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SUMMARY

A reliable set of functional brain networks is found in healthy people and thought to underlie our 

cognition, emotion, and behavior. Here, we investigated these networks by quantifying intrinsic 

functional connectivity in six individuals who had undergone surgical removal of one hemisphere. 

Hemispherectomy subjects and healthy controls were scanned with identical parameters on the 

same scanner and compared to a large normative sample (n = 1,482). Surprisingly, 

hemispherectomy subjects and controls all showed strong and equivalent intrahemispheric 

connectivity between brain regions typically assigned to the same functional network. 

Connectivity between parts of different networks, however, was markedly increased for almost all 
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hemispherectomy participants and across all networks. These results support the hypothesis of a 

shared set of functional networks that underlie cognition and suggest that between-network 

interactions may characterize functional reorganization in hemispherectomy.

Graphical Abstract

In Brief

Kliemann et al. present resting state neuroimaging data in six adults with childhood 

hemispherectomy, compared to controls. They find an intact functional organization into canonical 

networks, yet identify an increase in communication between networks—a possible 

characterization of functional reorganization in hemispherectomy.

INTRODUCTION

Studying temporal correlations of blood-oxygenation-level-dependent signal (BOLD) as 

indirect measures of intrinsic functional connectivity with resting-state fMRI has revealed a 

reliable set of brain networks in healthy people (Biswal et al., 1995; Damoiseaux et al., 

2006). A typical set of resting-state networks has now been reproduced in hundreds of 

studies that are consistent across different anatomical or functional parcellations (Fan et al., 

2016; Glasser et al., 2016; Gordon et al., 2016; Yeo et al., 2011). Moreover, these same 

networks also emerge when differentially activated by different cognitive tasks (Cole et al., 

2014; Fox and Raichle, 2007; Smith et al., 2009), reflecting this association in their naming 
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conventions (e.g., default mode network and frontoparietal attention network). Studying the 

connectivity within these networks across large datasets has revealed associations with 

individual differences in cognition and behavior (Dubois et al., 2018a, Kong et al., 2019) 

personality (Dubois et al., 2018b), and disease (Castellanos et al., 2013).

This large and rapidly growing literature thus supports the idea of a relatively small set of 

functional brain networks that underlie all cognition and behavior (Smith et al., 2009), with 

individual differences reflecting subtle variations in this underlying substrate. However, it is 

possible to retain remarkably intact cognition despite profoundly atypical neuroanatomy, 

most notably exemplified in rare cases of hydrocephalus (Feuillet et al., 2007) or large brain 

lesions (Damasio et al., 1985). Does the compensated level of cognition that can 

occasionally be found in such patients depend on a different or reorganized set of functional 

networks, or does mostly intact cognition always go hand in hand with the basic set of 

resting-state networks? Neither of the above cases (Feuillet et al., 2007; Damasio et al., 

1985) has been investigated with resting-state fMRI, and a quantitative answer to this 

question remains unknown. Here, we tested this question by collecting high-quality resting-

state fMRI in a sample of six rare individuals with major anatomical perturbation, high-

functioning patients after surgical removal of one cerebral hemisphere (hemispherectomy; 

Figure 1; Table 1).

Patients who had hemispherectomy in childhood may retain surprisingly high levels of 

cognitive and sensorimotor abilities (Moosa et al., 2013). Hemispherectomy is a surgical 

procedure typically used to alleviate certain forms of intractable epilepsy (Jonas et al., 2004) 

by isolating the affected hemisphere, either by removing it entirely (anatomical 

hemispherectomy, often including all subcortical structures) or by severing all connections 

to the functional hemisphere (functional hemispherectomy, with partial anatomic resection) 

(Kim et al., 2018). There are consequential impairments to sensory and motor functions 

(described in detail elsewhere, e.g., hemiparesis and hemianopsia; see de Bode and Curtiss, 

2000; Moosa et al., 2013), but even these may recover to some extent (Devlin et al., 2003; 

Liu et al., 2018; Ramantani et al., 2013). Language function has been studied in some detail, 

also showing near-complete recovery in many patients who had their language-dominant 

hemisphere resected (Ivanova et al., 2017).

