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Patrycja Krawczyk 2, Małgorzata Giel-Pietraszuk 1, Grzegorz Framski 1 , Tomasz Ostrowski 1 and Eliza Wyszko 1,*

����������
�������

Citation: Orlicka-Płocka, M.;

Fedoruk-Wyszomirska, A.;
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Abstract: Recently, small compound-based therapies have provided new insights into the treatment of
glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly
designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell
growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as
potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen
species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest
approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant
defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by
exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of
T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one
derivative—7-deazaKR—with comparable antitumor activity to KR. Both compounds induced ROS
generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together,
these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G
cells, and vulnerability of these cells is dependent on their antioxidant capacity.

Keywords: purine derivatives; kinetin riboside; glioblastoma multiforme; oxidative therapy; ROS;
oxidative imbalance; cell death; cancer cells; spheroids

1. Introduction

Glioblastoma multiforme (GBM) is the most widespread and major invasive brain
tumor in adults [1]. Unfortunately, it remains beyond the reach of previous therapies,
which gives patients a short therapeutic window [2]. Most patients with GBM die within
15 months of diagnosis [3], which is mostly caused by limited drug uptake in tumor cells
and tumor resistance to chemotherapy [4]. Thus, there is an immense need to develop more
effective targeted treatment that affects energy metabolism of GBM cells to enhance their
responsiveness to drugs [1,5].

Current treatment options for glioblastoma are mainly a combination of surgical
resection of the tumor, followed by radiotherapy and adjuvant chemotherapy [1]. GBM
is known to show intratumor heterogeneity [6], and rapid tumor progression contributes
to the molecular characteristics of this cancer. Thus far, three major signaling pathways
have been identified as the most deregulated ones in glioblastoma, namely, the activation
of the receptor tyrosine kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K) pathway and
inhibition of the p53 and retinoblastoma protein (Rb) signaling pathways (The Cancer
Genome Atlas Research Network, 2008 [1]). Identification of new agents potentially capable
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of exploiting the metabolic sensitivity of cancer cells and their effect on molecular markers
of GBM is necessary and obligatory [5–8]. The efficacy of small compounds with a potential
inhibitory effect on the key signaling pathways in cancer cells has been evaluated [5,9].
It is not clear whether the abovementioned abnormalities of molecular machinery of
glioblastoma cells might result from the increased basal levels of reactive oxygen species
(ROS) in these cells. However, this imbalance of oxygen delivery, capacity, and consumption
induces a proinflammatory environment, cancer cell migration and proliferation, drug
resistance, and escape from cell death [10,11]. Oxidative stress (OS) can damage and modify
proteins, lipids, and DNA; however, glioblastoma cells can survive and adapt in such a
hypoxic environment, which enables them to resist treatment [11].

Thus, there is a pressing need to design new therapeutic small-molecular-weight
compounds that can modulate the redox status of GBM cells and induce cell death through
oxidative stress and the apoptosis pathway.

Chloroquine, temozolomide, cannabidiol, berberine, and bromopyruvate are well-
known anticancer drugs that affect the redox status of GBM cells. Most of these compounds
are antimetabolites, which structurally resemble natural substrates and affect mitochon-
drial functioning through elevated ROS production [9]. Thus, they seem to be promising
and demanded therapeutic tools. We focused our attention on small compounds that
might have high potential due to their bioavailability and proapoptotic activity. There
are findings that natural small compounds may influence various steps of intracellular
signaling pathways that are crucial for cell growth, proliferation, and apoptosis. We found
a connection between observed KR-induced rapid ATP depletion and the enzymatic reac-
tions that KR is involved in, such as phosphorylation by adenosine kinase, a crucial enzyme
of the purine salvage pathway [12]. The current paper demonstrates the impact of N6-
furfuryladenosine (kinetin riboside; KR) and its newly designed derivatives, 8-azakinetin
riboside (8-azaKR) and 7-deazakinetin riboside (7-deazaKR), on the redox status of T98G
GBM cells. Our previous study confirmed the complexity of the mechanism of action of KR,
and we determined its effect on mitochondrial bioenergetics in HepG2 cells [12]. KR exerts
a powerful anticancer effect and has an impact on molecular pathways that are crucial for
cell increase, proliferation, and induction of cell death [12,13]. It is also a member of the
purine analogue family, in which every compound may show an inimitable mechanism of
action in neoplastic cells.

By performing molecular docking, flow cytometry analysis, confocal microscopy
visualization, and bioluminescent determination of the ATP content, we assessed particular
cellular parameters such as inhibition of cell proliferation and apoptosis induction and
showed the effect of KR and its derivatives on oxidative imbalance. We analyzed the
induction of metabolic (generalized OS and selective ROS detection and determination of
glutathione level) and genotoxic OS after treatment with the abovementioned compounds.
The analyses were performed using T98G cell culture (two-dimensional, 2D) and T98G
cell spheroids (three-dimensional, 3D), which offered an in vitro system that mimicked
the cancer cell environment and exhibited significantly stronger effect of the compounds
than those achieved in monolayer cultures. The use of T98G cell spheroids was the first
step of this research study, which enabled the screening and selection of one derivative—
7-deazaKR—with comparable anticancer activity to KR. Detailed analyses comparing
the pro-oxidative properties of these two adenosine analogues were performed using
monolayer cultures of T98G cells.

Taken together, these results demonstrate that KR and 7-deazaKR are effective anti-
cancer agents and might be promising alternatives in oxidative therapy by focusing on the
cellular redox environment of GBM cells and induction of apoptosis.

2. Materials and Methods
2.1. Materials

KR, menadione, and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were pur-
chased from Merck (Darmstadt, Germany).
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2.2. Homology Modeling of Semi-Open Human Adenosine Kinase Conformation

For molecular docking, a semi-open conformation of adenosine kinase (ADK) was
used, as large substitutions at N6 of adenosine (such as the furfuryl group present in KR)
are known to inhibit the complete closure of the binding site of ADK, and phosphory-
lation of such substrates is performed in a semi-open state [14,15]. The only available
structure of ADK in a semi-open conformation is Toxoplasma gondii ADK complexed with
N6-dimethyladenosine (PDB code: 2A9Y). To obtain a human model of ADK in a semi-
open conformation, homology modeling was performed using T. gondii ADK as a template.
Sequence of the human ADK (PDB code: 1BX4) was used as a sequence of the target
protein. In both structures (2A9Y and 1BX4), all the crucial protein–ligand interactions in
the catalytic site are conserved [14–16]. To prepare 2A9Y for modeling, ligands present in
the structure were removed, and reconstruction of missing atoms was performed using
the Swiss PDB Viewer (SPDBV) program [17]. Almost all water molecules were removed,
except for four molecules (HOH6014, HOH6045, HOH6051, and HOH6054), which were at
3.5 Å distance from 5′OH of N6-dimethyladenosine in the structure of 2A9Y. Preserving
crucial water molecules has been shown to improve docking simulations in general [18]
and, here, it stabilized the position of ligand during molecular docking, thus preventing
incorrect interactions between 5′OH of KR analogues and G315 of 2A9Y. The prepared
structure of 2A9Y was then used for alignment with 1BX4 sequence, and homology model-
ing was performed, using Modeler 9.18 [19] for both steps. Before minimizing the obtained
model, hydrogen atoms were added to protein residues, and the remaining water molecules
and their positions were optimized with PROPKA3 [20] using the following conditions: no
pKa calculation, Amber forcefield, ensuring that novel atoms are not rebuilt nearby the
occurring atoms, optimization of the hydrogen bonding network, and assigning charges to
the ligand specified in a MOL2 file (reference ligand: 26A from 2A9Y with hydrogen atoms
previously added using Chimera [21]). Next, a complex of model and reference ligand was
minimized to ensure better orientation of residues in the catalytic site toward the ligand.
The antechamber module of AmberTools17 [22] was used for the reference ligand to assign
atom types and calculate atomic charges with the AM1-BCC method [23]. Next, the missing
parameters were determined with the parmchk module of AmberTools17. Topology and
coordinate files for the reference ligand and its complex with protein were created using
the leap module of AmberTools17. The general Amber force field [24] was used for the
compound and the ff99SB force field [25] was used for the protein. During minimization,
positional restraints of backbone atoms were applied with a restraint force constant of
500 kcal/mol·Å−2. Minimization was performed in an implicit solvent, and a pairwise
generalized Born model [26,27] was used with the first 250 steps being the steepest descent
followed by 750 steps of conjugate gradient. A cutoff of 16 Å was applied, and a periodic
boundary with constant volume was used.

2.3. Ligand Preparation and Molecular Docking

The 3D structures of KR and adenosine analogues were originally accessed from
the ZINC12 database [28] and later used to build their N6-furfuryl derivatives by using
GaussView from Gaussian 03 suite [29]. Then, pdbqt files used during docking for the
final model and ligands were created using AutoDockTools 1.5.6 [30,31]. AutoDock Vina
was used for docking calculations [32]. The search space was set to 22.5 × 15 × 15 Å
with the default spacing of 0.375 Å, and coordinates of the center were set at −9, −41,
and −106 in the dimensions of x, y, and z, respectively. Figures were prepared with
AutoDockTools [30,31].

2.4. Synthesis of 8-azaKR and 7-deazaKR

The KR derivatives were synthesized according to the protocol described by Baranowski
et al. [33]. Chemical structures of the compounds were drawn using ACD/ChemSketch (2017)
Freeware.
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2.5. Cell Culture

Human GBM cells (T98G) acquired from ATCC (American Type Culture Collec-
tion, Manassas, VA, USA) were cultured in Eagle’s Minimum Essential Medium (EMEM)
(Corning®, New York, NY, USA) complemented with 10% fetal bovine serum (FBS, Corning®,
New York, NY, USA) and antibiotics (ATCC, Manassas, VA, USA) at 37 ◦C in 5% CO2 atmo-
sphere. Cells grown in supplemented media without the addition of KR and its derivatives
were used as a negative control for all experiments. To analyze energy metabolism, com-
parative oxidative stress measurements were used. HepG2 cells purchased from ECACC
(European Collection of Authenticated Cell Cultures, Salisbury, UK) were grown in EMEM
(Corning®, New York, NY, USA) supplemented with 10% FBS (Corning®, New York, NY,
USA) and antibiotics (ATCC, Manassas, VA, USA) and cultured under the same conditions
as the T98G cell line.

