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Three-body correlations in nonlinear response of
correlated quantum liquid
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Richard Deblock4, Rui Sakano 5, Akira Oguri2,6 & Kensuke Kobayashi 1,7,8✉

Behavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated

case, the linear response of a given system to an external field is described by the fluctuation-

dissipation relations based on the two-body correlations in the equilibrium. However, to

explore nonlinear non-equilibrium behaviors of the system beyond this well-established

regime, the role of higher order correlations starting from the three-body correlations must

be revealed. In this work, we experimentally investigate a controllable quantum liquid realized

in a Kondo-correlated quantum dot and prove the relevance of the three-body correlations in

the nonlinear conductance at finite magnetic field, which validates the recent Fermi liquid

theory extended to the non-equilibrium regime.
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Understanding the properties of correlated quantum liquids
is a fundamental issue of condensed matter physics. Even
in a strongly correlated case, fascinatingly, we can tell that

the equilibrium fluctuations of the system govern its linear
response to an external field, relying on the fluctuation-
dissipation relations based on the two-body correlations. Going
beyond this well-established regime, the three-body correlations
are known to be of importance for van der Waals force1, the
three-body force in nuclei2, the Efimov state3,4, the ring exchange
interaction in solid 3He5,6, and frustrated spin systems7.

A quantum dot (QD) shows the Kondo effect, when a localized
spin in the QD is coupled with conduction electrons in the
reservoirs to form a spin-singlet state8–11. The QD in the Kondo
regime is an ideal realization of a strongly correlated quantum
liquid with high controllability and accessibility to the spin degree
of freedom. The essential physics can be captured by the
Anderson impurity model, which describes the single impurity
state with spin σ(= ↑, ↓or ±1) and energy εσ coupled to the two
metallic reservoirs. The Fermi liquid theory for the Anderson
model, which has been developed phenomenologically12 and
microscopically13–17, can explain the low-energy physics of this
highly correlated quantum system as the properties of an
ensemble of quasi-particles interacting with each other via resi-
dual interaction.

At zero magnetic field, namely when the time-reversal sym-
metry (TRS) is present, the linear response of the Kondo state can
be explained in terms of only a few parameters; the phase shift δσ
of the electron passing through the impurity state, and the two-
body correlations (χσ1σ2 ) between spin σ1 and spin σ2. Here, the
two-body correlation is identical to the conventional linear sus-
ceptibility, which is defined as the differential of the free energy Ω
of the total system regarding the energies of two electrons, χσ1σ2 �
�∂2Ω=∂εσ1∂εσ2 (see Supplementary Note 1). These parameters
determine the two crucial physical quantities of the Kondo pro-
blem: the Kondo temperature kBTK≡ 1/(4χ↑↑) and the Wilson
ratio R≡ 1− χ↑↓/χ↑↑12,13.

To go beyond this well-established regime, nonlinear suscept-
ibility, that is, three-body correlation χσ1σ2σ3 comes into the
game (see Fig. 1a). Similarly as above, it is defined as
χσ1σ2σ3 � �∂3Ω=∂εσ1∂εσ2∂εσ3 . To give an intuitive picture, con-
sider a situation where three electrons with spin σ1, σ2, and σ3
pass through the QD level in sequence as schematically shown in
Fig. 1b. The electron with σ1 first occupies and leaves the level,
and then the second electron with σ2 passes through it. Finally,

the third electron with σ3 occupies it. This process describes that
the spin in the QD level fluctuates from σ1 to σ2 to σ3 (from ↑ to ↑
to ↓, in this specific case shown in Fig. 1b) and that the spin of the
first electron affects that of the third electron. The correlation
among σ1 and σ3 via σ2, or three-spin exchange process, gives the
most naive picture of the three-body correlations, which con-
stitute the leading term of the nonlinear response of the system as
characterized by χσ1σ2σ3 (χ↑↑↓ in this case).

In this work, using a carbon nanotube QD in the SU(2) Kondo
regime, we experimentally prove that the three-body correlations
χσ1σ2σ3 indeed contribute to the nonlinear conductance. Thanks to
the quality of our sample, where the Kondo effect in the unitary
limit is achieved, we quantitatively measure the three-body cor-
relations, in perfect agreement with recent results of the Fermi
liquid theory18–23, and verify their role in the non-equilibrium
regime. In particular, we demonstrate their importance when TRS
is broken, and solve a long-standing puzzle of the Kondo system
under the magnetic field19. The demonstrated method to relate
three-body correlations and non-equilibrium transport opens up
a way for further investigation of the dynamics of quantum
many-body systems.