The alterations in brain function that must underlie much of this compensation are poorly 

understood, and studies of them have almost always been restricted to specific abilities and 

specific brain regions. Of the few studies investigating brain function in hemispherectomy, 

most focus exclusively on one modality, such as vision (Bittar et al., 2000; Damásio et al., 

1975; Danelli et al., 2013; Georgy et al., 2019; Werth, 2006), somatosensory/motor function 

(Bernasconi et al., 2000; Bittar et al., 2000; de Bode and Curtiss, 2000; Graveline et al., 

1998; Holloway et al., 2000; Leonhardt et al., 2001; Pilato et al., 2009), audition (Paiement 

et al., 2008), or language (Danelli et al., 2013; Hertz-Pannier et al., 2002; Ivanova et al., 

2017; Liégeois et al., 2008); and only one has more than five patients with fMRI data 

(Holloway et al., 2000). To the best of our knowledge, no study to date has ever investigated 

resting-state functional networks across the entire hemisphere in individuals with 

hemispherectomy.
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The current study investigated the organization of resting-state networks in high-functioning 

adults who had childhood hemispherectomy (HS; n = 6; Figure 1) using high-resolution 

state-of-the-art neuroimaging methods. We compared intrinsic functional architecture in the 

intact hemispheres of the HS cases with results from the corresponding single masked 

hemisphere in two healthy adult control samples. The first control sample (CNT; n = 6) was 

carefully matched on demographic variables and scanned at the same facility with almost 

identical sequence parameters. To provide a large-sample dataset that would aid 

generalizability of our findings, we included a second control sample from a publicly 

available dataset (Brain Genomics Superstruct Project (GSP); Holmes et al., 2015; n = 

1,482). We applied a previously introduced parcellation of seven population-average 

functional networks (Schaefer et al., 2018; Yeo et al., 2011, 2014, 2015) to the entire 

hemisphere (400 parcels across the whole brain, with 200 parcels per hemisphere; see Figure 

2) in order to study resting-state functional network organization more comprehensively. We 

used a surface-based registration approach to achieve the highest sensitivity to individual 

anatomy (see STAR Methods).

This study addressed three questions building on each other. First, can an atlas-based cortical 

parcellation scheme based on functional connectivity in healthy individuals also be applied 

to participants with hemispherectomy? Second, is the functional connectome within each 

individual reliable across two scanning sessions (fingerprinting; Finn et al., 2015)? Lastly, 

do the functional networks we find in these participants differ from those found in healthy 

controls? After confirming the first two questions, we found remarkably typical resting-state 

networks in participants with HS. The single atypical finding was an abnormally increased 

functional coupling between different networks (normal within-network connectivity but 

increased between-network connectivity).

RESULTS

Applying an Atlas-Based, Functional Cortical Parcellation to HS Brains

We required a common parcellation to compare HS brains to controls and began by using a 

widely accepted (although not unique) cortical parcellation scheme that is based entirely on 

resting-state correlations (not activations externally induced by sensory stimuli). Briefly, this 

scheme is based on previously identified networks of functionally coupled regions across the 

cerebral cortex using a clustering approach, described in detail elsewhere (Yeo et al., 2011, 

2015), resulting in seven local networks. Recently, this scheme has been further subdivided 

into more fine-grained parcellations (Schaefer et al., 2018) related to the seven-network 

parcellation. Here, we used the 400-parcel parcellation across the whole brain, resulting in 

200 parcels per hemisphere. This parcellation size allows for testing parcel- and network-

specific homogeneity (i.e., similarity of time series within parcels) as well as connectivity 

with high specificity while also being in line with the resolution of other commonly used 

parcellations. We first asked whether this parcellation of the brain into intrinsic functional 

networks, defined in a large independent sample of healthy subjects (Yeo et al., 2011), could 

be applied to the HS patients in a meaningful way.

To this end, we tested how similar the intrinsic time-series BOLD response at each parcel’s 

vertex (sampled point on surface) was to (1) the mean response across all vertices in that 
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parcel (within parcel), (2) the mean of parcels inside the same network (inside network), and 

(3) the mean of outside network parcels (outside network). If the parcellation is applicable in 

the HS brain, we expected to see the strongest homogeneity of responses within the same 

parcel, followed by stronger vertex-parcel correlations inside than outside the network. We 

indeed found this expected pattern of homogeneity across HS and control groups (see Figure 

3A and Table S1 for distribution of samples); each HS participant showed higher within-

parcel than inside-network homogeneity as well as higher inside- than outside-network 

homogeneity averaged across networks (see Figure 3B). This confirms that application of a 

standard atlas-based cortical parcellation after surface-based cortical alignment produces 

reasonable functionally delineated parcels in patients with HS, enabling us to use this 

parcellation scheme to make comparisons across subject samples. We note that the 

homogeneity results are expected in controls and in particular are not an independent finding 

in the GSP dataset, since the parcellation was derived from the GSP connectivity data in the 

first place (Yeo et al., 2011).