2.6. Oxygen Consumption Analysis

HepG2 and T98G cells were seeded on T75 cell culture flasks and cultured in EMEM
supplemented medium at 37 ◦C, in the atmosphere of 5% CO2, until the cells reached 80%
confluency. Next, the cells were washed once with PBS and harvested using a cell scraper.
The collected cells were counted, centrifuged (1000 rpm, 3 min), and resuspended in EMEM
supplemented medium. Subsequently, oxygen uptake of approximately 3–4 × 106 cells
was measured by the Clark-type oxygen electrode (Oxygraph+ system, Hansatech In-
struments Ltd; Narborough Rd, Pentney, UK) in 1 mL of EMEM supplemented medium
at 37 ◦C. After stabilization of the initial oxygen consumption rate, in order to induce
resting state (state 4) and maximal respiration (state U) and exclude nonmitochondrial
oxygen consumption, 1.5 µM oligomycin (Merck, Darmstadt, Germany), 3.5 µM carbonyl
cyanide p-trifluoromethoxy phenylhydrazone (FCCP, Merck, Darmstadt, Germany), and
1.5 µM rotenone/antimycin A (Merck, Darmstadt, Germany) were added, respectively.
The working concentrations of stressor compounds were verified experimentally and
separately for each cell line. After recording, the cells were collected to estimate protein
concentration. Briefly, the cells were centrifuged, resuspended in 50 µL of PBS, and lysed
by three freeze–thaw cycles (freezing at −80 ◦C for 5 min, thawing at 37 ◦C for 5 min).
The obtained lysates were centrifuged, cell remains were ejected, and the total protein
concentration was evaluated spectrophotometrically at 280 nm. Respiration parameters
were calculated as follows: basal respiration, state 4 and state U, as the difference between
the initial, oligomycin-sensitive or FCCP-sensitive oxygen consumption rate and the non-
mitochondrial oxygen consumption rate, phosphorylating state (state 3), as the difference
between basal respiration and state 4, and spare respiratory capacity (SRC) as the difference
between state U and basal respiration. The obtained results were normalized to 1 mg
of protein.

2.7. Comparative Mitochondrial ROS Analysis by Flow Cytometry

HepG2 and T98G cells were seeded on 6-well plates at a density of 2.5 × 105 cells
per well and cultured in EMEM supplemented medium at 37 ◦C and 5% CO2 saturation
for 24 h. The cells were then handled with the ROS inducer menadione (Sigma-Aldrich,
St. Louis, MO, USA) at the final concentration of 10, 30, or 50 µM for 30 min. Next, the
cells were trypsinized, rinsed twice with 1 mL of DPBS (Thermo Fisher Scientific, Waltham,
MA, USA), and incubated with 1 µM MitoSOX Red probe (Invitrogen, Waltham, MA, USA)
at 37 ◦C for 25 min in dark. Immediately after staining, the cells were analyzed with a
FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).

2.8. Spheroid Formation, Treatment, and Labeling Preparation for Screening of KR Derivatives

T98G cells were seeded in 96-well U-bottom plates (Nunclon Sphera, Thermo Fisher
Scientific, Waltham, MA, USA) at a density of 2 × 103 cells per well in 200 µL EMEM
(Corning®, New York, NY, USA). The plates were briefly centrifuged at 250× g (according
to the manufacturer’s instructions) and then incubated at 37 ◦C under 5% CO2 conditions.
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After 72 h of maturation, the cell spheroids were treated with 80 and 200 µM KR, 8-azaKR,
and 7-deazaKR for 24, 48, and 72 h. The spheroids were refed every 24 h by removing
100 µL of medium from each well and replacing it with 100 µL of fresh medium containing
the appropriate concentration of the compound. At the end of each incubation time (24, 48,
and 72 h), an analysis of spheroid viability and oxidative stress induction was performed.
The production of ROS was observed to identify various parameters of OS contributing to
the formation of generalized (cytoplasmic) OS and selective ROS (superoxide).

For spheroid imaging, the cells were rinsed with PBS, transferred to a fresh medium
containing an appropriate fluorescent probe for labeling the target molecules, and incubated
for appropriate time under growth conditions:

2.8.1. LIVE/DEAD Analysis of T98G Spheroids

The LIVE/DEAD™ assay differentiates live cells from dead cells by simultaneous
15-min staining with green fluorescent calcein-AM (2 µM of final concentration) and red
fluorescent ethidium homodimer-1 (4 µM of final concentration) to mark loss of plasma
membrane integrity. Next, the spheroids were washed two times with PBS to remove
any residual dye and then transferred to glass-bottom dishes for confocal microscopy and
placed in FluoroBrite™ DMEM (Thermo Fisher Scientific, Waltham, MA, USA). Live cell
images in Z-stack were collected by Leica TCS SP5 II confocal laser scanning microscope
equipped with a white-light laser (470–670 nm) and an environmental cell culture chamber
that provided controlled conditions of temperature, CO2 saturation, and humidity. Images
were sequentially scanned and collected at 490/505–550 nm (green fluorescence) and
530/600–660 (red florescence) nm (±20) by using an HC PL APO 20×/0.75 water/oil-
immersion objective with 1.5× digital zoom. Leica LAS AF 2.7.3 software was used to
control image processing. For the fluorescence intensity analysis, Leica LAS X 3.3.3 software
with a 3D deconvolution module was used. A Z-projection was created from Z-stacks using
the “max” intensity option, and the ROI was then selected to measure the fluorescence
intensity of spheroids. The results are presented as a mean of fluorescence intensity.

2.8.2. Intracellular and Mitochondrial Oxidative Stress Measurements in T98G Spheroids

To detect the metabolic OS, the cell spheroids were rinsed with PBS, transferred to a
fresh medium containing 5 µM H2DCFDA and 5 µM MitoSOX, and stained for 30 min.
Additionally, for total ROS analysis, cell nuclei were labeled with 5 µg/mL Hoechst 33342
(Thermo Fisher Scientific, Waltham, MA, USA) for 5 min. Next, the spheroids were washed
two times with PBS to remove any residual dye, transferred to glass-bottom dishes for
confocal microscopy analysis, and placed in FluoroBrite DMEM (Thermo Fisher Scientific,
Waltham, MA, USA). Live cell images in Z-stack were collected using a Leica TCS SP5
II confocal laser scanning microscope with a white-light laser (470–670 nm), an HC PL
APO 20×/0.75 water/oil-immersion objective, and an environmental cell culture chamber.
Sequentially scanned images were acquired at 498/505–550 nm (ex/em) for H2DCFDA,
514/570–630 nm (ex/em) for superoxide determination, and 405/430–480 nm (ex/em) for
nuclear staining. Leica LAS AF 2.7.3 software was used to control image processing. For the
fluorescence intensity analysis, Leica LAS X 3.3.3 software with a 3D deconvolution module
was used. A Z-projection was created from Z-stacks using the “max” intensity option,
and the ROI was then selected to measure the fluorescence intensity of the spheroids. The
results are presented as a mean of fluorescence intensity.

2.9. Comparative Analysis of the Anticancer and Pro-Oxidative Properties of KR and 7-deazaKR
by Using Two-Dimensional Culture of T98G Cells
2.9.1. In Vitro Phosphorylation

Novel nucleoside analogues were evaluated as a substrate for adenosine kinase (ADK)
in an in vitro phosphorylation assay (Precice ADK Assay Kit, NovoCIB, Lyon, France). The
ADK-catalyzed phosphorylation reaction of 7-deazaKR and 8-azaKR was run for 30 min at
37 ◦C in a reaction buffer (100 mM Tris-HCl pH 8.5, 250 mM KCl, 10 mM MgCl2, 2.5 mM
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NAD, 2.75 mM ATP, IMPDH 20 mU/mL, and human recombinant ADK 2.2 mU/mL). The
positive control of reaction efficiency was a phosphorylation reaction with 4 mM KR as a
substrate, whereas, to inhibit reaction (negative control), 5-iodotubercidin (ADK inhibitor)
was added to a final concentration of 500 µM. Phosphorylated products were separated and
identified on fluorescent TLC Silica Gel 60 F254 plates (20 × 20 cm, Merck Millipore, Darm-
stadt, Germany) by using the following separation phase: ammonia/isopropanol/water
(2:7:1 v/v). After resolution, the plates were dried, and the products were detected using
the Gel Doc-it Imaging System (UVP, Upland, CA, USA). The phosphorylated products
were quantified using Multi Gauge V3.0 (Fujifilm, Tokyo, Japan) software for Windows.

2.9.2. Bioluminescent Measurement of Cellular ATP Content

T98G cells were seeded at the density of 3× 105 cells/well onto 6-well plates, cultured
in growth medium (EMEM) at 37 ◦C and 5% CO2 saturation, and incubated until 70–80%
confluency was reached. Then, the cells were treated with KR and 7-deazaKR at the
final concentration of 80 and 200 µM for 6 h. Next, the cells were separated by trypsin,
washed twice with 1 mL of DPBS, and centrifuged, and the pelleted cells were resuspended
in 100 µL PBS. Freeze–thaw cycles (−80 ◦C for 5 min and then at 37 ◦C) were used to
prepare cell lysates. This step was repeated three times. After centrifugation, cell debris
was extruded, and the total protein content was measured spectrophotometrically at
280 nm. Quantitative determination of ATP (with recombinant firefly luciferase and its
substrate D-luciferin) was performed using the Molecular Probes® ATP Determination Kit
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.
Luminescence was measured at 560 nm using the VICTOR Nivo multimode plate reader
(Perkin Elmer, Walthman, MA, USA).

2.9.3. Real-Time Analysis of Cell Proliferation Using the xCELLigence System

Cell proliferation analysis was performed using the xCELLigence system (Roche,
Basel, Switzerland). In brief, 100 µL medium was added to E-plates for measuring offset
values, and then T98G cells were seeded in an extra 50 µL of medium at a density of
4 × 103 cells per well. The cells were allowed to attach to the E-plates at 37 ◦C and 5% CO2
saturation in a cell incubator for 30 min before the insertion into the xCELLigence platform.
After 24 h, the cells were treated with KR and 7-deazaKR at the final concentration of 80 and
200 µM in an additional 50 µL of medium. Simultaneously, T98G cells were treated with
a combination of ribosides and 1 µM 5-iodotubercidin (an ADK inhibitor). Control cells
were cultured in the supplemented medium without desired compounds. The real-time
monitoring of the proliferation of treated T98G cells was monitored at 30 min intervals
from the time of plating for 96 h. The real-time proliferation of the cells was estimated by
impedance measurement and expressed as a cell index (CI) value; normalization values
were registered using RTCA Software 1.2.1.

