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Abstract

As sequencing methodologies continue to advance, the availability of protein sequences far

outpaces the ability of structure determination. Homology modeling is used to bridge this

gap but relies on high-identity templates for accurate model building. G-protein coupled

receptors (GPCRs) represent a significant target class for pharmaceutical therapies in

which homology modeling could fill the knowledge gap for structure-based drug design. To

date, only about 17% of druggable GPCRs have had their structures characterized at atomic

resolution. However, modeling of the remaining 83% is hindered by the low sequence iden-

tity between receptors. Here we test key inputs in the model building process using GPCRs

as a focus to improve the pipeline in two critical ways: Firstly, we use a blended sequence-

and structure-based alignment that accounts for structure conservation in loop regions. Sec-

ondly, by merging multiple template structures into one comparative model, the best possi-

ble template for every region of a target can be used expanding the conformational space

sampled in a meaningful way. This optimization allows for accurate modeling of receptors

using templates as low as 20% sequence identity, which accounts for nearly the entire drug-

gable space of GPCRs. A model database of all non-odorant GPCRs is made available at

www.rosettagpcr.org. Additionally, all protocols are made available with insights into modifi-

cations that may improve accuracy at new targets.

Author summary

Structure-based drug discovery is among the new technologies driving the development

of next generation therapeutics. Inherent to this process is the availability of a protein

structure for virtual screening. The most heavily drugged protein family, G-protein cou-

pled receptors (GPCRs), suffers from a lack of experimental structures that could hinder

drug development. Technical challenges prevent the determination of every protein

structure, so we turn to computational modeling to predict the structures of the remain-

ing proteins. Traditional techniques fail due to low sequence identity of available tem-

plates. Here, we test improvements to model building and identify changes that can
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improve accuracy of modeling from templates below 40% identity. We apply our findings

to model building of all non-odorant GPCRs to build the RosettaGPCR database (www.

rosettagpcr.org) for use in future drug development.

Introduction

G-protein coupled receptors represent important therapeutic targets

G-protein coupled receptors (GPCRs) are the largest family of membrane proteins in the

human body comprising nearly 800 distinct receptors [1]. They orchestrate cellular responses

to extracellular signals and thus play roles in immune function, cardiopathies, and neural

development. They are a ubiquitous family of proteins evolved over time to respond to a vari-

ety of stimuli including ions, small molecules, larger peptides, and even light [2]. Given their

expression on the cell membrane, they are attractive targets for therapeutic intervention. Cur-

rent estimates suggest around 30% of approved drugs act at a GPCR [3].

Experimental structures of GPCRs are determined at an increasing rate

overcoming substantial obstacles

The first atomic resolution structure of a GPCR was rhodopsin in 2000, in part due to its high

abundance and stability from native sources [4]. For most receptors, expression levels are well

below what is needed for structural characterization from orthologous sources. Therefore, it

wasn’t until 2007 that the structure of a second receptor was experimentally determined [5,6].

As dynamic, membrane-bound proteins, significant protein engineering was needed for struc-

ture determination (i.e. thermostabilization through mutation, nanobodies, fusion proteins,

and/or truncation of flexible termini) [7]. Since 2007, over 50 unique receptor structures have

been determined. While this is a tremendous achievement, this represents only about 6% of

the GPCR superfamily. Even when focusing on non-olfactory GPCRs that are generally con-

sidered as druggable targets, nearly 350 unique receptors remain to be structurally character-

ized either for better understanding of how current drugs bind their targets or for structure-

based drug discovery. Of importance, at least 100 non-olfactory GPCRs have been designated

orphan receptors due to a lack of chemical matter [8]. Knowledge of the structural details of

the ligand binding pocket could assist in identifying chemical probes for these dark receptors.