Resting-State Networks Are Reliable in HS

We next investigated whether the observed functional connectivity profiles within an 

individual were reliable across two different measurements (i.e., two runs). We employed a 

previously introduced method, functional connnectome fingerprinting (Finn et al., 2015). 

This procedure tests whether two instances of the pattern of functional connectivity acquired 

from the same individual at different time points (i.e., two scans) are more similar to one 

another than to the patterns of functional connectivity acquired from other individuals. That 

is, is the functional connectome sufficiently reliable so that one can re-identify an individual 

across time?

For the GSP individuals with two runs (n = 1,077), connectome fingerprinting was not 

successful for n = 98 in the left hemisphere and n = 110 in the right hemisphere. Five out of 

six individuals in the control group had successful connectome fingerprinting in both 

hemispheres (see Figure 3C). Five of the six individuals with hemispherectomy also had 

successful connectome fingerprinting. These findings confirm that functional organization of 

the brain is discriminative for individuals, even if only one hemisphere of the brain is 

available and when comparing across a large number of individuals (i.e., n > 1,000). They 

also suggest normal test-retest reliability of functional connectivity across two runs of ~6–7 

min within the same scanner session in participants with HS, i.e., their connectomes are 

relatively stable over time.

Quantifying Within-Network and Between-Network Connectivity in HS

A global criterion for resting-state networks in healthy individuals is overall stronger 

connectivity of regions within one network and weaker connectivity between regions of 

different networks. Our primary aim was to quantify this metric also in patients with HS, 

capitalizing on our unique sample. Given that most resting-state networks are bilaterally 

distributed across both hemispheres, we expected to find possibly profoundly rearranged 

networks in the single remaining hemisphere of the HS participants. We thus separately 

quantified connectivity of parcels belonging to the same network (within-network 

connectivity) and different networks (between-network connectivity) (see Figure 4A).
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The first comparison established representativeness of the six CNT control participants’ 

connectivity to the range of the large-sample GSP controls for within- as well as between-

network connectivity. Average strength of functional connectivity in CNT of parcels within 

and between networks was within the 50th and 66th percentile range of the GSP distribution. 

Hence, despite differences in magnetic resonance (MR) sequence acquisition and 

preprocessing, the CNT control participants’ connectivity was normally representative as 

compared to the GSP dataset, justifying further comparisons between control and HS 

groups.

The comparison of main interest concerned the HS and control samples; within-network 

connectivity was relatively comparable in distribution (variance: GSP, 0.016; CNT, 0.015; 

and HS, 0.018) and magnitude across all three samples (Figure 4A; Table S4). This finding 

was corroborated by seed-based, whole-brain analyses (Figure S1 shows whole-brain results 

for the example of the precuneus cortex [PCC] parcel seed region, a component of the 

default mode network). In contrast to similar patterns of within-network connectivity, 

individuals with hemispherectomy showed notably higher between-network connectivity in 

comparison to both the CNT and the GSP datasets. In fact, four of the six HS individuals’ 

mean connectivity between parcels across different networks was above the 95th percentile 

of the GSP distribution, and one was above the 90th percentile (Figures 4A and 4B; Table 

S5).

Increased Between-Network Connectivity Is Evident across All Networks in HS 
Participants

Next, we investigated between-network connectivity of the hemispherectomy participants in 

more detail. Is the increased between-network connectivity mostly driven by some 

functional networks or evident across all? As illustrated in Figure 4B, stronger between-

network connectivity was not specific to only a few networks or a few specific HS 

participants. Instead, for all seven networks, several hemispherectomy participants exhibited 

abnormally high connectivity to other networks, outside the normal range, as a detailed 

quantitative comparison to the control datasets’ distributions indicates. Regarding the 

patients, HS1 and HS6 exhibited the most atypical between-network connectivity; both 

individuals’ strength of correlation per network was higher than that of any control subject 

(see, Figure 4B and Table S5 for statistics). HS2, HS4, and HS5 also showed connectivity 

outside the normal range (>90th percentile) for more than at least four of the seven networks. 