2.9.4. Apoptosis/Necrosis Assay by Flow Cytometry

The apoptosis/necrosis assay was performed in T98G cells (monolayer culture) by
staining with CellEvent™ caspase 3/7–FITC (Thermo Fisher Scientific, Waltham, MA,
USA) and propidium iodide (PI, Merck, Darmstadt, Germany) fluorescent dyes with
excitation/emission at 503/530 nm and 535/617 nm, respectively. The cells (3 × 105) were
seeded onto 6-well plates containing the growth medium (EMEM), cultured at 37 ◦C and
5% CO2 saturation, and incubated until 70–80% cell confluency was achieved. After a day,
the cells were treated for 24 h with KR and 7-deazaKR at the final concentration of 40, 80,
and 200 µM. Subsequently, T98G cells were detached with trypsin and washed twice with
1 mL of DPBS (1 mL) (Thermo Fisher Scientific, Waltham, MA, USA). Subsequently, the
cells were harvested and suspended in a solution containing CellEvent™ caspase 3/7–FITC
(10 µM) and PI (3 µg/mL) in accordance with the manufacturer′s protocol for 30 min at
37 ◦C in dark. The cells were analyzed promptly after staining with excitation at 488 nm by
the FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).
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2.9.5. Metabolic OS (Intracellular and Mitochondrial) Measurement by Flow Cytometry

T98G cells were seeded (3 × 105 cells/well) onto 6-well plates and cultured in EMEM
at 37 ◦C and 5% CO2 saturation until 70–80% cell confluency was reached. Subsequently,
the cells were exposed for 24 h to the tested compounds at the final concentration of 40,
80, and 200 µM. The intracellular ROS level was analyzed by staining with H2DCFDA
Reagent (ex/em: ~492–495/517–527 nm) in accordance with the manufacturer’s protocol
(Thermo Fisher Scientific, Waltham, MA, USA), wherein ROS trigger the fluorescence. The
cells were separated by trypsin and washed twice with DPBS (1 mL). The pelleted cells
were suspended in 0.5 mL of DPBS containing H2DCFDA at the final concentration of
0.5 µM. The cells were then incubated at 37 ◦C for 30 min in dark. The abovementioned
cell culture environment was also created for measuring the mitochondrial OS (superoxide
level) induction by flow cytometric analysis. After treatment with KR and its analogue,
the cells were detached with trypsin and washed with DPBS (1 mL). Cell pellets were
stained with MitoSOX (2.5 µM) for 10 min at 37 ◦C in dark. The cells were analyzed after
incubation with the dyes, with excitation at 488 nm by the FACSCalibur flow cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA).

2.9.6. Lipid Peroxidation Measurements by Flow Cytometry

T98G cells were seeded at a density of 3 × 105 cells/well onto 6-well plates and
cultured in the same environmental conditions as the above experiments. Then, the cells
were treated for 24 h with the tested compounds (40, 80, and 200 µM). Next, the cells were
separated with trypsin and washed twice with DPBS (1 mL), and intracellular oxidation
of lipids was analyzed by staining with BODIPY® 581/591 C11 reagent according to the
manufacturer’s protocol (Thermo Fisher Scientific, Waltham, MA, USA). Upon oxidation in
living cells, the reagent shifts the fluorescence emission peak from 590 nm (red) to 510 nm
(green). The cells were analyzed promptly after incubation at 488 nm excitation by using
the FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA), and data
were analyzed by FlowJo software. The ratios of the signal from the 590 to 510 channels
were used to determine lipid peroxidation in cells.

2.9.7. Glutathione Level Measurement by Flow Cytometry

T98G cells were seeded at a density of 3 × 105 cells/well onto 6-well plates and in the
same environmental conditions as the above experiments. Next, the cells were treated with
KR and 7-deazaKR at the final concentration of 40, 80, and 200 µM for 24 h. The cellular
glutathione (GSH) level was measured by staining with the nonfluorescent Thiolite Green
dye, according to the manufacturer’s protocol (AAT Bioquest, Sunnyvale, CA, USA) that
emits strong fluorescence after reaction with thiols (ex/em: ~540/590 nm). After incubation
with the compounds, the cells were detached with trypsin and washed twice as described
above. Subsequently, the cells were suspended in a staining solution and incubated at
37 ◦C in 5% CO2 environment for 30 min. After staining, the fluorescence intensity was
analyzed using the FACSCalibur flow cytometer with excitation at 488 nm.

2.9.8. Analysis of 8-oxo-dG in T98G Cells by HPLC-UV-ED

T98G cells (1 × 106 cells/mL) were seeded onto T25 flasks and cultured in standard
environmental conditions for 24 h. Subsequently, the cells were exposed to 80 and 200 µM
KR and 7-deazaKR for 24 h. After incubation, the cells were detached and washed twice
with PBS. Total DNA was isolated from the treated cells and untreated control cells by using
the Genomic mini DNA isolation kit (A&A Biotechnology, Gdańsk, Poland) according to
the manufacturer′s protocol. Quality of the total DNA was assessed spectrophotometrically.

Analysis of 8-oxo-dG in T98G cells by HPLC-UV-ED was performed as described by
Barciszewska et al. [34]. The total amount of 8-oxo-dG in the genome was calculated using
a special formula described in [34].
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2.9.9. Total RNA Isolation

T98G cells were seeded at the density of 1.5 × 105 cells/well onto 12-well plates
and cultured in EMEM at 37 ◦C and 5% CO2 saturation until 70–80% cell confluency
was achieved. Subsequently, the cells were treated for 24 h with the tested compounds
at the final concentration of 40, 80, and 200 µM. Total RNA from the treated T98G cells
was isolated using the TRIzol® Reagent (Invitrogen, Waltham, MA, USA) according to
the manufacturer’s protocol. DNA residue was removed with DNase I (DNA-free DNA
Removal Kit, Thermo Fisher Scientific, Waltham, MA, USA). The total RNA concentration
was measured using a NanoDrop 2000 UV/Vis spectrophotometer at 260 nm.

2.9.10. cDNA Synthesis and Real-Time

Total RNA (0.5 µg) was used for cDNA synthesis with the Transcriptor First-Strand
cDNA Synthesis Kit (Roche, Basel, Switzerland) using oligo (dT) primers following the
manufacturer’s description. Real-time PCR analysis was performed to determine the
expression levels of the SOD, CAT, GSS, SESN1, SESN2, NRF2, NFKB, SIRT2, PGC1, PARP,
TFA, and p53 genes. Each cDNA sample was analyzed using Mono Color Hydrolysis UPL
Probes (Roche, Basel, Switzerland) selected for each gene by using ProbeFinder Software
(Roche, Basil, Switzerland). The PCR reaction mixtures were prepared in line with the
manufacturer’s protocol. PCR conditions for all genes were as follows: initial incubation
step at 94 ◦C for 10 min, followed by 45 cycles of amplification (15 s at 94 ◦C, 30 s at 60 ◦C,
and 15 s at 72 ◦C) (single acquisition), with a final cooling step at 40◦C for 2 min. The
analysis was performed using a LightCycler 480 II instrument (Roche, Basel, Switzerland).
Relative gene expression was calculated using the Roche Applied Science E-Method and
normalized to the reference genes ACT, TBP, PGK1, and HPRT1. All standard curves were
generated by amplifying a series of twofold dilutions of cDNA. The primer sequences for
the analyzed genes and UPL probes are shown in Table 1.

2.10. Statistical Analysis

Statistical analysis was accomplished using GraphPad Prism version 8.0 for Windows
(GraphPad Software, San Diego, CA, USA). Two-way ANOVA by Tukey’s multiple com-
parison test was used for the fluorescence intensity analysis of spheroids after MitoSOX,
LIVE/DEAD, and H2DCFDA staining. To determine the significance of flow cytometric
analyses of cellular OS, glutathione level, 8-oxo-dG content, and lipid peroxidation, one-
way ANOVA followed by Dunnett’s multiple comparison test was used; for superoxide
level measurement, one-way ANOVA followed by Bonferroni’s correction was used. The
significance of ATP depletion was determined by one-way ANOVA followed by Tukey’s
comparison. The importance of cell viability by apoptosis/necrosis assay was determined
by two-way ANOVA followed by Tukey’s multiple comparison test, and oxygen con-
sumption significance was evaluated by Student’s t-test. One-way ANOVA followed by
Dunnett’s multiple comparison test was used for the gene expression level analysis. The
results are presented as mean ± SD obtained from three independent biological replicates
with three experimental repeats for each. A p-value < 0.05 was considered statistically
significant.
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Table 1. List of primers used for real-time PCR analysis.

Gene Name Full Name Forward Primer (5′–3′) Reverse Primer (5′–3′) UPL No.

Control genes

ACTB Actin Beta CCAACCGCGAGAAGATGA CCAGAGGCGTACAGGGATAG 64

TBP TATA-Box-Binding Protein CGGCTGTTTAACTTCGCTTC CACACGCCAAGAAACAGTGA 3

PGK1 Phosphoglycerate Kinase 1 ACGCTACTGCATTCCTGCTT ACTGTTTTGTGGGGTTTTTGTT 13

HPRT1 Hypoxanthine
Phosphoribosyltransferase 1 TGACCTTGATTTATTTTGCATACC CGAGCAAGACGTTCAGTCCT 73

Target genes

CAT Catalase TCATCAGGGATCCCATATTGTT CCTTCAGATGTGTCTGAGGATTT 76

GSS Glutathione Synthetase CCTGCTAGTGGATGCTGTCA TCATCCTGTTTGATGGTGCT 1

SOD Superoxide Dismutase TCCATGTTCATGAGTTTGGAGAT TCTGGATAGAGGATTAAAGTGAGGA 40

SESN1 Sestrin 1 GGGCCGTTACCCCTACATTA TTCACTAAGTAGGAGCACTGATGTC 46

SESN2 Sestrin 2 TCCGCCACTCAGAGAAGG GGAGGGCGTACAGCAGAG 68

NRF2 Nuclear Factor Erythroid 2-Related
Factor 2 CAGATGCCACAGTCAACACA GGCTCAGCTATGAAAGCAGAA 9

NFKB Nuclear Factor Kappa B ACCCAAGGACATGGTGGTC AGCCCCTTATACACGCCTCT 47

SIRT2 Sirtuin 2 TTCAAGCCAACCATCTGTCA GCTCCAGGGTATCTATGTTCT 40

PGC1a PPARG Coactivator 1 Alpha AAACGATGACCCTCCTCACA TTCTTTTTGGAGGTGCATTTG 84

PARP1 Poly(ADP-Ribose) Polymerase 1 GACAGGAAAGACAACAGACAAATC GGGGTGATGTGTTTGAACTTG 7

TNFA Tumor Necrosis Factor-Alpha CAGCCTCTTCTCCTTCCTGAT GCCAGAGGGCTGATTAGAGA 40

p53 Tumor Protein P53 TAGTGTGGTGGTGCCCTATG CACATGTAGTTGTAGTGGATGGT 21
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3. Results
3.1. Small Compounds as a Part of Oxidative Therapy in GBM Cells: Metabolic Profiles and
Comparative Analysis of Mitochondrial ROS in T98G vs. HepG2 Cells

Cellular redox status is a balance of oxygen delivery, capacity, and consumption, and
it prevents cell oxidative damage. ROS are produced constantly during cellular respiration
and stimulate different signaling pathways in cancer cells [35]. GBM cells are known to have
high metabolic rate and produce a high level of ROS, which promotes tumor progression
and drug resistance. The easiest method to induce cell death in GBM cells is to reach
the redox threshold and circumvent the antioxidant defense mechanisms. Consequently,
cells become more sensitive to OS caused by external agents (Figure 1A). In our study,
we tested three naturally occurring analogues of adenosine that enhance ROS levels in a
T98G cell line. We assumed that these compounds might be promising options in oxidative
therapy that focused on the cellular redox environment of GBM and induction of apoptosis
(Figure 1). First, we determined the energetic status of HepG2 and T98G cells by respiration
measurements using a Clark-type oxygen electrode. The respiration rate of HepG2 cells was
significantly higher than that of T98G cells, exceeding 50% in basal respiration and reaching
almost 80% in maximal respiration. Our results revealed that HepG2 cells had 62.5% more
intense oxidative phosphorylation (OXPHOS) and 106.8% greater reserve in mitochondrial
capacity than T98G cells (Figure 1B). These findings suggest higher glycolytic activity in
T98G cells, including anaerobic ATP production level.

