necrosome. These events ultimately activate mixed-lineage kinase
domain-like protein (MLKL), which causes necroptosis [192]. Lee et al. [193] reported that
apigenin treatment can increase p-MLKL and p-RIP3 levels in malignant mesothelioma cell
lines (MSTO-211H and H2452) and that apigenin can significantly inhibit cell viability, in-
crease ROS, and induce ATP depletion through mitochondrial dysfunction, thus promoting
ROS-dependent necroptosis. Meanwhile, Warkad et al. [194] reported that combined treat-
ment with metformin and apigenin upregulates the necroptosis-related factors p-MLKL
and p-RIP3 in AsPC-1 pancreatic cancer cells and that metformin and apigenin together,
but not individually, can dramatically increase ROS levels and reduce cell viability in a
variety of cancer cells, including AsPC-1 cells. Warkad et al. also reported that metformin
differentially regulates cellular ROS levels through the AMPK-FOXO3a, forkhead box O3a
(FOXO3a)-MnSOD pathways in AsPC-1 pancreatic cancer cells and that the combination of
metformin and apigenin induces DNA damage by AsPC-1 pancreatic cancer cell-specific
ROS amplification, which results in apoptosis, autophagy, and necroptosis.
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Table 3. Molecular targets of apigenin-induced necroptosis.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

Mesothelioma

MSTO-211H and
H2452

ROS, γ-H2AX, p-ATM,
p-ATR, p-CHK1, p-CHK2,
Bax, caspase-3 and PARP
cleavage, p-MLKL,
p-RIP3, Bax/Bcl-2 ratio

MMP, ATP, Bcl-2 [193]

Pancreatic

AsPC-1

p-ATM, γ-H2AX, p-p53,
Bim, Bid, Bax, PARP
cleavage, caspasae-3, -8,
and -9, Cyt c, AIF1, p62,
LC3B, p-MLKL, p-RIP

Bcl-2 [194]

AIF1, apoptosis-inducing factor; ATM, ataxia telangiectasia mutated kinase; ATP, adenosine triphosphate; ATR,
ataxia telangiectasia and Rad3-related kinase; Bax, Bcl-2-associated X protein; Bid, BH3 interacting-domain death
agonist; Bim, Bcl-2 interacting mediator of cell death; Cyt c, cytochrome c; H2AX, H2A histone family member
X; MLKL, mixed-lineage kinase domain-like pseudokinase; MMP, mitochondrial membrane potential; PARP,
poly(ADP-ribose) polymerase; RIP3, receptor-interacting protein 3; ROS, reactive oxygen species.

8. Effect of Apigenin on Ferroptosis
8.1. Ferroptosis

Ferroptosis, which was first reported by Dixon et al. [195] in 2012, is a form of apop-
tosis characterized by intracellular iron accumulation and the cellular accumulation of
lipid ROS. The process can be stimulated by ROS generation, GSH depletion, and nicoti-
namide adenine dinucleotide phosphate (NADPH)-dependent lipid peroxidation [196]
and involves mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal
kinase (JNK), ERK, and p38 [162]. The morphological features of ferroptosis include in-
creased mitochondrial membrane density, reduced mitochondrial crista and mitochondrial
size, and mitochondrial exoplanet rupture, possibly owing to the dysfunction of voltage-
dependent anionic channels and changes in mitochondrial membranes fluidity via lipid
peroxidation [197,198].

8.2. Ferroptosis and Cancer

Cell death is important for homeostasis, normal development, and the prevention of
hyperproliferative diseases, such as cancer. Despite the success of clinical cancer treatment,
genetic resistance to conventional chemotherapeutic agents remains problematic [199].
Ferroptosis has been used to treat a variety of physiological and pathological processes and
diseases, including several types of cancer. Many studies have reported that ferroptosis
plays an important role in killing tumor cells and preventing tumor growth. For example,
ferroptosis has been reported to inhibit tumorigenic cells associated with hepatocellular
carcinoma [200], leukemia [201], non-small-cell lung cancer [202], pancreatic cancer [203],
and breast cancer [204]. Therefore, ferroptosis could be used as a novel therapeutic strat-
egy for cancer treatment. Because several FDA-approved clinical drugs (e.g., artesunate,
sorafenib, and sulfasalazine) are known to induce ferroptosis in certain types of cancer,
ferroptosis can be used in preclinical and clinical studies. Moreover, ferroptosis-inducing
agents, such as erastin, piperazine erastin, and RSL3, have been reported to inhibit tumor
growth in xenograft models of HT-1080 cells in vivo [196]. Therefore, there is a need for
clinical studies of ferroptosis-inducing drugs for use in tumor therapy [205].