Computational modeling can extend our current understanding of GPCR

structures

Given this knowledge gap, homology modeling is an important tool for generating models of

as-of-yet undetermined protein structures. Homology modeling uses a protein template with a

shared topology to map the target sequence onto its backbone coordinates in a process called

threading [9]. Early homology modeling relied on a single template structure for target struc-

ture prediction. However, these methods fail to generate accurate models using templates with

low sequence identity to the target protein. More recently, the use of multiple templates has

seen success in modeling targets in which the sequence identity is below 50% to any given tem-

plate [10,11]. Given that GPCRs often share identities in the range of 20–30%, GPCR-specific

model building has largely moved towards multiple template homology modeling. Servers for

the prediction of GPCRs from multiple templates are available including GPCR-ModSim [12],

GPCR-I-Tasser [13], GPCRM [14], GPCR-SSFE [15], and GPCRdb [16]. GoMoDo, another

server, uses single-template modeling [17]. The underlying software for all these servers is
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Modeller [18], except for GPCR-I-Tasser [11]. To date, no GPCR-specific multi-template

modeling method has been developed in Rosetta, a software unique in its capability to not only

predict structures but also design new functionality and dock ligands among other applications

[19,20]. Despite a unified method for GPCR modeling, Rosetta’s performance on single-tem-

plate modeling of GPCRs has been analyzed in the past with some success. In the GPCR Dock

experiment [21], Rosetta performed best in the structure prediction of the Smoothened recep-

tor ligand binding pose [22].

Rosetta hybridizes multiple templates

While other methods predefine template segments for various parts of the target model or

averages template structures, Rosetta handles multiple templates simultaneously during its

modeling process [23]. Rosetta holds all templates in a defined global geometry and randomly

swaps parts of each template using Monte Carlo sampling to identify regions from the various

templates that best satisfy the local sequence requirements. This template swapping occurs in

parallel with the traditional peptide fragment swapping from a database derived from the PDB

based on the target sequence and predicted secondary structure, a hallmark of Rosetta’s folding

algorithm [24]. This simultaneous sampling of template segments and peptide fragments

allows the energy function to define which segments to keep from the various templates based

on how well each segment improves the overall score of the model. Hybridization of templates

has been shown to be successful in CASP experiments, particularly for low template identity

targets down to 40% [23]. Below 40% identity, Rosetta is capable of producing accurate mod-

els, though it is not known a priori if the output models will be reliable.

Improving the protocol for modeling of targets with identity below 40%

Given the past success of Rosetta in single template homology modeling of GPCRs [22] and

the novel strategy of multiple template modeling in the Rosetta framework [23], we set out to

optimize the protocol for low identity template modeling with a focus on the therapeutically

relevant GPCR family. The change from the previous single-template homology modeling to

multiple-template modeling was multifaceted and we tested each component individually.

First, the use of multiple templates begs the question of the optimal number of templates to

use. Previous work in multiple template homology modeling suggested that there is a goldi-

locks effect in which multiple templates are better than one but too many templates could actu-

ally hurt the modeling process [25]. Additionally, as Rosetta uses a peptide fragment library,

we evaluate its influence on enhancing model accuracy. Further, we now handle loop closure

simultaneously in Rosetta’s multiple-template homology modeling through the use of these

peptide fragments. As loops are often involved in ligand- or protein-protein recognition, we

optimized the alignment in these regions and tested its effect on model accuracy. We bench-

marked our methods on a subset of 34 available structures of unique GPCRs covering the four

classes (A, B, C, and F). Additionally, we chose to model all targets using templates below 40%

sequence identity, unless otherwise noted, to mimic the situation when predicting novel target

structures. We find that our improvements result in highly accurate models due to the curated

sequence alignments and peptide fragment utilization. This improved method can now accu-

rately model Class A receptors down to a template identity of 20%. Based on this success, we

established a database of input code and output models for all human non-odorant receptors

available for public use (www.rosettagpcr.org). While we focus on GPCRs for this benchmark,

we emphasize that these modifications can assist in the modeling of any target from templates

with low sequence identity.
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Methods

Description of benchmark data set

For this study we chose a subset of 34 crystal structures of GPCRs covering the four structur-

ally characterized classes A, B, C, and F. In total there were 29 Class A receptors, two Class B

receptors, two Class C receptors, and one Class F receptor (S1 Table). Importantly, we chose to

model the receptors using exclusively templates below 40% sequence identity, unless explicitly

noted, as this most closely resembles the majority of real-life cases when modeling GPCRs.