Figure 1. Aerobic status of glioblastoma (T98G) and non-glioblastoma (HepG2) cells. (A) Involve-
ment of small compounds in the oxidative therapy of T98G cells. (B) Comparison of spare respiration
capacity (SRC) and phosphorylating state (state 3) of T98G cells (gray) vs. HepG2 cells (magenta) by
using the Oxygraph+ system. (C) Flow cytometry analysis of comparative mitochondrial oxidative
stress induction in T98G cells (gray) and HepG2 cells (magenta) after menadione treatment. Fluo-
rescence intensity shift is presented as a bar graph (mean ± SD) of three independent experiments.
Statistical significance is indicated with asterisks: *** p < 0.001, **** p < 0.0001.

Mitochondria are one of the main sources of ROS, which are mainly generated in the
form of superoxide anions (O2

−) as a byproduct of oxidative metabolism and contribute
to mitochondrial damage [36]. Comparative mitochondrial OS induction by menadione,
a commonly used ROS inducer, in T98G and HepG2 cells, was investigated by flow
cytometry using MitoSOX dye. The fluorescence of the dye (red) is triggered selectively
in the mitochondria in the presence of superoxide (Figure 1C). Analysis after 30 min
of treatment with increasing concentrations of menadione revealed that the analyzed
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compound induced superoxide production in HepG2 cells and affected them significantly
with almost threefold higher level of superoxide production. The T98G cells showed
increased basal levels of ROS without any changes in fluorescence shift after menadione
induction; this might be related to drug resistance and activation of the antioxidant defense
mechanism by cancer cells (Figure 1C).

3.2. Determination of KR Analogues Showing Similar Affinity for ADK

The estimated binding energy calculated by AutoDock Vina for the reference ligand
dimethyladenosine from 2A9Y was −9.4 vs. −9.2 for KR. Both conformers were gener-
ally well superimposed with all the crucial protein–ligand interactions being preserved
(Figure 2A). Therefore, it can be assumed that the presence of the N6-furfuryl group in KR
did not impair the ability of the molecule to adopt a proper conformation and be accom-
modated in the binding cavity. Moreover, the docking results suggest that the N6-furfuryl
group of KR can form an additional hydrophobic interaction with the side-chain of Leu138.
Two compounds, namely, 8-azakinetin riboside (8-azaKR) and 7-deaza kinetin riboside
(7-deaza-KR), were predicted to dock particularly well in the binding cavity of the ADK
model (Figure 2B). Moreover, the extra nitrogen atom in 8-azaKR was predicted to form
additional polar interactions with side-chains of Cys123 and Gln38. The estimated binding
energies calculated by AutoDock Vina for both derivatives were lower than that for KR,
with values of −9.6 and −9.3 for 8-azaKR and 7-deazaKR, respectively, indicating that
the two KR derivatives might have similar affinity to ADK as KR alone. Interestingly,
8-azaadenosine and some adenosine analogues containing a 7-deaza ring (sangivamycin
and toyocamycin) are known to be phosphorylated by ADK and further incorporated into
DNA and RNA, which contributes to their anticancer properties [37–39]. This characteristic
makes the two adenine ring modifications particularly attractive to test in the context of KR
derivatives. Furthermore, it has been shown that 8-azaadenosine is rapidly deaminated in-
side the cells and that cytotoxicity of 8-azaadenosine is enhanced when cells are pretreated
with an adenosine deaminase inhibitor [37]. The presence of the furfuryl group at N6 of
8-azaKR would most likely prevent the deamination reaction, which could contribute to
increased potency of 8-azaKR inside the cells in comparison to 8-azaadenosine. Derivatives
of KR were obtained according to the previously reported procedure for the synthesis [33]
(Figure 2C–E).
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Figure 2. Determination of kinetin riboside analogues featuring similar affinity for adenosine kinase.
(A) Juxtaposition of docked poses of KR (magenta) and the reference ligand dimethyladenosine (blue)
in the binding cavity of the modeled semi-open conformation of human ADK structure represented
by ribbons. Hydrogen bonds are depicted as yellow dotted lines. Residues in close contact to
ligands are shown as sticks. (B) Juxtaposition of docked poses of KR (magenta), 8-azaKR (red), and
7-deazaKR (green) in the binding cavity of the modeled semi-open conformation of human ADK
structure represented by ribbons. Hydrogen bonds are depicted as yellow dotted lines. Residues in
close contact to ligands are shown as sticks. (C–E) Structure of kinetin riboside and its two derivatives,
8-azakinetin riboside and 7-deazakinetin riboside, with similar affinity binding to human ADK.

3.3. Impact of KR, 8-azaKR, and 7-deazaKR Treatment on the Viability of T98G Spheroids

The T98G cell spheroid culture model that mimics the extracellular microenvironment
of the tumor was used to obtain more precise prediction of the in vivo results of compound
rating and was the first step to screen KR derivatives. The viability of cells within the
spheroids was analyzed using the LIVE/DEAD® Viability/Cytotoxicity Kit by confocal
microscopy (Figure 3A), and fluorescence intensity was then estimated (Figure 3B). Staining
with ethidium homodimer-1 was used to indicate a loss of cell membrane integrity (red
fluorescence), while calcein AM fluorescence demonstrated metabolically viable cells (green
fluorescence). We investigated the distribution of living and dead cells after treatment
with 80 and 200 µM KR, 8-azaKR, and 7-deazaKR; the results revealed that all three
compounds affected cell viability in a time- and dose-dependent manner. After 24 h
incubation, the most potent effect was visible after KR and 7-deazaKR treatment, regardless
of the concentration, which was observed as an increase in red fluorescence from dead cells
(Figure 3A). Moreover, inhibition of cell proliferation and rupture of the outer layer of cell
spheroids were observed. The observed minimal changes (not statistically significant) in
the red fluorescence intensity of the dye showed that 8-azaKR did not interfere with the
viability of the treated spheroids. The percentage of dead cells (ethidium homodimer-1-
stained) after KR and 7-deazaKR treatment increased with more than a twofold change
in fluorescence intensity as compared to that for untreated cells for the highest doses of
the compounds (Figure 3B). The cell viability analysis after 72 h revealed that KR and
7-deazaKR at 80 µM concentration showed a strong effect (Figure 3A). Moreover, after
treatment with 200 µM concentration of these compounds, the structure of the spheroid
was already relaxed and less compact, which might lead to spheroid breakdown and
leakage of the dyes. Treatment with 200 µM 8-azaKR for 72 h caused a slight increase in
the fluorescence intensity as compared to that for untreated cells which remained viable;
however, cell death occurred (Figure 3A,B).
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Figure 3. Viability analysis of T98G spheroids after treatment with KR and 7-deazaKR treatment.
(A) Confocal microscopy analysis of the viability of T98G cells in 3D culture by using the LIVE/DEAD
assay kit. Green (ex/em: 490/505–550 nm) and red fluorescence (ex/em: 530/600–660 nm) corre-
spond to live and dead cells, respectively. Merged images are shown on the right panels. (B) Analysis
of the fluorescence intensity of spheroids. The results are presented as mean ± SD of three inde-
pendent measurements. Statistical significance (two-way ANOVA): (ns) not significant, * p < 0.05,
*** p < 0.001, **** p < 0.0001.

3.4. Induction of the Intracellular and Mitochondrial OS in T98G Spheroids after Treatment with
KR, 8-azaKR, and 7-deazaKR

To determine and confirm whether treatment with 80 and 200 µM KR, 8-azaKR,
and 7-deazaKR induces cytoplasmic ROS generation, we performed confocal microscopy
analysis of the T98G cell spheroids double stained with 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) and Hoechst 33342 for cell nuclei (Figure 4). H2DCFDA forms a
fluorescent compound after reaction with ROS. The 24 h treatment presented an increase
in fluorescence derived from the oxidized dye up to approximately 30% at the highest
concentrations of KR and 7-deazaKR, thus showing the induction of OS (Figure 4A,B). We
observed minimal changes (not statistically significant) in the fluorescence intensity of the
dye after 8-azaKR treatment, which was comparable to that for the untreated spheroids,
thus indicating that 8-azaKR did not interfere with the redox status of the treated spheroids.
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Figure 4. Cellular oxidative stress analysis in T98G 3D cell cultures. (A) Confocal microscopy analysis
was performed after 24 h of treatment with 80 and 200 µM of KR and 7-deazaKR. Oxidative stress
was determined by H2DCFDA staining (ex/em: 498/505–550 nm). Nuclei were stained with Hoechst
33342 (ex/em: 405/430–480 nm). Connected images are presented on the right panel. (B) Analysis of
the shift in the fluorescence intensity of spheroids after treatment. The results are presented as the
mean fluorescence intensity ± SD of three measurements. Statistical significance (two-way ANOVA):
(ns) not significant, ** p < 0.01, *** p < 0.001.
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Subsequently, we analyzed the mitochondrial OS induction by all three compounds in
T98G spheroids by confocal microscopy. The presence of superoxide in the mitochondria
is reflected by emission of red fluorescence by MitoSOX dye. Our analysis showed that
KR, 8-azaKR, and 7-deazaKR affected mitochondrial redox homeostasis in a dose- and
time-dependent manner (Figure 5). We observed that treatment with 80 and 200 µM KR
and 7-deazaKR efficiently induced superoxide production and that the effect was more
potent and apparent with increasing incubation time (Figure 5A). After 72 h of treatment
with both compounds, we observed an increase in fluorescence emitted by the oxidized
dye up to approximately 50% as compared to that for untreated cells (Figure 5B). The
incubation of cells for 24 and 48 h with 8-azaKR did not show a spectacular increase in
mitochondrial OS, regardless of the concentration. The effect was eventually observed after
72 h of treatment and slightly increased as compared to that for control cells (Figure 5A,B).