8.3. Induction of Ferroptosis by Apigenin

Few studies have investigated the effects of apigenin on ferroptosis. Therefore, a
limited numbers of molecular targets of apigenin-induced ferroptosis are summarized
in Table 4. According to Adham et al. [176], apigenin treatment can induce cell cycle
arrest, apoptosis, autophagy, and ferroptosis in the multiple myeloma cell line NCI-H929.
Apigenin-induced ferroptosis was confirmed by treating NCI-H929 cells with apigenin and



Int. J. Mol. Sci. 2022, 23, 3757 13 of 22

the ferroptosis inhibitor ferrostatin-1, which completely ameliorated apigenin’s cytotoxicity.
Meanwhile, another ferroptosis inhibitor, namely, deferoxamine, reduced the cytotoxicity
of apigenin by 3.1-fold. In addition to providing the first evidence that apigenin is involved
in ferroptosis, Adham et al. also demonstrated that apigenin is an important contributor
to the inhibition of the STAT1/COX-2/iNOS signaling pathway to inhibit inflammation
and induce apoptosis and that apigenin may be a suitable candidate for treating multiple
myeloma. Shao et al. [206] reported that myeloperoxidase (MPO)-mediated oxidative
stress plays an important role in pathological dysfunction and also demonstrated that
apigenin can relieve MPO-mediated oxidative stress and inhibit neuronal ferroptosis,
thereby significantly increasing GPX4, an important marker of ferroptosis. Liu et al. [207],
who investigated mesoporous magnetic nanosystems for apigenin (API) delivery, reported
that the targeted Fe2O3/Fe3O4@mSiO2-HA nanocomposite delivery system significantly
increased ROS levels and cellular lipid peroxidation levels, which is typical of ferroptosis
in A549 cells, and upregulated COX2 and p53, an important gene in ferroptosis, while
also downregulating GPX4 and FTH1. The downregulation of GPX4, which is also an
important component of the ferroptosis signaling pathway, which involves iron ions. The
simultaneous administration of apigenin and the ferroptosis inhibitor ferrostatin-1 was
reported to yield less pronounced cell inhibitory effects than the administration of apigenin
alone. Adham et al. [176] reported that extracts of Thymus vulgaris and Arctium lappa
induced apoptosis, autophagy, and ferroptosis in leukemia and multiple myeloma cell
lines, and apigenin has been identified in T. vulgaris. In a multiple-myeloma cell line
(NCI-H929), T. vulgaris and A. lappa extracts neutralized cytotoxic activity up to the highest
concentration of the experiment (100 µg/mL) using the ferroptosis inhibitors ferrostatin-1
and deferoxamine.

Table 4. Molecular targets of apigenin-induced ferroptosis.

Cancer/Cell Lines Up-Regulation Down-Regulation Refs.

Lung

A549
ROS, COX-2, p53,

MDA, Bax, caspase-3
and -8, Cyt c

GPX4, FTH1, SOD,
Bcl-2 [207]

Multiple Myeloma

HEK293
caspase-3 and -9, p38,
JNK, LC3-II, Beclin-1,

ROS

AKT, MMP, STAT1,
COX-2, iNOS [176]

NCI-H929 LC3-II, Beclin-1, ROS MMP [208]

Neuroblastoma
SH-SY5Y GPX4 MMP [206]

Bax, Bcl-2-associated X protein; Cyt c, cytochrome c; COX-2, cyclooxygenase-2; FTH1, ferritin heavy chain 1;
GPX4, glutathione peroxidase; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinases; MDA,
malondialdehyde; MMP, mitochondrial membrane potential; ROS, reactive oxygen species; SOD, superoxide
dismutase; STAT, signal transducer and activator of transcription.

9. Conclusions

This paper reviews the chemopreventive effects of apigenin and the roles of apoptosis,
autophagy, necroptosis, and ferroptosis in the compound’s physiological effects. Evidence
from both in vitro and in vivo studies indicates that apigenin exerts significant anticancer
activity. However, even though apigenin is bioavailable after oral administration in rats and
mice, there are no data regarding the compound’s pharmacodynamic or pharmacokinetic
profiles in humans. Therefore, additional data, including the bioavailability and safety of
apigenin in humans, are needed to promote further investigation and the development of
apigenin as a chemopreventive or therapeutic anticancer agent.
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