Generation of multiple-sequence alignments (MSA) of templates

Initial alignments for the benchmark set were obtained from the GPCRdb [26]. This largely

ensured that the transmembrane α-helices were well aligned. To improve on these alignments,

the structures were aligned and visualized in PyMol, and the structural alignments were com-

pared to the sequence alignments. Transmembrane helical sequences were aligned starting

from the most conserved residue in each α-helix and extended outwards using the structural

alignments to guide insertion and deletions along the α-helical axis. Loop alignments were

generated based on the alignment of vectors of Cα to Cβ atoms between receptor structures. If

secondary structural elements were present in loop regions such as disulfides, α-helices, or β-

sheets, these were preserved in the alignment. Remaining residues that could not be aligned by

any of the above metrics were moved to be adjacent to a region of defined secondary structure

to ensure proper fitting of peptide fragments between ordered and unordered regions. The

alignment of the 34 receptors is shown in S1 Fig and are available online. Additional align-

ments for comparison were generated using the default options of ClustalOmega [27], Muscle

[28], T-Coffee TM-PSI and Espresso [29], and Mustang [30] and used without further

modification.

Template selection

For all receptors, a pairwise identity matrix covering the transmembrane bundle and loops

and excluding long termini was generated using ClustalOmega [27]. The reported identities

were used to rank the templates for each receptor model. Shown in S2 Table is the ranked list

of templates for each target receptor in the benchmark. While most templates have sequence

identities below 40%, those highlighted in yellow were removed because they featured

sequence identity above the 40% threshold. Templates labeled in bold were used in single-tem-

plate high identity modeling to compare to the previous benchmark [22].

Generation of additional input files

Membrane spanning topology files were generated by submitting the sequence of the target

proteins to Octopus [31]. The output files were converted into Rosetta readable span files with

Rosetta’s built in octopus2span.pl script. Disulfide bond restraint files were prepared for each

target protein for the conserved disulfide bond between TM3 and ECL2, except for LPA1 and

S1P1. Additional disulfide bonds within ECL3 were mapped as needed.

Sequence alignment of target sequence to template MSA

Alignment of sequences without known structure was accomplished similarly as above. First,

alignments were extracted from GPCRdb. Then the highly conserved residues in each helix

were aligned with the template MSA. Positioning of residue x.50 (BW numbering) often cor-

rected helix alignments but gaps and deletions were propagated throughout families. For

receptors lacking the highest conserved residue in each helix, other motifs such as DRY,
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NPxxY, and CxxP were used for helix positioning. The loops were aligned as such: ECL1,

ICL1, and ICL2 were aligned using common sequence motifs (eg. xWxxG in ECL1). For ICL3,

sequence alignments were maintained within families particularly with receptors with short

loops such as the Class B and chemokine receptors. For the majority of receptors, the ICL3

sequence was split at the halfway point between TM5 and TM6 and the halves were adjoined

directly to the end of TM5 or beginning of TM6, respectively. For ECL3, particular attention

was given to the presence of cysteines for either internal ECL3 disulfides or disulfides between

the N-terminus and ECL3. These cysteine residues were used for alignment. For receptors

lacking disulfide bonds, patterns identified in template families were used to fix family align-

ments. Remaining receptors again had the sequence of the loop halved and adjoined the halves

to their next helical sequence for peptide insertion overlap. For ECL2, targets were grouped by

putative ligand binding type: i.e. aminergic, lipid, peptide, unknown. Based on this grouping,

the alignments were carried out specifically for their family type (i.e. a beta sheet was predicted

and aligned for all peptide receptors). For receptors with unknown ligand type or dissimilar

ligands (i.e. protons), the loop sequence was first divided at the conserved cysteine residue and

this residue was aligned generating two shorter loops. These loops were then halved and

adjoined to their nearest fixed structural feature, either a transmembrane helix or the con-

served disulfide bond with TM 3. The full MSA of all receptors is available at www.rosettagpcr.

org and www.github.com/benderb1/rosettagpcr.

Model production

With all input files in hand, target sequences were threaded onto the pre-aligned templates

using Rosetta’s partial_thread application [23]. Threaded models were passed to the hybridiza-

tion application via use of Rosetta XML scripts [23,32]. Either 100 models or 1000 models

were generated per run as noted in the text.

Results

Blended sequence- and structure-based alignment is critical for modeling

success

Inherent to any homology modeling protocol is an alignment between the sequence of the tar-

get protein and the template structure. This alignment maps the target sequence onto the tem-

plate structure in a process called threading [9]. Sequence alignments are necessary for this

process, and a wide variety of search methods have been generated [27,28]. Each sequence

alignment method uses a different algorithm to weight the importance of sequence conserva-

tion globally or locally with or without gap penalties. As we learn more about the structures of

diverse proteins, it becomes apparent that structure is often better conserved than sequence.