Taken together, the use of T98G spheroids allowed us to select one KR derivative with
anticancer activity similar to that of KR, and it also showed the comprehensive effects of
these compounds. We selected 7-dezaKR for further and detailed analyses to compare its
effect with that of KR and to explore the potential of both these compounds in the oxidative
therapy of GBM.
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Figure 5. Mitochondrial oxidative stress analysis in T98G spheroids. (A) Confocal microscopy
analysis of the mitochondrial oxidative stress after 24, 48, and 72 h of treatment with KR, 8-azaKR,
and 7-deazaKR (80 and 200 µM) determined by MitoSOX staining (ex/em: 510/570–600 nm). (B)
Analysis of changes in the fluorescence intensity of spheroids. The results are presented as the mean
fluorescence intensity ± SD of three independent experiments. Statistical significance (two-way
ANOVA): (ns) not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3.5. ADK Is Required for Complete Activity and Toxicity of the Adenosine Derivative through the
Salvage Pathway. Treatment with KR and 7-deazaKR Induces Rapid Depletion of Cellular ATP
Levels, Leading to T98G Cell Death

Our goal was to demonstrate that KR and 7-deazaKR are natural anticancer agents
and might be promising alternatives, with a focus on the cellular redox environment of
glioblastoma and induction of apoptosis in abnormal cells through the activation of the
salvage pathway of purine biosynthesis (Figure 6A). We started from the in vitro phospho-
rylation (reaction) of the following ribosides by ADK (Figure 6B) and performed thin-layer
chromatography to observe the effect of this process. For KR, we used a previously deter-
mined and optimal concentration of 2 mM (data not shown), while, for its new derivative,
we performed a concentration selection test during this reaction. We then established
the relative values of this reaction in relation to the formed metabolite—kinetin riboside
monophosphate (KMP). The analysis showed that the most efficient phosphorylation oc-
curs when the highest concentration (4 mM) of 7-deazaKR is used (the phosphorylation
of the derivative was 18.5% lower than that for KR), but the effect was proportionally
stronger with increasing concentrations. Moreover, the use of an adenosine kinase inhibitor,
5′-iodotubercidin, reversed the reaction. The inhibitor concentration was also determined
earlier, and the most optimal concentration was chosen (Figure 6B). In order to estimate
the cellular ATP content, we performed a bioluminescence assay which revealed the de-
crease in cellular ATP level in T98G cells treated with both compounds (Figure 6C). An
instant drop in ATP level was detected after 6 h, and the ATP level depleted by more
than 33% following exposure to 200 µM KR; the effect was more rapid with a significant
decrease in ATP level for treatment with 200 µM 7-deazaKR, where the depletion of ATP
level reached 75%. Interestingly, treatment with 80 µM 7-deazaKR led to a 42% drop in
ATP level, which is comparable to that achieved with the highest concentration of KR
(Figure 6C). The optimal concentrations of the compounds and time conditions followed
by ATP determination were selected, and extension of the incubation time would not
result in a pronounced drop in ATP. Subsequently, we investigated real-time cell prolif-
eration using the xCELLigence system and estimated cell apoptosis by flow cytometry
(Figure 6E–G). We used the xCELLigence instrument for tracking T98G cell growth to
compare the toxic effect of KR and 7-deaza KR. Viability of T98G cells was monitored for
96 h every 30 min (Figure 6E), and treatment with the compounds was performed after 24 h
of cell growth. The kinetics of cell viability measurement supplied transient information
about the influence of the tested compounds. We observed a meaningful decrease in the CI
value of T98G cells that occurred after 24 h treatment with 200 µM KR, while its derivative
only slowed the proliferation of cells and showed a less spectacular effect. The derivative
exhibited a weaker effect on the inhibition of cell proliferation when compared with the
lower concentration of KR (Figure 6E). This indicated that T98G cells were sensitive to
both compounds, but the index and velocity of the reaction were different. Moreover, to
demonstrate once again the importance of ADK phosphorylation of ribosides, we used its
inhibitor (1 µM 5′-iodotubercidin) and proved that this is a crucial step for obtaining toxic
effects of the compounds. The inhibitor itself (magenta line on the graph) is not toxic to
cells and efficiently stopped phosphorylation, which did not lead to a decrease in the cell
proliferation rate (Figure 6F,G).
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Figure 6. Kinetin riboside and 7-deazakinetin riboside activity and toxicity in T98G cells depend on
ADK activity. (A) Phosphorylation of kinetin riboside by ADK promotes its cellular toxicity, leading
to apoptosis induction. (B) In vitro phosphorylation of 7-azaKR (1–4 mM, bars 2–4, respectively) by
ADK. The data are presented as the mean ± SD of three independent experiments. Bar 1—positive
control of phosphorylation efficiency with 2 mM KR as a substrate. For the negative control, 0.5 mM
5-iodotubercidin was used as an ADK inhibitor (bar 5). (C) Determination of ATP level in the cells
after treatment with 80 and 200 µM KR and 7-deazaKR treatment (bars 2–5, respectively) compared
to control (bar 1). The results normalized for 1 mg of protein are shown as the mean ± SD from three
independent experiments. (D) Flow cytometry analysis of apoptosis/necrosis in T98G cells after
24 h incubation with KR and 7-deazaKR (40–200 µM). (E–G) T98G real-time cell proliferation in the
presence of KR and 7-deazaKR. The influence of KR and 7-deazaRK (80 and 200 µM) on HepG2 cell
proliferation (E) with the addition of an ADK inhibitor (1 µM iodotubercidin; (F,G) was monitored by
the xCELLigence system for 120 h at 30 min intervals. The results are representative of at least three
independent experiments. Green bars indicate live cells, while red bars represent cells with both early
and late apoptosis. The data are presented as the mean percentage ± SD from three independent
experiments. Statistical significance is indicated with asterisks: (ns) p > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

The two main and well-established pathways leading to cell death are apoptosis and
necrosis. To examine whether KR and its derivative induced apoptosis in T98G cells, we
carried out flow cytometric analysis by using CellEvent® caspase-3/7 Green ReadyProbes®

Reagent and PI dual staining. KR and 7-deazaKR influenced T98G cells’ viability and
proliferation in a dose- and time-dependent manner (Figure 6D). A 24 h exposure to
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40–200 µM KR elevated the percentage of apoptotic cells (caspase-3/7/PI) to 25.8% in
comparison to the control cells (7.34 %), whereas, after treatment with 7-deaza KR, the
effect was similar to that for KR, and it was 24.4% for the highest doses of the compounds
(Figure 6D).

Taken together, these results imply that rapid and marked ATP depletion is one of the
early consequences of exposure to purine derivatives and leads to loss of cell viability.

3.6. Disruption of the Oxidative Parameters in T98G Cells after KR and 7-deazaKR Treatment: The
Effect of the Compounds on the Activation of Metabolic OS and Antioxidant Defense Mechanism

In the next step, we analyzed whether metabolic ROS at the pathological level disrupts
the cells causing the damage of proteins, lipids, and nucleic acids. Cytoplasmic ROS level
was evaluated by H2DCFDA staining through the flow cytometric assay (Figure 7A,B).
T98G cells treated with the increasing concentration of both compounds for 24 h exhibited
an increase in fluorescence emitted by the dye up to 85% at the highest concentration of
KR, whereas it was approximately 30% for treatment with 200 µM 7-deazaKR (Figure 7A).
The increase in the fluorescence intensity of the dye reflects the induction of OS, as ob-
served in flow cytometry histograms (Figure 7B). We also observed that KR and 7-deazaKR
treatment entailed the activation of the mitochondrial OS in T98G cells (MitoSOX staining)
by flow cytometry (Figure 7C,D). Our results indicate that 200 µM KR sharply enhanced
mitochondrial superoxide generation, whereas the impact was not so significant at lower
concentrations (Figure 7C). Furthermore, regardless of concentration, 7-deazaKR caused
cells to show an increase in the fluorescence to more than approximately 1.3-fold as com-
pared to control cells (Figure 7C). The generation of the mitochondrial ROS in T98G cells is
also shown on the flow cytometry histograms as a fluorescence shift (Figure 7D).

Intense OS is usually accompanied with the degradation of lipids and, ultimately, may
cause direct damage of the cell membrane [40,41]; therefore, we evaluated the induction of
lipid peroxidation after treatment with KR and 7-deazaKR (Figure 7E,F). The rate of lipid
peroxidation was estimated using the reagent 581/591 C11 that localizes in the membrane
of living cells. We estimated that the 590/510 ratio, based on red and green florescence data
obtained by flow cytometry, was inversely proportional to the amount of peroxided lipids
(Figure 7E). The analysis revealed that only KR actively caused lipid peroxidation and
the decrease in the estimated ratio was proportional to the increasing concentration of the
compound. KR at 200 µM concentration showed the highest peroxidation rate, as indicated
by the lowest 590/510 ratio (decrease of approximately 32% compared to the untreated
T98G cells; Figure 7E). 7-deazaKR-treated cells exhibited lipid peroxidation comparable
to that of the untreated cells, and the compound caused a slight decrease in the 590/510
ratio only at the highest concentration. The activation of lipid peroxidation in T98G cells is
also shown on the flow cytometry histograms as a single wavelength of the red florescence
shift (Figure 7F). Increase in the red florescence intensity is correlated with the amount of
oxidized lipids, which is in contrast with the ratio analysis.

We also observed that treatment with KR and 7-deazaKR forced the natural antioxidant
defense systems of T98G cells to protect against excessively formed ROS (Figure 7G,H). An
increase was observed in the reduced GSH content, which was measured by staining with
the nonfluorescent Thiolite Green dye. The increase in cellular GSH concentration after
treatment with 200 µM KR was the most significant, and this was correlative with the in-
crease in fluorescence to more than 2.3-fold as compared to that in control cells (Figure 7G).
The effect of the KR derivative was similar and comparable to that of 80 µM KR, where we
observed a 1.6-fold change in the increase in fluorescence intensity (Figure 7H).