Results
Nonlinear conductance in Kondo regime. We first outline the
basic idea of the present study. We examine the differential
conductance (dI/dV) of the Kondo-correlated QD with the fol-
lowing expansion in terms of the bias voltage (V)24–30:

dI
dV

¼ G0 � αV
eV
kBTK

� �2

þ � � � ; ð1Þ

at T≪ TK. Here G0, e, and kB are the zero-bias conductance,
elementary charge, and the Boltzmann constant, respectively. The
coefficient αV of the order V2 consists of two- and three-body
terms, W2 and W3, respectively. As discussed later, W2 is defined
using δσ and χσ1σ2 (and hence R) [see Eq. (2)], which was pre-
viously addressed and established experimentally31–35. In this
work, we newly focus onW3, which is the function of δσ, χ↑↑, χ↑↑↑,
and χ↑↑↓ for specific cases [see Eq. (7), Methods, and Supple-
mentary Note 1]18–23. In the analysis, we rely on the fact that
G0 ¼ e2=h ´ ðsin2δ" þ sin2δ#Þ in the Kondo effect in the unitary
limit. This treatment is valid in this experimental work as we have
achieved the unitary limit in our QD (see Fig. 2a)35,36.

Importantly, when the on-site Coulomb interaction (U) in the
QD is zero, a complete analytical form for Eq. (1) is obtained by

Fig. 1 Three-body correlations and symmetry breaking in a quantum dot in the Kondo regime. a Schematic view of the correlations between the three
electrons accounting for the Fermi liquid correction. b Schematic view of the three-body correlation χ↑↑↓. Electrons fluctuate between the quantum dot
(QD) and the leads in the equilibrium and all those processes are summed up in χ↑↑↓. c (center) QD with the time-reversal symmetry (TRS) and particle-
hole symmetry (PHS). The energy level is εσ=−U/2. The two-body correlations χσ1σ2 are finite, while the three-body correlations are quenched. (left) QD
with broken TRS, where the two spins are separated by gμBB. (right) QD with broken PHS, where the energy level is ε≠−U/2. Experimentally, the gate
voltage is applied to the QD in order to tune the energy level. In these broken symmetry cases, the three-body correlations χσ1σ2σ3 are finite, which we
detect in this paper.
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replacing kBTK with 2γ0 (see Methods and Supplementary
Note 1). Here, 2γ0 virtually corresponds to the half-width of a
resonance peak. Note that the three-body correlations for the
same spins (χ↑↑↑ and χ↓↓↓) are finite even in this U= 0 case due to
the Pauli exclusion principle. On the other hand, only for the U ≠
0 case, the Kondo effect makes other components such as χ↑↑↓
finite. Thus, the experimental observation of the deviation from
the U= 0 case, which we refer as the free particle (FP) model
later, directly tells us the relevance of those correlations in the
nonlinear Kondo regime. In addition, recently, the expression of
the coefficient αV in the interacting case was theoretically
obtained by expanding the Fermi liquid theory to the non-
equilibrium regime18–23. Our present work, relying on a precise
experiment, aims to perform an accurate test of this theory.

To this end, we experimentally examine αV when TRS or the
particle-hole symmetry (PHS) is broken. In the presence of the
magnetic filed (B), a single electron energy with spin σ in the QD
is expressed as εσ= ε− gσμBB/2, where μB and g ≈ 2 are the Bohr
magneton and the g− factor in the nanotube, respectively. When
both TRS and PHS hold, the energy level is located at εσ=−U/2
(center of Fig. 1c), the situation that many experimental works
have addressed31–35. In this symmetrical point, the two-body
correlations are finite, while the three-body correlations are
quenched due to the symmetry. We systematically tune εσ to
investigate the behavior of αV by varying either B or the gate
voltage to vary ε. As is known in the Kondo physics, the magnetic
field splits the degenerate level by a quantity gμBB, which breaks
TRS (see the left panel of Fig. 1c). The gate voltage, on the other

hand, moves ε from−U/2 and breaks PHS (see the right panel of
Fig. 1c)18–21.