As such, additional algorithms have been generated based on structural alignments and

domain fold recognition [29,30]. This latter case is inherent to the family of GPCRs in which

the common sequence identity between receptors is around 30% while all receptors share a

similar structural fold. The best-known alignment of GPCRs is Ballesteros-Weinstein (BW)

numbering [33] which identifies the most conserved residue in each α-helix and sets it as a

starting point for alignment (i.e. 3.50 being the most conserved residue in helix 3). Counting

along the α-helix in reference to this residue all other residues are enumerated. While useful,

this alignment falls short in two areas. As more receptor structures became available, it was

found that not all receptor families adhere strictly to the i to i+4 periodicity in every α-helix

[34]. Insertions and deletions have resulted in local alterations of the helicity, in particular

around proline or glycine residues. Secondly, BW numbering fails in the loop regions as
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different receptors have varying lengths of α-helices and dramatically different loop structures

particularly within extracellular loop 2 (ECL2), which can adopt disordered conformations, α-

helices, or β-sheets. As these loops are critical for ligand recognition [35], they diverge widely

in sequence proving even more challenging for the creation of meaningful sequence align-

ments. However, despite sequence divergence, there is evidence for structural conservation in

these regions [36]. Therefore, a critical component to the present method has been to blend

sequence and structure information into an optimized knowledge-based sequence alignment

for the templates with an emphasis on structural alignments in the loop regions (S1 Fig and

Methods).

We compared this new alignment to other sequence- or structure-based alignment meth-

ods. For each receptor in the benchmark, 100 models were generated for each of the six align-

ment methods tested. The average RMSD for a target protein was divided by the average

RMSD for the same target using the new alignment resulting in a fold change and the average

across the full benchmark is reported (Fig 1). As seen, despite using sequence-only (ClustalO-

mega [27] and Muscle [28]), structure-only (Mustang [30]), or automated blended alignments

(T-Coffee, TM-PSI, and Espresso (PDB Mode) [29]), the knowledge-based alignment per-

forms the best in all regions tested. For Class A receptors it is found that the transmembrane

(TM) region is modeled nearly equivalently across all methods. However, since the overall

accuracy was improved, we sought to identify which non-transmembrane component was

contributing to this improvement. Incredibly, we find that ECL2, the longest of the extracellu-

lar loops and most difficult for modeling, was dramatically improved by our alignments. We

find this to also be true for the Class B, C, and F receptors. Though in those families, TM accu-

racy also improves. Altogether, this demonstrates that a blended sequence- and structure-

based alignment can improve accuracies across both structurally defined regions (TM) and

long, challenging loops (ECL2). This has implications for other systems in which loops can be

Fig 1. Comparison of average RMSD change using various alignment methods. A total of 100 models were produced for each alignment method. The average RMSD

of the models were normalized to the average RMSD of the models produced with the knowledge-based alignment (black). Values above 1 represent an alignment

method that produced on average worse models while values below 1 represent an alignment method that produced on average better models. For (A) all receptors

regardless of family, the knowledge-based modeling performs the best regardless of region analyzed. When split between (B) Class A and (C) Classes B, C, and F, the

majority of the improvements are found in the Classes B, C, and F where template availability is limited.

https://doi.org/10.1371/journal.pcbi.1007597.g001
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critical for protein function and binding partner recognition. In particular this is analogous to

research in antibody modeling in which protocols have been developed to model the long

loops of the complementary determining regions [37,38].

Peptide fragment hybridization improves target model quality

Our previous benchmark of GPCR modeling relied on single-template threading [22]. We

wanted to recapitulate this initial study using the Hybridize code [23] to allow for peptide frag-

ment insertion to see what effect peptide sampling had on output quality. Peptide fragments

are mined from the PDB based on the target sequence and can improve local geometries that

may be inaccessible from template structures [24]. This analysis was limited to the eight recep-

tors with high identity templates available in the 2013 benchmark (β1AR, β2AR, M2R, M3R,