These results firmly suggest that OS elicited by KR and 7-deazaKR can be the trig-
ger of T98G cell apoptosis (Figure 7). Furthermore, KR showed a greater effect on the
mitochondrial OS induction with simultaneous activation of lipid peroxidation.
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Figure 7. Influence of kinetin riboside and 7-deazakinetin riboside on oxidative stress parameters in T98G
cells. (A,B) Intracellular ROS detection in the cells after KR and 7-deazaKR treatment (40–200 µM). ROS
production was examined by flow cytometry using H2DCFDA staining, and the fluorescence intensity
was estimated. Data are shown as a bar graph of three independent experiments (mean± SD, A) or as
representative histograms (B). (C,D) Flow cytometry analysis of mitochondrial OS induction in T98G cells
after KR and 7-deazaKR treatment (40–200 µM) by using the MitoSOX fluorescent indicator. Fluorescence
intensity shift was plotted in a bar graph (mean± SD; C) and is presented as a representative histogram
of three independent experiments (D). (E,F) Induction of lipid peroxidation in T98G cells after KR and
7-deazaKR treatment (40–200 µM) analyzed by flow cytometry. Upon oxidation, the emission fluorescence
of the BODIPY 581/591 probe shifts from 590 to 510 nm; the 590/510 ratio of fluorescence intensity is
presented as a bar graph (mean ± SD) from three individual experiments (E). Fluorescence shift is also
shown as representative histograms (F). (G,H) A simultaneous analysis of cellular GSH content measured
by staining with the nonfluorescent Thiolite™ Green dye. The fluorescence intensity changes are given in a
bar graph of three independent experiments (mean± SD; (G) or presented as representative histograms
(H). Statistical significance is indicated with asterisks: (ns) p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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3.7. Effect of KR and 7-deazaKR on DNA Oxidation

We additionally evaluated the level of intracellular ROS by determining the content of
2′-deoxy-8-oxoguanosine (8-oxo-dG) in the enzymatic DNA hydrolysates obtained from
T98G cells incubated with the tested compounds. 2′-Deoxyguanosine is considered to be
the most susceptible compound to oxidation among the four canonical nucleosides, and
8-oxo-dG is the major oxidation product in DNA. The content of 8-oxo-dG was measured
by HPLC-UV-ED, and the number of 8-oxo-dG molecules per 106 dG was calculated as
shown in the diagram (Figure 8A). Treatment with KR significantly elevated the number
of 8-oxo-dG molecules as compared to that for untreated control, and treatment at both
concentrations (80 and 200 µM) exhibited more than 5.5- to 5.7-fold higher numbers of
8-oxo-dG molecules in T98G cells (37.89± 2.205 and 40.725± 2.58 per 106 dG, respectively).
7-deazaKR showed a mild effect on the number of 8-oxo-dG molecules; for 80 and 200 µM
concentration, it was respectively 12.325± 0.575 and 14.035± 0.710 per 106 dG as compared
to that for untreated cells.

Figure 8. Quantitative analysis of 8-oxo-dG content in T98G cells by HPLC-UV-ED after treatment
with KR and 7-deazaKR. The number of 8-oxo-dG residues per 1 × 106 base pairs in DNA was
calculated in cells after 24 h incubation with KR and 7-deazaKR (80 and 200 µM). Control cells were
cultured in fully supplemented growth medium alone. Statistical significance is indicated with
asterisks: (ns) p > 0.05, * p < 0.05, **** p < 0.0001.

3.8. Effect of KR and 7-deazaKR on the Expression Level of Genes Involved in Oxidative Stress
Response in T98G Cells

Lastly, we analyzed the changes in the gene expression levels of several enzymes
related to oxidative stress and cellular welfare indicators in the presence of KR and 7-
deazaKR (Table 2; Figure 9). We found that both KR and 7-deazaKR activated enzymatic
scavengers involved in the antioxidant defense (SOD, CAT, and GSS) at similar levels. After
treatment with both compounds, we observed an increase in the expression levels, which
might be related to the protection against excessively formed ROS. The most significant
change was observed for superoxide dismutase (SOD), which was correlated with an
increase in the expression to approximately more than threefold change as compared to
that for control cells (Figure 9). However, we noted that 7-deazaKR had a greater effect
on genes related to oxidative stress, such as SESN1, SESN2, NRF2, and NFKB, and it
significantly increased the expression level of these genes as compared to that noted for
KR. The expression level of SESN2 remained unchanged after treatment with KR. We
also observed that both derivatives decreased the expression level of critical regulator of
mitochondrial energy metabolism, PGC-1a, which in turn caused the activation of other
genes belonging to the group of the cellular welfare indicators (SIRT2, PARP1, TNFA, and
p53) (Figure 9). KR showed a greater influence on the expression level of TNFA, which was
more than a fivefold change as compared to that for control cells (Figure 9).
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Table 2. Summary of changes in the expression level of genes analyzed by real-time PCR, including the function/action of
the encoded protein, as well as their implication/entanglement in the main cellular processes. Up arrow (up-expression);
Down arrow (down-expression), number of arrows correlates with the strength of expression increase/decrease.

Cellular Significance Gene Full Gene Name
Changes in Expression Level

Function of the Encoded Protein
KR 7-deazaKR

Enzymatic scavengers
involved in the

antioxidant defense

SOD Superoxide
Dismutase ↑↑↑ ↑↑

Involved in the antioxidant defense
against oxidative stress; SOD catalyzes
the dismutation of superoxide anion to

hydrogen peroxide.

CAT Catalase ↑↑ ↑
The key antioxidant enzyme catalyzing

the decomposition of hydrogen
peroxide into water and oxygen.

GSS Glutathione
Synthetase ↑ ↑↑

The important enzyme of cellular
antioxidant defense; involved in the

second step of biosynthesis of
glutathione (GSH), one of the functions

of which is to protect cells from
oxidative damage by free radicals.

Regulating factors
related to oxidative

stress

SESN1 Sestrin 1 ↑ ↑↑↑ Sestrins are induced by the p53 protein
and play a role in the cellular response
to DNA damage and oxidative stress.SESN2 Sestrin 2 no change ↑↑↑

NRF2
Nuclear Factor

Erythroid
2-Related Factor 2

↑ ↑↑↑
A transcription factor that controls the

expression of antioxidant proteins
involved in oxidative damage

protection.

NFKB Nuclear Factor
Kappa B ↑↑ ↑↑↑

A transcription regulator that is
activated by various intra- and

extracellular stimuli, including oxidant
free radicals.

Cellular welfare
indicators

PGC-1a
PPARG

Coactivator 1
Alpha

↓↓↓ ↓↓↓

A transcriptional coactivator of the
genes involved in energy metabolism. It

interacts with and regulates the
activities of nuclear respiratory factors

(NRFs).

SIRT2 Sirtuin 2 ↑↑ ↑↑

Involved in protection against various
types of cellular stress related to

oxidative stress (e.g., upregulates the
expression of FOXO3 target gene,

decreasing ROS level); involved in DNA
repair.

PARP1 Poly(ADP-Ribose)
Polymerase 1 ↑ ↑↑

Involved in the regulation of the
molecular events related to the recovery

of cells from DNA damage.

TNFA Tumor Necrosis
Factor-Alpha ↑↑↑ ↑

Multifunctional proinflammatory
cytokine, involved in the regulation of a
wide spectrum of biological processes,

including cell proliferation,
differentiation, apoptosis, and lipid

metabolism.

p53 Tumor Protein P53 ↑↑ ↑↑↑

The encoded protein responds to
diverse cellular stresses to regulate the

expression of target genes, thereby
inducing cell-cycle arrest, apoptosis,

senescence, DNA repair, or changes in
metabolism.
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Figure 9. The expression level of selected genes analyzed in 2D cell culture of T98G cells treated
with KR and 7-deaza-KR at the final concentration of 80 µM. Relative real-time PCR analysis was
performed for the genes SOD, CAT, GSS, SESN1, SESN2, NRF2, NFKB, SIRT2, PGC1, PARP, TFA, and
p53 24 h after treatment. The results are presented as the mean ± SD obtained from three biological
replicates and three independent experimental repeats for each one. Statistical significance (one-way
ANOVA): (ns) not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

4. Discussion

GBM is the primary and most invasive nervous system tumor in the adult popula-
tion [1], with a characteristic genetic heterogeneity [42]. Glioblastomas can be classified as
either primary or secondary [6]; however, different subtypes exist, and the most used clas-
sification method of these tumors is a grading scheme [41]. The most frequently occurring
tumors of GBM are primary tumors, which develop from normal glial cells; however, there
is an evidence that neural stem cells (NSCs) and oligodendrocyte precursor cells (OPCs)
might also be precursors of GBM [43]. It has also been shown that low-grade gliomas tend
to differentiate, but only grade 4 gliomas lead to glioblastoma and gliosarcoma, which
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represent the rifest forms with a high expression of malice. These tumors are considered to
be the most aggressive ones because of the great level of microvascular proliferation and
necrosis, with a high tendency to metastasize to the brain [41].

Unfortunately, despite significant efforts and a multitude of investigations, including
studies based on RNAi technology [44,45], GBM remains beyond the reach of effective ther-
apies, which leads to poor prognosis of patients and a high rate of mortality [2]. Intensive
cellular proliferation, abnormal formation of vascular structures [41], and deregulation of
crucial signaling pathways in cancer cells [1] might be some of the major factors respon-
sible for the resistance of cancer cells to standard treatments [7]. Recently, an immense
need has emerged for individualized therapy development; thus, many targeted drugs
have been investigated. Moreover, studies on the identification of molecular markers of
GBM have also been conducted. The first attempts were made to evaluate the efficacy of
small compounds as potential inhibitors of key signaling pathways in GBM cells [5]. To
date, temozolomide (TMZ) is considered as a promising pharmaceutical candidate in the
context of targeted therapy of patients with glioblastoma, and it is frequently combined
with other small inhibitors. The combined treatment with TMZ and curcumin showed
an inhibitory effect on autophagy in GBM cells through the activation of the NF-κB and
PI3K/Akt pathways [46]. Furthermore, the combination of TMZ with resveratrol affected
the activation of AMPK and inhibited mTOR (the mechanistic target of rapamycin), leading
to apoptosis of glioblastoma cells [47]. The list of agents targeting different growth factor
pathways that are frequently activated in glioblastoma cells is still expanding, with the
addition of new ones that are more potent and specific to glioblastoma [6].

Cancer cells develop various mechanisms to escape cell death and induce a high
proliferation rate through their ability to repair DNA damage, cell-cycle arrest, variations
in the expression of oncogenes, induction of autophagy, hypoxia [48], and alterations in
tumor metabolism [12]. Glioblastoma cells have an increased level of ROS, which results
from the impairment of the mechanisms related to the production and elimination of
ROS [40]; these impairments are mainly based on the mitochondrial dysfunction or in-
efficient antioxidant systems [42]. ROS are produced in all types of cells, and there are
several constitutive sources responsible for its production, among which mitochondria
are the primary ones [49]. Furthermore, changes in redox homeostasis that contribute to
cancer development and progression might also derive from the transition of metal ions,
peroxisome activity, endoplasmic reticulum stress, or oxidase activity [41,49]. The “oxygen
economy” imbalance in GBM is closely linked to the environmental factors that promote
tumor growth, differentiation, and survival. OS is a triggering factor of various patholog-
ical processes, including modification of cellular components and crucial biomolecules,
consequently leading to genotoxicity [40,41]. Thus, OS promotes the induction of hypoxia
and forces cells to adapt to such conditions, which results in the resistance of cancer cells to
treatment [11]. It has been shown that stem cells in the tumor mass might be related to the
resistance of GBM because of their reinforced protection against OS [42].