HS3 yielded connectivity between parcels of different networks above the 90th percentile of 

the GSP sample only for the two sensory networks but remained within the normal range for 

the others, as well as when comparing to the CNT data. Regarding the networks, the effect 

was especially pronounced for the somatosensory/motor and visual networks, where all 

hemispherectomy participants showed remarkably high between-network connectivity (as 

compared to the GSP sample).

Altered Between-Network Connectivity Patterns Were Idiosyncratic for Some HS 
Participants

Having established that increased between-network connectivity is found in all 

hemispherectomy participants (to varying degrees) and in all functional networks, we 
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explored the patterns of connectivity in more detail. Previous research has revealed specific 

relations between certain networks in healthy adults (e.g., anticorrelation between the default 

mode and the attention networks) (Fox and Raichle, 2007; Fox et al., 2009). Do we find 

similar patterns of between-network connectivity in hemispherectomy just with an overall 

increase in the strength of correlation, or does hemispherectomy result in different relations 

between networks than what is typically reported in healthy adults?

First, we averaged each participant’s whole hemisphere connectivity matrix per group (CNT; 

HS) and plotted resulting sample averages (Figure 5, top row, left and middle panel). In the 

CNT controls, we replicated previously reported connectivity patterns between networks: the 

default network parcels were positively temporally correlated with the limbic and control 

networks, whereas they exhibited little or negative correlations to all other networks. 

Similarly, the two attention networks were positively correlated with one another, as well as 

with the somatosensory/motor network. Averaged across all hemispherectomy participants, 

there were similar patterns of correlation between networks; a stronger positive correlation 

was found among the default, control, and limbic networks and between most of the 

attention and sensory networks. However, the observed anticorrelations of the first (default, 

control, and limbic) and second cluster of networks (attention and sensory) were much less 

pronounced for HS participants. Overall, it seems that characteristic patterns of between-

network connectivity persist after hemispherectomy but with an overall increase.

Second, to investigate potential idiosyncrasy in connectivity for the hemispherectomy 

participants, we calculated individual connectivity matrices in addition to the averaged 

sample (Figure 5). HS2, HS3, and HS5 showed patterns generally most similar to those of 

the control average, with positive correlations within the two network clusters and 

anticorrelations between these clusters. While HS6 also exhibited similar overall patterns of 

connectivity to those of controls, there was a notable positive correlation between the 

somatosensory/motor and all other networks, as well as somewhat more positive correlations 

between the attention networks and others (mostly with the control and limbic networks). 

HS1, HS4, and HS6 showed connectivity patterns that were most dissimilar to those 

observed in controls. HS1 and HS6 showed only positive correlations. Most notably for 

these three patients, the control network was positively correlated to all others (except the 

visual network for HS4). Nonetheless, even for those HS subjects with the least typical 

anticorrelations of functional networks, the clusters of strongest correlations remain 

generally intact

Third, we explored whether individual differences in connectivity in the HS patients might 

correspond to increased variance in connectivity across healthy control participants. 

Variance across all fields of the connectivity matrix in the CNT control sample, however, did 

not overlap with the most prominent changes in connectivity in hemispherectomy 

participants (Figure 5, top right), suggesting that the atypical between-network correlations 

found in our HS patients reflects novel reorganization rather than merely an amplification of 

normal variability.

In addition to assessing connectivity within and between the specific networks (and their 

parcels), we also applied tools from graph theory analyses to our data (Sporns, 2014). It 
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should be noted that the interpretation of the network properties in only one hemisphere for 

the control participants is not a fully valid comparison, because it disregards the influence of 

homotopic or otherwise cross-hemispheric connections that serve information flow and 

network distribution in a typical brain with two hemispheres (see Discussion).

We used global efficiency as an estimate of functional integration, i.e., the ability to combine 

specialized information from distributed brain regions across a hemisphere. Global 

efficiency is denoted as the average inverse shortest path length in a network (Latora and 

Marchiori, 2001) and has been related to levels of intellectual functioning, working memory, 

and attention functioning and overall effective complex cognitive processing (Cohen and 

D’Esposito, 2016; Kitzbichler et al., 2011; Li et al., 2009; Stanley et al., 2015; van den 

Heuvel et al., 2017). Four of the six hemispherectomy patients (HS1, HS2, HS5, and HS6) 

exhibited relatively high global efficiency (above the 95th percentile of the CNT and GSP 

distribution; see Figure 6A and Table S7) in comparison to the two control groups. Notably, 

HS1, the participant with the highest between-network connectivity across all networks, 

surprisingly, did not show the highest global efficiency.