δOR, κOR, μOR, and NOPFQ). In this experiment, each target was modeled on the single best

available template with sequence identity either greater than 40% or less than 40% and allowed

to hybridize with the peptide fragment library (S2 Table). As seen in Fig 2, using the exact

same template as was used in the previous threading-alone method, hybridization of template

structures with peptide fragments can substantially improve output model accuracy in all mea-

sured regions. The transmembrane region improves on average by more than one Angstrom

to 0.8 Å root-mean-square deviation (RMSD) to the crystal structures showing highly accurate

modeling of this region. The ECL2 region again showed a dramatic improvement with an

average RMSD to the crystal structures of 1.0 Å compared to the previous method of single-

template modeling without peptide fragment insertion that reported an average RMSD of 5.0

Å. The full model RMSD, which accounts for all remaining loops and flexible termini, also

showed modest improvement from 2.9 to 2.1 Å. These results were similar when using a single

template with sequence identity less than 40%. Both the TM region and ECL2 improved by at

least 1.0 Å while the Full Model RMSD actually worsened by 0.5 Å. This is likely due to the fact

that divergent receptors have dramatically different termini conformations, which are often

affected by crystal packing artifacts. Taken together, peptide insertion accounts for a substan-

tial improvement over threading alone even when templates of sequence identity below 40%

are used.

Multiple templates improve performance for low sequence identity targets

While peptide insertion helped improve accuracy in the TM and ECL2 regions, overall model

accuracy weakened when using a single template with sequence identity less than 40% to the

target model. Therefore, we expected that multiple templates could overcome the shortcom-

ings of any single template when modeling a target with low identity templates [23]. We gener-

ated 1000 models for every receptor in the benchmark using either the single best template less

than 40% identity or the ten best available templates under 40% identity and compared the

average RMSD of the resulting models (Figs 3 and 4). As expected, the average RMSDs

improved for almost all receptors in the ECL2 and Full Model criteria. The TM region was

rather insensitive to the increase in template availability showing on average only 0.05 Å
improvement for the whole set. In both conditions, the majority of receptors are modeled with

accuracies in this region below 2 Å. A few exceptions to the above trends deserve attention as

they may influence target-specific modeling. In the TM region, both Class C receptors perform

rather poorly with either set of templates. This is due to the fact that the 40% threshold for

selecting templates removed the other Class C receptor from the template pool such that they

were modeled with non-Class C templates, a feature we recommend against for general model-

ing. As the structure of the TM region is distinct for these proteins compared to the other clas-

ses, the error was expected to be high. In contrast, for the Class B receptors, the two structures
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have a sequence identity of 35% with respect to one another allowing these structures to be

included as templates in the benchmark resulting in improved performance. In ECL2, there

are two Class A receptors (S1P1 and LPA1) that perform extremely well when using a single

template as compared to ten templates. These are the only two receptors in the benchmark

that lack the conserved disulfide between ECL2 and TM3. Their loop structures are distinct

from all other receptors and as a result, loop modeling only performs well when using the sin-

gle related template (Fig 4C). In the full model RMSD, both Rhodopsin and the Smoothened

receptor perform poorly regardless of the modeling method used. This is because both have

extremely long and unusual loops and termini (Fig 4F). Of note, the TM regions of these two

Fig 2. Comparison of single template modeling methods with peptide insertion. Using only a subset of receptors and templates

that were available in our original GPCR modeling benchmark (yellow in S2 Table), 100 models were generated using either a

single high identity template or the best template available below 40%. Original results from the 2013 benchmark [22] are displayed

in black. Using the hybridize code with the same original templates dramatically improved the results across all measures (medium

grey). Using a low identity template in hybridize (light grey) expectedly worsened the results compared to the high identity

template but was either better or comparable with the original threading alone algorithm.

https://doi.org/10.1371/journal.pcbi.1007597.g002
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receptors are modeled to 1.5 Å and 2.7 Å RMSD to the crystal structures of 1U19 and 4JKV,

respectively. Additionally, only two Class A receptors perform worse in the Full Model RMSD

calculation when using multiple templates. These again are S1P1 and LPA1 which performed

poorly in the ECL2 modeling. It appears that the poor quality of ECL2 is reflected in the Full

Model RMSD as the difference in the TM region for these two structures is only 0.1–0.2 Å.

These observations are important when deciding the best template set for a new target. If the

loops and termini are distinct from any known template as in the case of Smoothened, it can

be expected that this method will underperform. Further, if the loop sequences and predicted

secondary structures are similar to only one available template, it would be expected that using

a single template would be better than multiple templates.