Following the development of hypoxia in the tumor microenvironment, metabolic
activities of cancer cells are altered comparative to normal cells [41]. These modifications
support the maintenance of malignant properties and create an intrinsic cell resistance
mechanism associated with “metabolic reprogramming” [12]. Regardless of the elevated
ROS level, GBM cells can survive in such environments by relying on lactic acid fermen-
tation, which is associated with the high rate of anaerobic glycolysis [49]. This metabolic
strategy can provide adequate intermediates for the biosynthesis of nucleotides and amino
acids [50], and it is also involved in ROS detoxification through a decrease in OXPHOS
activity [12,49].

To confirm these observations, we performed a comparative analysis of energy
metabolism in human hepatocellular carcinoma cells (HepG2) and a human glioblastoma
cell line (T98G) (Figure 1B,C). The HepG2 cell line possesses appropriate characteristics
for in vitro experiments involving energy imbalance and induction of oxidative stress [12],
and the T98G cell line is routinely utilized as an experimental standard for improving
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therapeutic strategies for GBM [51]. A high-resolution, comparative analysis of oxygen
consumption by intact cells revealed that HepG2 cells rely on mitochondrial respiration,
and that their utilization of oxygen is instant and more rapid than that by T98G cells
(Figure 1B). The analysis showed that state 3 (oligomycin-inhabitable respiration), that is,
the consumption of oxygen associated with ATP synthesis, is higher in HepG2 cells; this
indicates a greater potential of these cells to enter the OXPHOS pathway (Figure 1B). We
showed a high level of SRC in HepG2 cells, which might constitute a greater adaptation of
these cells to mitochondrial metabolism. In contrast, a low level of SRC in T98G cells causes
consistent depletion in glioblastoma cells, which possibly indicates OS and a high level of
proliferation rate [52] (Figure 1B). This confirms that the metabolism of T98G cells mainly
relies on anaerobic glycolysis, which leads to the transformation of glioblastoma cells and
maintains the balance between the production and protection against ROS in a nontoxic
range. This ability based on the glucose-induced inhibition of cell respiration is termed
as the Crabtree effect and supports the survival of cancer cells, leading to drug resistance
and affecting the testing of chemotherapeutic agents [53,54]. Our previous study also con-
firmed that glioblastoma cell lines undergo the Crabtree effect; we also showed this effect
in an A172 cell line, which is another commonly used model for manifesting glioblastoma
properties [12]. The metabolic flexibility of cancer cells may indicate tumor aggressiveness,
and, to overcome this limitation, the presence of a mitochondrial oxidative phenotype is
desirable, similar to that in HepG2 cells [52,55]. Moreover, gliomas possess mitochondrial
structural abnormalities, genomic mutations in mtDNA, and altered energy metabolism;
thus, some of the small compounds may indirectly modulate metabolic disturbances that
are a consequence of mitochondrial dysfunction [56].

We also conducted a comparative analysis of mitochondrial ROS in HepG2 and
T98G cells, with simultaneous supplementation of the OS factor menadione. The analysis
revealed that T98G cells showed increased basal levels of ROS, which did not change
after menadione treatment, whereas HepG2 cells responded to the treatment and OS
was induced (Figure 1C). This might indicate that the redox state of GBM cells protects
them from apoptosis, thus creating a favorable environment for cellular proliferation and
inducing drug resistance [10,57].

The commonly identified genetic aberrations in glioblastoma include overexpressed
and often mutated p53, PTEN (phosphatase and tensin homolog deleted on chromosome
ten), VEGF (vascular endothelial growth factor), EGFR (epidermal growth factor receptor),
and the PI3CA pathway. Unfortunately, the use of inhibitors of these targets in a personal-
ized therapeutic approach still has limitations in terms of treatment and clinical success [1].
Thus, many other promising targeted therapies have been recently developed, including
small compounds that might modulate the redox status of glioblastoma cells [10]. Most of
these compounds act through the activation of the intracellular ROS production in cancer
cells, which finally leads to cell death mediated by OS and activation of the apoptotic
and necrotic pathways [58]. GBM cells possess a high basal metabolic rate [41]; therefore,
disrupting the cellular redox status and stability (generation vs. scavenging of ROS) may
sensitize the GBM cells to drugs (Figure 1A) [40]. The group of anticancer drugs that affect
the redox balance of the GBM cells and destroy malignant cells is expanding, and there
are already a few well-established drugs such as chloroquine [59], temozolomide [60],
cannabidiol [41], berberine [61], and bromopyruvate [62].

Natural small compounds are also considered to selectively influence various stages
of intracellular molecular pathways that are crucial for proliferation and cell death [63]. It
is confirmed that purine derivatives, belonging to the group of small compounds, could
be potentially utilized to enhance the metabolic vulnerability of cancer cells, and these
compounds have been shown to affect mitochondrial impairment [12,64] and induce
oxidative stress [12]. N6-Furfuryladenosine kinetin riboside (KR) is a naturally occurring
analogue of adenosine and has been reported to have a strong anticancer effect through the
induction of apoptosis [12,64–66]. KR and several other purine derivatives have a unique
mechanism of action that negatively affects the metabolic balance of the cells. RK can
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also induce energy imbalance through phosphorylation by ADK, the first enzyme of the
salvage pathway of purine metabolism, which facilitates the toxicity of KR and leads to
the accumulation of mono-, di-, and triphosphates [67]. Some of the purine analogues
such 8-chloroadenosine and 2-chlorodeoxyadenosine have already presented hopeful
results in clinical trials [68,69]. Similarly, KR has been used as one of the novel treatment
alternatives for chronic lymphocytic leukemia (CLL), which include a new generation of
purine derivatives [70], and it is also proposed as a potent inhibitor of the epithelial-to-
mesenchymal transition (EMT) in human prostate cells [71]. Moreover, in reference to the
current events related to the COVID-19 pandemic, KR is considered a promising candidate
as an ACE2 receptor (angiotensin-converting enzyme 2) agonist [72].

In our previous study, we extended our observations of the anticancer activity of
KR, and we showed that HepG2 cells undergo vast apoptosis, which is an immediate
consequence of mitochondrial impairment, depletion of ATP, and disruption of oxidative
parameters [12]. Following this path, in the present study, we investigated whether KR
influences the generation of ROS in T98G cells and whether it could be used as a therapeutic
option for treating GBM (Figure 1A). To develop our findings, we designed and synthesized
new derivatives (Figure 2) of KR and examined whether these analogues were active in
inducing OS in T98G cells in a similar concentration range to the corresponding KR. Several
adenosine analogues are known to be good substrates of ADK, and the next step was to
test, by molecular docking, how the addition of the furfuryl group at N6 would affect the
affinity of those compounds to ADK and whether they could be used as KR derivatives with
improved anticancer properties. Two of these compounds, namely, 8-azakinetin riboside
(8-azaKR) and 7-deazakinetin riboside (7-deazaKR), were predicted to dock particularly
well in the binding cavity of the ADK model (Figure 2B). Interestingly, 8-azaadenosine
and some adenosine analogues containing a 7-deaza ring (sangivamycin and toyocamycin)
are known to be phosphorylated by ADK and further incorporated into DNA and RNA,
which contributes to their anticancer properties [37–39]. This characteristic makes the two
adenine ring modifications particularly attractive to test in the context of KR derivatives.
Furthermore, it has been shown that 8-azaadenosine is rapidly deaminated inside the
cells and that the cytotoxicity of 8-azaadenosine is enhanced when cells are pretreated
with an adenosine deaminase inhibitor [37]. The presence of a furfuryl group at N6 of
8-azaKR would most likely prevent the deamination reaction, which could contribute to
the increased potency of 8-azaKR inside the cells as compared to 8-azaadenosine. The
estimated binding energy indicated that the two KR derivatives might have similar affinity
to ADK, like KR alone.

Cells are mostly cultured in monolayers (2D), and this cell environment may have an
effect on the cellular response to external agents, e.g., drugs, and affect their cytotoxicity
results [73]. Thus, we also performed analyses using the 3D cell cultures (spheroids), which
mimic the natural microenvironment of growing tumor (TME), provide spatial cell–cell and
cell–ECM (extracellular matrix) interactions [74], and also access the significantly stronger
effects of therapeutics as compared to the response in 2D cultures [75]. The use of the
T98G spheroids allowed us to select one derivative with a similar antitumor activity to KR
(Figures 3–5) and showed the comprehensive effect of the compounds. Before induction
of the treatment, cell spheroids were fed for 3 days with a fresh medium and a medium
additionally supplemented with compounds in order to preserve nutrient supply to the
external cellular layers while the hypoxia/necrosis niche developed in the inner layer of
increasing spheroids [76].

First, we performed confocal microscopy analysis to compare live and dead T98G
cells forming spheroids after treatment with ribosides. The analysis revealed that all
three ribosides affected cell viability in a dose- and time-dependent manner, which was
observed as an increase in red fluorescence from dead cells (Figure 3). We also analyzed
the effect of KR and its derivatives on the induction of intracellular and mitochondrial
OS in 3D cultured T98G cells (Figures 4 and 5). Spheroids as a research model create a
microenvironment that supports tumor growth and enables closer interactions between
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cells. As mentioned above, spheroids show different responses to drugs, which might be
due to cell–ECM interactions, which generate an ROS niche and constantly developing
hypoxia. Consequently, the deprivation of oxygen within the tumor mass leads to higher
ROS production, which creates an interconnected system [77,78].

OS enhances the invasiveness of the cells, but the treatment with the compounds
increases the redox modifications within the GBM spheroids, as revealed by the inhibition
of the proliferation and differentiation, leading to the rupture of the outer layer of the cell
spheroids. A hypothesis describing the effect of ROS in cancer cells suggests that, when
these cells are subjected to external ROS-producing agents, the intracellular ROS levels
increase more easily to reach a threshold and induce cell death [35]. Taken together, these
findings indicate that 7-deazaKR demonstrates greater anticancer activity on cell spheroids
than 8-azaKR. Moreover, the effect of 7-deazaKR on induction of cell death and oxidative
imbalance is comparable, but still not as significant as that of KR.

Next, the use of the monolayer cultures helped us primarily to comprehend the
probable mechanism of action of KR and to choose 7-deazaKR to treat glioblastoma cells.
We confirmed that these two adenosine analogues induce toxicity in T98G cells, inhibit cell
proliferation, and initiate cell apoptosis in a dose-dependent manner (Figure 6D–G) through
the salvage pathway of purine metabolism (Figure 6A). However, the effect on cellular
proliferation was entirely averted when the cells were treated with 5-iodotubericidin, an
inhibitor of ADK (Figure 6F,G); this indicated that the intracellular phosphorylation of the
majority of purines is necessary to exert its cytotoxicity (Figure 6A,B) [63,79,80].