Sample and measurement setup. We perform conductance
measurement for a carbon nanotube QD connected to two Pd/Al
electrodes in the dilution fridge, using a standard low-frequency
lock-in technique. We focus on the conventional SU(2) Kondo
state previously reported in refs. 35–37. The details are presented
in those references and in Supplementary Note 4. The shape of
the Coulomb diamond and the shot noise measurement experi-
mentally determines whether the symmetry of the Kondo state is
SU(2) or SU(4)35–37. The base temperature of the dilution fridge
is 16 mK. A small magnetic field 0.1 T, which is sufficiently small
compared to the Kondo temperature (TK= 1.6 K at the PHS
point), is always applied to suppress the superconductivity of the
electrodes. In this paper, for simplicity, we refer to this lowest
field 0.1 T as zero field (0 T), except when we mark experimental
points at B= 0.1 T in the figures.

Basic characteristics of the Kondo state. Figure 2a shows the
zero-bias conductance G0 as a function of ε/U at zero field for
three different temperatures. In this paper, we define TK as
the Kondo temperature at the TRS and PHS point (B= 0T and
ε/U=− 0.5). We also define T�

Kðε;BÞ as the Kondo temperature
for general cases. By definition, T�

Kðε=U ¼ �0:5;B ¼ 0 TÞ �
TK ¼ 1:6 K. The black points in Fig. 2a are the Kondo tem-
peratures T�

Kðε;B ¼ 0 TÞ, which we evaluate by analyzing the
temperature dependence of G0

35. We obtain U= 6.4 ± 0.8 meV
and Γ= 1.9 ± 0.2meV by fitting the gate voltage dependence of
T�
Kðε;B ¼ 0 TÞ (dashed curve), where Γ is the width of energy

levels due to coupling between the electron in the QD and the
lead electrons35. Together with U/Γ= 3.4 ± 0.6, R= 1.95 ± 0.05,
which we independently determined from the shot noise
experiment35, indicates that the Kondo state is very close to the
limit of the strong correlation25. As the two-body correlation W2

is defined20–23 by

W2 ¼ � 1þ 5 R� 1ð Þ2� �
∑
σ

cos 2δσ
2

: ð2Þ

W2= 5.5 at R= 1.95 and the symmetric point (δσ= π/2).
Figure 2b shows the differential conductance obtained at

16 mK and the PHS point (ε/U=− 0.5) as a function of eV/kBTK
for different B from 0 to 2.5 T. When B increases, the Kondo
resonance gets split, and its amplitude is reduced. Inset in Fig. 2b
shows the Zeeman splitting 2Δ as a function of μBB/kBTK. The
linear fitting shows that the g-factor is 2.0 ± 0.05 just as expected
for carbon nanotube and the splitting seems to start at
μBB/kBTK= 0.23 ± 0.02 (B= 0.6T). Although this splitting has
served as a hallmark of the Kondo effect8–11, the microscopic
mechanism has been theoretically revealed only recently19–23.

Two- and three-body correlations in TRS broken case. We
analyze the magnetic field dependence of the Kondo peak at
the PHS point with Eq. (1) (the analysis procedure is detailed in
the Supplementary Note 3). At a finite magnetic field, the phase
shift relates to the induced magnetization of the electron inside
the QD (md) such that

md ¼
δ" � δ#

π
: ð3Þ

Then, G0 and W2 are expressed as:

G0 ¼
2e2

h
cos2

πmd

2

� �
ð4Þ
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Fig. 2 Energy level and magnetic-field dependence of the Kondo state.
a ε/U dependence of G0 for three temperatures (16, 380, and 780mK). The
experimental T�

K shown on the right axis is fitted with the formula shown in
ref. 35. b Differential conductance at the PHS point as a function of eV/kBTK
for different magnetic fields from 0 to 2.5T with 0.1T steps. Here, the
lowest field 0.1T is defined as 0T (see text). (inset) 2Δ, which is the width
of Zeeman splitting, as a function of μBB/kBTK.
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and

W2 ¼ 1þ 5 R� 1ð Þ2� �
cos πmd

� 	
; ð5Þ

respectively20. Note that to derive them we use the Friedel sum

rule, 1 ¼ δ" þ δ#
� �

=π, which holds even under the magnetic

field. The gradual increase of md deduced from the experimental
G0 is shown on the right axis in Fig. 3a. The numerical

renormalization group (NRG) calculations tell that the Wilson
ratio is almost insensitive to the magnetic field up to μBB/kBTK ~
1 (see Methods and Supplementary Note 2). Thus, as shown in
Fig. 3a, the magnetic-field dependence of W2 is directly deduced
using the experimentally obtained md and zero-field Wilson ratio
R= 1.9535. To the best of our knowledge, such a quantitative
measurement of the two-body correlation of the Kondo state
under magnetic fields has never been reported.