Fig 3. Comparison of average RMSDs for single versus multiple template homology modeling. Using either one

template or ten templates, 1000 models were generated for each target and the average RMSD was calculated over the

TM region (A), ECL2 (B), and the full model (C). Values that fall above the diagonal performed better when using

multiple templates and values that fall below the diagonal performed better with a single template. Targets are colored

by class.

https://doi.org/10.1371/journal.pcbi.1007597.g003

Fig 4. Examples of results obtainable with RosettaGPCR. In all cases, the crystal structure is colored grey and the

model is blue. Three different ECL2 loops structures are presented: disordered (A), β-sheet (B), and lipid-binding (C).

RosettaGPCR performs well on loops containing the conserved disulfide. For lipid receptors lacking the conserved

disulfide (C) multiple templates (blue) perform worse than using a single template with similar structure (green), in

this case the LPA receptor. Extracellular loops 3 (D) and 1 (E) also perform quite well with this method. In general,

RosettaGPCR can model the TM region of most receptors below 2 Å (F). However, for receptors like rhodopsin with

complex loop structures and termini (red), the model (cyan) fails to capture the overall conformation (8.0 Å RMSD).

https://doi.org/10.1371/journal.pcbi.1007597.g004
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Identification of the optimal number of templates

As reported previously for multiple template homology modeling, the use of multiple tem-

plates, while improving results over the single template approach, will weaken model accuracy

if too many templates are used [25]. Thus, we determined an optimal number of templates on

average for GPCR modeling using our method. We generated an additional 1000 models for

each receptor using either five or all available templates and compared the data with the previ-

ous data on one and ten templates (Fig 5). For both the TM region and ECL2, using all avail-

able templates was worse than any other set of templates while the average RMSDs were quite

similar for one, five, and ten. However, for the full model accuracy, using a single template was

worse than all other template sets. Five templates performed distinctly well in the full model

accuracy compared to the other template sets while only providing modest improvement over

the other template sets in the TM and ECL2 regions. Therefore, we suggest five templates to be

Fig 5. Comparison of model accuracy using various numbers of starting templates. For each target, 1000 models were

generated using either 1, 5, 10, or all available templates. The average RMSD is plotted for the TM region, ECL2, and the Full

Model.

https://doi.org/10.1371/journal.pcbi.1007597.g005
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the best number of templates on average for modeling GPCRs with our method. In compari-

son to the previous benchmark, the set of five templates was the only set of low identity tem-

plates that performs better than a single high identity template without hybridization over the

full model (Fig 2). Again, this doesn’t take into account any of the exceptions mentioned

above. When modeling any one receptor in particular, an expert user would want to use all

available knowledge to determine the best template pool for modeling. Therefore, we provide

all input files needed for modeling so that a user can optimize the process using their expert

knowledge.

The improved protocol is competitive with other GPCR modeling servers

We next compared our method with other GPCR modeling servers. Three servers with pub-

licly available databases of GPCR models, GPCRdb [16], GPCR-I-Tasser [13], and GPCR-SSFE

[15], were included. We identified four human GPCR structures that were released following

the conclusion of method development. The four structures were C5aR1, Y1R, PTAFR, and

D2R (PDB IDs 6C1R [39], 5ZBQ [40], 5ZKQ [41], and 6CM4 [42], respectively). Of note, the

GPCR-SSFE database lacked a structure of the D2 receptor for comparison. We generated 100

models of each receptor target using five template structures and selected the best model by

total energy. In comparing our model with the models generated by other servers, we find that

RosettaGPCR consistently performs among the best of the predictions (Table 1). We find two

cases of other servers outperforming our models. For the C5aR1 structure, GPCR-I-Tasser just

barely achieves a better RMSD for the full model (1.649 vs 1.661 Å). GPCRdb built a better

ECL2 of Y1R compared to ours with RMSDs of 1.617 Å versus 1.896 Å, respectively. We

acknowledge these servers in many cases do well, though all can struggle with ECL2. However,

the exact reason differences exist between modeling servers is multifaceted. While the underly-

ing modeling algorithm differs (i.e. Modeller, I-Tasser, Rosetta), each server may also select

different templates and importantly use different alignment methods. For example, GPCRdb

only aligns helical segments of the receptors while largely ignoring loop alignments. In con-

trast, we find that manual curation enables a bridge between sequence- and structure-based

alignments. Altogether, RosettaGPCR performs as well if not better for these test cases. Fur-

ther, the strength in a Rosetta approach is the resulting models will be directly transferable to

additional applications within the larger Rosetta suite including docking and design.