As mentioned above, the mechanism of purine derivatives in cancer cells is very
complex and mainly depends on ADK [81] (Figure 6A). Following the entry into the cells,
KR and 7-deazaKR are transformed into their monophosphate analogues, which affects
the energy balance in cancer cells and is likely a straight consequence of the rapid and
significant drop in the intracellular ATP level (Figure 6C) [12,65]. Currently, a similar
response was reported for another well-known purine derivative, AICAR, which affects
cellular metabolism, and its short-term effect is caused by the depletion of ATP in murine
embryonic fibroblasts [82]. Moreover, the major processes involved in the activation of
apoptosis are ATP depletion [55] and the induction of oxidative stress [83].

We have already proven that KR can trigger apoptosis through the induction of OS
in HepG2 cells [12]. Furthermore, another naturally occurring compound—berberine—is
increasingly emerging as a therapeutic agent for GBM treatment and exhibits a similar
activity. This alkaloid is considered as a putative antitumor agent for targeting glioma,
and, similar to KR and 7-deazaKR, it inhibits cell proliferation and, ultimately, induces cell
death through OS [61,84,85].

Conducting therapies that affect the energy and redox balance in GBM cells is very
challenging, with many limitations relying on the reduced susceptibility of cancer cells to
medications [35]. It is established that nonmalignant cells maintain a moderate level of
ROS, which contributes to the control of cell multiplication and differentiation. In cancer
cells and even in GBM, increased intracellular ROS levels promote genome instability,
hyperproliferation, and metastasis [86]. Therefore, we performed a comprehensive analysis
of ROS generation in T98G cells after treatment with KR and 7-deazKR (Figure 7) and
elucidated whether they might be promising alternatives for influencing the cellular redox
environment in glioblastoma. We divided OS in two major groups: metabolic (Figure 7A–F)
and genotoxic (Figure 8); moreover, because it is known that the antioxidant activity is
essential for tumorigenesis [87,88], we evaluated the total content of GSH, which is a
natural component of the antioxidant defense system (Figure 7G,H). ROS are generated
permanently during cellular respiration and mediate the impulse of various signaling
pathways [10]; however, the accumulation of ROS above the survival threshold leads to
cell death [89]. In response to KR and 7-deazaKR, the byproducts of oxygen metabolism,
i.e., intracellular ROS, are formed, and the redox balance of T98G cells was disturbed
(Figure 7A,B). A greater effect was observed after KR treatment.
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Similarly, in the study by Palma et al. [61], berberine treatment caused an increase
in ROS levels and cell damage markers in U87MG cells. Moreover, it was shown that the
flavonoid kaempferol can induce apoptosis of human glioma cells through the interference
with cellular redox balance [90].

Mitochondria are one of the main sources of intracellular ROS, which produce ROS
in the form of superoxide anions (O2

–) as a byproduct of oxidative metabolism [86]. The
mitochondrial ROS generation might lead to mtDNA damage and mutations, thereby
causing respiratory chain dysfunction [91]. Thus, we performed an analysis of mitochon-
drial ROS generation and observed a significant increase in the superoxide level when KR
concentration increased, whereas, after treatment with 7-deazaKR, the superoxide level
slightly increased (Figure 7C,D). This finding confirmed our previous results that KR affects
many cellular parameters, which indirectly results in mitochondrial stress and disruption
of redox balance [12].

ROS are produced in several metabolic processes and interfere with different intracel-
lular targets such as lipids, proteins, and DNA, resulting in genomic instability and finally
cell rupture [35,92]. KR treatment induced a significantly high level of oxidized lipids,
which was correlated with the lowering of the 590/510 ratio of the fluorescence intensity
(Figure 7E,F). After 7-deazaKR treatment, we observed that the level of lipid peroxidation
was comparable to that of the untreated T98G cells, with only a slight decrease in the ratio
(Figure 7E).

Cellular lipid peroxidation is usually accompanied with ferroptosis, a newly discov-
ered type of programmed cell death, which is activated when iron homeostasis in the
cells is disrupted [93]. The induction of ferroptosis is mainly based on the Fenton reac-
tion, wherein the accumulated iron (II) is oxidized into iron (III) by hydrogen peroxide,
and lipid peroxides are in turn converted into ROS hydroxyl radical) [92]. Our results
indicate that KR might be a potential inducer of ferroptosis and acts similar to erastin by
inducing apoptotic cell death through ROS accumulation [94]. In contrast, Hu et al. [93]
demonstrated that ferroptosis might play an important role in the resistance of gliomas
to temozolomide, which might be confirmed on the basis of the results obtained after
7-deazaKR treatment. Ferroptosis is a very complex process with multiple factors, and it
remains to be clarified whether it is involved in physiology and development of cancer cells
or whether it occurs after pharmacological interventions (anticancer therapy) [93,95]. Thus
far, few studies have reported that ferroptosis might involve the autophagy process, and it
has also been described as a mechanism based on switching apoptosis to ferroptosis [96].
Thus, ferroptosis needs further detailed investigation in the context of purine analogues
and its influence on lipid peroxidation.

It is known that ROS can be regulated by enzymatic scavengers, which are the key
players of the antioxidant defense system that maintain intracellular redox balance through
the reduction of ROS [97]. Among them, ROS homeostasis in vivo is mainly controlled
by GSH that also participates in many other metabolic processes [98] such as cell differ-
entiation, proliferation, immune response, and cell death [99]. GSH is present in three
main forms: reduced GSH, which is the predominant form under physiological condi-
tions, glutathione disulfide (GSSG), and glutathione–protein mixed disulfides (PSSG) [100].
GSH and other ROS scavengers exhibit a dual role in cancer cells, both maintaining a
redox balance and promoting cancer progression and drug resistance in order to avoid cell
death [99]. TMZ-resistant glioma cells have pronounced levels of glutathione reductase
(GR) and GSH, and this is correlated with the regulation of redox status and drug response
of GBM cells [35,88]. We also showed that, in response to KR and 7-deazaKR treatment,
T98G cells show a rapid increase in total GSH content, which is likely a direct consequence
of forcing the detoxification of elevated ROS (Figure 7G,H). In our previous study, we
observed an opposite effect and significant depletion of reduced GSH in HepG2 cells after
KR induction [12]. However, we proved that HepG2 cells show a greater adaptation to
mitochondrial metabolism and that forcing oxidative phosphorylation increases their sensi-
tivity to KR. We also confirmed that the metabolism of T98G cells mainly relies on anaerobic
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glycolysis, which may lead to drug resistance (Figure 1B,C). Thus, we have certainly shown
that ROS and metabolism are strongly interlinked [101]. Our results demonstrate that ROS
generation increased in T98G cells treated with KR and 7-deazaKR, possibly due to the
activation of the antioxidant defense mechanisms and, thus, chemoresistance (Figure 7).
We showed that treatment with an external compound disrupted the redox balance of T98G
cells, and this might be linked to the increased induction of apoptosis (Figure 6D).

ROS accumulation could damage DNA directly and cause oxidative lesions; 8-oxo-dG
could be a reliable biomarker of OS [42]. Under normal conditions, a genome has one
8-oxo-dG molecule per 105–106 guanosines, which is equivalent to thousands of 8-oxo-dG
molecules per cell [102]. We found that all the tested compounds significantly elevated the
number of 8-oxo-dG molecules as compared to control cells; this finding complements the
above considerations and confirms that both the adenosine derivatives induce OS in T98G
cells (Figure 8). Castro et al. [103] also demonstrated that a high dose of ascorbate caused
genotoxic and metabolic OS in glioma cells.

We also examined the effect of KR and 7-deazaKR on the expression level of selected
genes associated with OS induction and response in T98G cells. The expression levels were
established by real-time PCR (Figure 9). We examined the genes specifically associated
with the activation of the antioxidant defense system and determined the expression levels
of genes related to OS and cellular welfare indicators. The changes in the expression level
of the selected genes and the functions of the encoded proteins are summarized in Table 2.
First, we confirmed our previous observations about enzymatic ROS scavengers and found
that both KR and 7-deazaKR increase the expression level of these genes; this might be
related to maintaining redox homeostasis and drug resistance in T98G cells [35,88]. We
observed that, after treatment with the derivatives, the most significant effect was observed
for SOD; a previous study also showed that the expression of SOD2 and its related protein
Sp1 increased in TMZ-resistant cells [104]. Upregulation of ROS scavengers is one of the
signs of malignancy and resistance of GBM cells. Taken together, these findings indicate
that the genes stimulating the production of antioxidant proteins are activated [105]. Thus,
after treatment with KR and 7-deazaKR, we observed an increase in the expression level
of genes related to OS response and confirmed that the NRF2 gene is a key regulator of
detoxification and protects cells from DNA damage induction [42]; moreover, sestrins also
act as stress-sensor proteins [106]. Furthermore, our results indicate that the upregulation
of NF-KB is not only crucial for GBM cells to stimulate cell proliferation [107] but also as a
part of the antioxidant defense system.

KR and 7-deazaKR also influenced the activation of the cellular welfare indicators
such as SIRT2, PARP1, TNFA, and p53; however, both compounds decreased the expression
level of PGC-1a, which is a crucial regulator of mitochondrial energy metabolism [108] and
a modulator of mitochondrial biogenesis [109]. Cho et al., also indicated that PGC-1a is
correlated with mitochondrial dysfunction in GBM, which may lead to tumor progression;
thus, its decreased expression due to treatment with KR and 7-deazaKR is a desirable effect.

We have shown an indirect effect of KR and 7-deazaKR on the redox state of T98G cells,
and this might be the beginning for further and more detailed studies on the use of these
compounds in anticancer therapies. It has already been shown that KR can be a potential
drug in personalized therapy of CLL [70], while in vivo experiments on mice have also
been performed, indicating its anticancer properties, especially for human malignancies
with dysregulation of cyclin D1 or D2 [79,110].

5. Conclusions

The use of the complementary cell-based assays allowed for the investigation of the
effect of KR and its derivatives, 8-azaKR and 7-deazaKR, on the functions of T98G cells.
The application of T98G cell spheroids was the starting point for further research, which
enabled screening and the selection of one derivative-7-deazaKR. By performing detailed
analyses, we compared the antitumor and pro-oxidative activity of KR and 7-deazaKR.
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The present study aided to comprehend the mechanism of T98G cell resistance to
KR and 7-deazaKR treatment, which is mainly correlated with the high metabolic rate
of GBM cells and elevated ROS production. Our results indicate that both of these com-
pounds upregulate the expression of genes associated with protection against OS and affect
many cellular parameters (inhibition of cell proliferation, ATP depletion, impairment of
antioxidant defense system, and induction of apoptosis), resulting in oxidative imbalance
in T98G cells. Thus, we proved that purine analogues could be potentially used to exploit
the oxidative sensitivity of cancer cells.

Taken together, the results of this study demonstrate that KR and 7-deazaKR are
anticancer agents and might serve as putative alternatives for oxidative therapy focused
on the cellular redox environment of glioblastoma cells.
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