Let us now analyze the non-equilibrium case of Fig. 2b in detail
based on Eq. (1). The inset of Fig. 3b shows dI/dV as a function of
signðVÞ ´ ðeV=kBTKÞ2 at B= 0, 0.5, 1, 1.5, and 2.5T, respectively.
The "V-shaped” curves indicate that the conductance shows a
parabolic behavior around zero bias, and importantly, the sign of
their curvature changes around 1T when B increases. This sign
reversal can also define the splitting of the Kondo peak, on which
we focus here, instead of the above 2Δ38. We obtain the curvature,
that is, the coefficient αV from the fitting with Eq. (1) (see
Methods and Supplementary Note 2). Figure 3b represents αV as
a function of the normalized magnetic field μBB/kBTK. αV crosses
zero at μBB/kBTK= 0.38 (B= 0.9T).

In order to elucidate the physical meaning of the magnetic field
dependence of αV, we consider the FP model with a single
resonant level (see Methods and Supplementary Note 1). In this
case, analytic solutions of αV are given only by using a single
parameter, coupling constant (γ0). 2γ0 corresponds to the half-
width of dI/dV at zero field. When γ0 is given, the differential
conductance in the magnetic field can be straightforwardly
calculated for the FP case. αV(B) thus obtained is shown in the
dotted curve in Fig. 3b. Clearly, this dotted curve fails to explain
the experimental observation, indicating the relevance of the
Kondo correlation.

Now, using NRG calculations, we obtain αV(B) for the Kondo-
correlated QD with U/Γ= 3.520. As shown in Fig. 3b, the
theoretical curve (red dashed curve) satisfactorily reproduces the
experiment.

Then what can we learn from this agreement between the
experiment and the theory? As recently discussed19–23, αV is
related to the three-body correlations W3 as well as W2:

αVðBÞ ¼
2e2

h
π2

64
ðW2 þW3Þ ´

TK

T�
K

� �2

: ð6Þ

Here, W3 is defined as follows (see Methods and Supplementary
Note 1),

W3 ¼
1

2χ2""
∑
σ

sin 2δσ
2π

χσσσ þ 3χσ�σ�σ

� 	
: ð7Þ

As shown in Fig. 3a, we have already obtained the magnetic field
dependence of W2. In addition, T�

Kðε ¼ 0;BÞ as a function of B is
obtained from the Lorentzian fitting of dI/dV (see Supplementary
Note 2). Thus, we can finally derive the magnetic-field
dependence of W3 using Eq. (6) as presented in Fig. 3c. W3 is
zero at zero field and becomes finite as B is increased, i.e., as the
TRS is broken.