Table 1. Results of Novel Structure Prediction from Various GPCR Modeling Servers. Blind predictions were carried out on C5aR1 (PDB ID 6C1R [39]), Y1R (PDB

ID 5ZBQ [40]), PTAFR (PDB ID 5ZKQ [41]), and D2R (PDB ID 6CM4 [42]). 100 models were generated for each target with RosettaGPCR and the best scoring model

was used for analysis. The RMSD of each model for the various servers were calculated for the TM region, ECL2, and the full model. The best performing model in each

evaluation criteria is bolded. No data is available for GPCR-SSFE for D2R.

Target Region RosettaGPCR GPCRdb GPCR-I-Tasser GPCR-SSFE

C5aR 6C1R TM 1.233 1.854 1.294 1.901

ECL2 1.606 2.58 1.944 9.126

Full Model 1.661 2.083 1.649 2.456

Y1R 5ZBQ TM 0.936 1.765 1.271 1.132

ECL2 1.896 1.617 2.339 9.464

Full Model 1.361 2.296 1.704 2.297

PTAFR 5ZKQ TM 1.310 1.559 1.800 1.355

ECL2 4.370 4.658 5.174 9.535

Full Model 1.897 2.181 2.872 2.679

D2R 6CM4 TM 1.113 1.485 1.604 –

ECL2 4.193 6.011 4.431 –

Full Model 1.536 2.318 2.304 –

https://doi.org/10.1371/journal.pcbi.1007597.t001
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Accuracy of models with increasingly worse templates does not decline

linearly

In our previous work on GPCR modeling using single-template threading, it was found that

templates needed to have greater than 50% sequence identity for accurate models [22]. Subse-

quently, the use of multiple-template modeling in Rosetta was suggested to be accurate to

about 40% sequence identity [23]. However, in this current benchmark we only use templates

with less than 40% sequence identity and still produce highly accurate receptor models. There-

fore, we wanted to identify a new lower threshold for template sequence identity. We devised

an experiment where we binned available templates into groups with 15–19%, 20–24%, 25–

29%, and 30–39% sequence identity (there were not enough templates in the 30–39% range to

split into two bins). We then identified three receptors with at least five templates in each iden-

tity group and performed multiple-template homology modeling with each set of five tem-

plates. The results, shown in Fig 6, find that overall, the TM Region accuracy is unaffected by

the use of templates down to 20% sequence identity. The same trend held true for the full

model accuracy seeing a dramatic rise in RMSD with templates lower than 20% identity. ECL2

was the most sensitive region where accuracy drops sharply when lower identity templates are

used. This is to be expected as structural conservation of the ECL2 loop appears to be family

dependent and using lower template structures requires moving to more divergent receptors.

Taken together, we suggest that templates down to 20% identity yield accurate models, particu-

larly within the TM region which is important for understanding the ligand recognition site.

Development of database for all human non-odorant GPCRs

By effectively pushing the lower threshold to 20% sequence identity, we can now predict mod-

els for the remaining GPCRs deemed druggable. To this effect, we identified the best templates

(as of June 2020) by identity for the entire set of non-olfactory human GPCRs (S2 Fig). Out of

397 receptors, 73 have at least one structure determined. This provides 81 receptors with a

template with sequence identity above 40%, the previous threshold for accurate modeling.