We can also analytically derive W3 in the FP model as shown
in the dotted curve in Fig. 3c [see Methods and Supplementary
Note 1]. Importantly, as is clear in this figure, the absolute value
of the experimental W3 is much larger than the theoretical
value of the FP model. The behavior of W3 is clearly due to the
enhancement of the three-body correlations χσ1σ2σ3 by the Kondo
effect. Indeed, NRG calculations with U/Γ= 3.5 shown in a red
dashed curve nicely reproduce the experimental W3. This result
assures that the residual interaction manifests itself in the non-
equilibrium transport in the symmetry-breaking regime. The
experimental determination of the three-body correlations is our
central achievement of this work.
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Fig. 3 Two- and three-body correlations as a function of magnetic field.
a Two-body correlations W2 and magnetization md as a function of
μBB/kBTK. The scaling factor kBTK is 138μeV. μBB/kBTK= 1.0 corresponds to
B= 2.4T. The marks indicate the results deduced from the experiment. The
dotted and dashed curves for W2 are given by the free particle (FP) model
and the NRG calculations (U/Γ= 3.5), respectively. b Curvature αV as a
function of μBB/kBTK. The dotted and dashed curves are derived by the free
particle (FP) model and the NRG calculations (U/Γ= 3.5), respectively.
(Inset) dI/dV as a function of signðVÞ ´ ðeV=kBTKÞ2 at different magnetic
fields. The curves are offset for clarity. We obtained αV with linear fitting.
Error bars correspond to the uncertainty of the linear fit performed on
slightly different ranges. c Three-body correlations W3 as a function of
μBB/kBTK. In the analysis, we have compared the experimental results with
the FP model (dotted curves) and the NRG results for the Anderson model
with U/Γ= 3.5 (dashed curves)20–23. The error bars are determined based
on those of αV shown in Fig. 3b.
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Two- and three-body correlations in PHS broken case. So far,
we have focused on the PHS point (ε/U=− 0.5, see Fig. 1c).
Next, we address the PHS breaking regime by tuning the gate
voltage (ε) at B= 0. The square mark in Fig. 4a shows ε/U
dependence of G0, which decreases as ε deviates from the PHS
point. The dashed curve given by the NRG calculations again
agrees with the experimental results well. We also show the phase
shift, δσ(= δ↑= δ↓), evaluated from Eq. (1) (circles in Fig. 4a). As
expected, the phase is locked around π/2 and develops a
plateau39,40. The NRG calculations indicate that the Wilson ratio
does not decrease in this region (see Supplementary Note 2).
Relying on this fact, we evaluate the ε/U-dependence of the two-
body correlation W2 with Eq. (2) and the experimental value of

the Wilson ratio R= 1.95 at B= 0 (For the obtained W2, see
Supplementary Fig. 5).

The inset of Fig. 4b shows dI/dV as a function of
signðVÞ ´ ðeV=kBTKÞ2 at ε/U=− 0.51 and− 0.65. The slope at
the former (around the PHS point) is larger than that at the latter
(PHS broken). Figure 4b is the deduced curvature αV as a
function of ε/U. Here, we investigate the region within ∣ε/U+ 0.5∣
< 0.15, where we experimentally obtain the Kondo temperature,
T�
Kðε;B ¼ 0TÞ (see Fig. 2a). In Fig. 4c, we plot W3 evaluated with

Eq. (6), showing that W3 remains almost zero in the entire region
of ∣ε/U+ 0.5∣ < 0.15, which is in sharp contrast with the above
result in the magnetic field. This indicates that three-body
correlations are more sensitive to magnetic field modulation than
the gate voltage modulation (energy level modulation). This
reflects that the spin degree of freedom of the Kondo state is
fluctuating while the charge part is frozen. The NRG calculations
with U/Γ= 3.5 shown in a dashed curve agree with the
experimental αV (Fig. 4b) and W3 (Fig. 4c). This agreement
again guarantees that the three-body correlations can be
estimated experimentally.

Discussion
In conclusion, we report the experimental determination of
many-body correlations in the Kondo QD. We demonstrate that
the curvatures of the differential conductance in the TRS- and
PHS- broken regimes are well reproduced by the NRG calcula-
tions with strong interactions, enabling us to successfully evaluate
the two-body and three-body correlations. The demonstrated
quantitative analysis confirms the validity of the recent develop-
ment of the Fermi liquid theory in the non-equilibrium regime,
which should inspire future work, for example, to cover the
temperature region around and above TK. In particular, their
sensitivity to TRS and PHS should make the three-body corre-
lations an efficient tool to explore correlated quantum liquids
such as topological spin liquids.

Methods
Fabrication process. We show the outline of the fabrication process41.

1. Sputtering Fe catalyst with 1 nm thickness on intrinsic Si substrate.
2. Placing the substrate in a quartz tube and heat it in a oven with low pressure

(~ 1.1 × 10−4 mbar) and stabilized temperature between 800 and 1000 °C.
3. Injecting C2H2 into the quartz tube for 9 seconds and pumping it out. After

this process, we can get carbon nanotubes.
4. Connecting the carbon nanotubes with metallic leads by the electron beam

lithography. We used Pd/Al bilayer for electrodes in the experiment
[Supplementary Fig. 6a].