However, the number of receptors with a template between 20 and 40% is 201. Only 41 recep-

tors (or 10% of the receptor family) remain with sequence identities less than 20% and thus

expected lower accuracy in their models. We therefore applied our methodology to the entire

family of non-odorant Class A, B, C, and F GPCRs to create a model database available at

www.rosettagpcr.org. This is, to the best of our knowledge, the only Rosetta-based GPCR

server available, which distinguishes it from the many Modeller-based servers. While it is true

that the Robetta server exists for general homology modeling, it is not designed with a mem-

brane potential and it relies on automatic alignment methods, which we show to be

Fig 6. Model accuracy with templates over multiple sequence identity ranges. Three receptors (4ZUD [43], 3PBL

[44], and 2RH1 [5]) were identified that had at least 5 templates in each identity range (30–39%, 25–29%, 20–24%, and

15–19%). Using the identified 5 templates for each identity range, 100 models were generated and the RMSD of these

models is displayed in box and whisker plots for each region (TM, ECL2, and Full Model).

https://doi.org/10.1371/journal.pcbi.1007597.g006
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insufficient for low identity templates. The advantage of using a Rosetta-based modeling server

is that the models can be used directly in other Rosetta applications like ligand docking, pro-

tein-protein docking, and design. Switching models between different programs can result in

problems due to intrinsic differences in energy functions. Currently all models are in the inac-

tive state though will likely expand to active state models as more active state structures are

determined by cryo-electron microscopy. Additionally, it has been shown that co-modeling

ligands into homology models can improve the accuracy of a given model with respect to an

experimental structure. We have preliminary data suggesting that to be true for RosettaGPCR

as well (S3 Fig). However, for the purpose of modeling all receptors, the chemical and confor-

mational space is too large a problem to be tackled by mass modeling and is best suited for

individual target application. To this end, we provide all input files needed so that a given

receptor model can be improved with target-specific information such as ligand co-modeling.

Discussion

Accurate modeling of targets from low-identity templates is a challenge for computational

biology. GPCRs represent an unmet need in this area as most GPCRs remain structurally

uncharacterized and possess identities on average below 40% to other receptors. Many of these

proteins already have FDA approved drugs targeting them [3], but a deep understanding of

the molecular basis of drug intervention is lacking. Further, about a third of these receptors are

classified as orphan receptors because the endogenous ligand has not been identified [8]. A

structural perspective of the ligand binding pocket may help shed light on this group of recep-

tors. We have outlined here key considerations for homology modeling of proteins with low-

sequence identity to templates using GPCRs as a focus. Inputs are critical to the success of any

homology modeling program and optimizing them should be a priority to any new modeling

campaign. We show that improved alignments, incorporation of peptide fragments to over-

come template inaccuracies, and limiting the set of templates to the most relevant can allow

for accurate modeling of structures with templates below 40% identity, and subsequently apply

this method to all non-odorant GPCRs to produce the RosettaGPCR database. However, we

want to stress that the methodology is applicable to any homology modeling programs. We

have provided all necessary inputs to generate our database with the hope that a new user will

adapt the protocol to their specific test case and expert knowledge, including ligand informa-

tion, mutational analysis, or new template availability.

Supporting information

S1 Table. List of Receptors in Benchmark. Receptor name and the corresponding PDB ID

that was used for accuracy measurements.

(TIF)

S2 Table. List of Templates for Each Target Ranked by Sequence Identity. Yellow

highlighted templates were not used for general modeling because they have sequence identi-

ties greater than 40%. Bolded templates were used for single-template high identity modeling

to compare to previous benchmark.

(TIF)

S1 Fig. Alignment of receptor sequences. The alignment for all 34 receptors is shown using

Aline [45]. Identical and highly conserved residues are color-coded for easy identification.

Alignment available at www.rosettagpcr.org.

(TIF)
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S2 Fig. Percent Identify of Best Available Template for Every Non-Odorant Human

GPCR. For each receptor in the human genome, the best template was identified in the PDB.

The sequence identity of the best available is plotted. Most templates cross the 20% threshold

identified as critical for accurate modeling. The previous threshold of 40% identity is

highlighted in red, and the new 20% identity threshold is highlighted in black.

(TIF)

S3 Fig. Effect of Incorporation of a Ligand on Model Accuracy. One hundred models of the

D3 receptor was modeled either with multiple low identity templates (red) or with a single

high identity template (green) and the full model RMSDs are plotted as violin plots. As

expected, the high identity template yields higher accuracy models on average. Incorporation

of a ligand during the modeling process further improve the accuracy compared to the apo

state for both multiple low identity templates (cyan) and a single high identity template (pur-

ple).

(TIF)

S1 Protocol. Protocol Capture for Homology Modeling from Low Identity Templates.

Step-by-step guide to build models using this pipeline. Input data and scripts available at www.

github.com/benderb1/rosettagpcr.

(DOCX)
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