Analysis in the U= 0 case. The complete analytical form for Eq. (1) is obtained in
the U= 0 case (see Supplementary Note 1), which is used in the FP model in this
work. The experimental Kondo peak at zero field is treated as if it were a resonance
peak with U= 0. We obtain γ0= 65 μeV by fitting the peak with the following
formula:

dI
dV

¼ 2e2

h
γ20

ðeV=2Þ2 þ γ20
: ð8Þ

As kBTK= 138 μeV, we see kBTK/γ0 ~ 2, which is explained in Supplementary
Note 1.

We present the magnetic field dependence of W2, αV, and W3 in Fig. 3a–c,
respectively, by using:

W2 ¼
γ20 � ðμBBÞ2
ðμBBÞ2 þ γ20

; ð9Þ

αV ¼ 2e2

h
1� 3ðμBB=γ0Þ2

1þ ðμBB=γ0Þ2

 �3 ; ð10Þ

W3 ¼
�2ðμBBÞ2
ðμBBÞ2 þ γ20

: ð11Þ
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Fig. 4 Two- and three-body correlations as a function of the energy level.
a Zero-bias conductance G0 and phase shift δσ as a function of ε/U. The
marks are experimental results obtained at B= 0. The dashed curve for G0

is given by the NRG calculations with U/Γ= 3.5. b Curvature αV as a
function of ε/U. The dashed curve is the NRG results with U/Γ= 3.5.
(Inset) dI/dV as a function of signðVÞ ´ ðeV=kBTKÞ2 at ε/U=− 0.51 and
−0.65. Error bars correspond to the uncertainty of the linear fit performed
on slightly different ranges. c Three-body correlations W3 as a function
of ε/U. We compare the experimental results with the NRG results with
U/Γ= 3.5 (dashed curve)20-23. The error bars are determined based on
those of αV shown in Fig. 4b.
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We treat μBB/γ0= (kBTK/γ0) × (μBB/kBTK). In Fig. 3a–c, μBB/kBTK is taken as the
horizontal axis.

Properties of χσ1σ2σ3 . Three-body correlations have permutation symmetry for the
spin indexes:

χσ1σ2σ3 ¼ χσ2σ3σ1 ¼ χσ3σ1σ2 ¼ χσ1σ3σ2 ¼ χσ2σ1σ3 ¼ χσ3σ2σ1 : ð12Þ
At zero magnetic field (the TRS point), χ↑↑↑= χ↓↓↓ and χ↑↓↓= χ↑↑↓ hold. At the
PHS point, χ↑↑↑=− χ↓↓↓ and χ↑↓↓=− χ↑↑↓ hold. These properties are used in the
discussion of W3 defined by Eq. (7).

Analysis of differential conductance. In the analysis shown in Fig. 2b, we do not
take the data obtained at very low bias region (typically ∣eV/kBTK∣2 < 0.01), where a
slight deviation from the parabolicity is observed. This effect is most probably due
to some other lower energy physics such as two-stage Kondo effect (see Supple-
mentary Note 2 and ref. 42).

Numerical calculations. NRG results shown in Figs. 3 and 4 have been calculated
using the Anderson impurity model in the form H ¼ Hd þHc þHT ,

Hd ¼ ∑
σ¼";#

εσ dyσdσ þ U dy"d" dy#d#;

Hc ¼ ∑
σ¼";#

∑
λ¼L;R

Z D

�D
dξ ξ cyξλσcξλσ ;

HT ¼ ∑
σ¼";#

∑
λ¼L;R

vλ

Z D

�D
dξ

ffiffiffiffi
ρc

p
cyξλσdσ þH:c:

� �
:

Here, εσ ¼ ε� σμBB is the energy of a single electron with spin σ and U is the
Coulomb interaction between electrons in the QD. The g-factor is taken as 2. Hc
describes the conduction bands of the leads on the left (L) and right (R) with the
constant density of states ρc≡ 1/(2D). When U= 0, the resonance width of the
local level due to the tunnel couplings in HT is given by Γ=2 ¼ πρc v2L þ v2R

� 	
. We

assume that the couplings to be symmetric vL= vR.
The NRG calculations have been carried out choosing the discretization

parameter to be Λ= 2.0 and keeping Ntrunc= 3600 low-lying energy states at each
step of the iterative procedure43. Our NRG code uses the global U 1ð Þ � SU 2ð Þ
symmetries and the method for deducing the correlation functions described in
ref. 23.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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