To investigate functional network segregation in one hemisphere, we assessed modularity, 

defined as the degree to which the overall network may be subdivided into clearly delineated 

(yet nonoverlapping) groups of nodes (Newman, 2006). Averaging each individual node’s 

modularity values per network revealed rather typical levels for the hemispherectomy 

participants in comparison to the GSP sample (see Figure 6B and Table S8). Only HS1 

(>90th percentile) showed higher modularity in the default mode network.

Relations with In-Scanner Head Motion, Neurological History, and Cognition

To best capture the atypical correlations found in the HS participants, we calculated a 

summary of between-network connectivity in relation to within-network connectivity as the 

average strength of between-network connectivity divided by the average strength of within-

network connectivity (see STAR Methods).

We first verified that atypical connectivity was not simply the result of high levels of in-

scanner head motion. Since head motion affects time series across all networks similarly, 

this could potentially lead to confounding results suggesting increased connectivity. As 

outlined in detail in Table S2, two hemispherectomy participants showed elevated levels of 

head motion. However, it seems unlikely that head motion directly relates to the increased 

connectivity findings, for two reasons. First, participants that moved the most in the scanner 

did not show the highest summary index of connectivity (see Table S6, HS2 and HS4). In 

fact, participants with the most typical (HS3) and atypical (HS1 and HS6) connectivity 

between networks showed similar levels of head motion. Second, HS2 and HS4 showed 

network-specific levels of higher connectivity. If motion would have strongly influenced 

their connectivity, this would be expected across all networks. These results suggest that the 

amount of head motion is unlikely to be a confound.

We next explored whether early onset of seizures and subsequently early hemispherectomy 

was associated with more typical connectivity, but we found no evidence for this (see Table 

S2). Finally, we explored relationships with cognitive measures, but due to the small sample 
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size, we refrain from presenting any conclusions from this analysis here in the results (see 

the Supplemental Information and Discussion).

DISCUSSION

The current study provides the first comprehensive analysis of whole-brain functional 

connectivity across the full repertoire of resting-state networks in a sample of adults with 

hemispherectomy. We used a previously validated functional parcellation of the brain to 

divide the cortex into 400 parcels (200 in each hemisphere), a fine-grained parcellation that 

represents seven main functional networks (Yeo et al., 2011) associated with cognitive and 

sensory functions in humans. We found (1) homogeneous responses across vertices within a 

parcel, indicating consistency of the chosen parcellation scheme with previous and current 

parcellations in healthy controls; (2) reliable connectivity patterns across time (scans) in 

participants (indicated by successful connectome fingerprinting), and (3) overall striking 

similarity of connectivity patterns that define typical resting-state functional networks in 

individuals with hemispherectomy. The only atypical finding was that participants with HS, 

despite having largely typical resting-state networks and connectivity within their nodes, 

showed abnormally elevated correlations between different networks. Finally, the above 

findings were not attributable to increased head motion.

Our finding of increased between-network correlations in the HS group is intriguing in light 

of work on the integration and segregation of brain networks. Changes in characteristics of 

concerted network connectivity have been reported to correlate with changes in human 

cognition. For instance, variations in anticorrelation between the default mode and the 

attention networks have been linked to disrupted brain function and altered states of 

consciousness, including psychiatric disorders (Buckner et al., 2008), sleep deprivation (De 

Havas et al., 2012; Yeo et al., 2015), and general anesthesia (Boveroux et al., 2010; 

Deshpande et al., 2010). At the same time, segregation of nodes and flexible adaptation of 

functional network organization seem to be integral to adaptive cognitive performance 

(Hearne et al., 2017). It has been recently suggested that local communication (e.g., within-

network connectivity) is essential for motor execution, while integrative communication 

(e.g., between-network connectivity) is critical for more executive cognitive abilities (e.g., 

working memory; Cohen and D’Esposito, 2016). Our finding of increased between-network 

connectivity in HS could thus reflect an adaptive increase in network integration necessary 

to support overall cognitive functioning and conscious experience despite the loss of 

typically available brain structure that supports homotopic functional organization. The 

exact reconfiguration mechanisms in response to task demands (versus the intrinsic 

organization assessed here with resting state) will be an important next investigation for 

future studies.

An interesting question is whether the abnormal network metrics reported in this article bear 

any relation to behavioral symptoms and cognition. While we do not have a large enough 

sample of patients to investigate this question, we did observe that performance on the 

Social Responsiveness Scale, full scale IQ, and measures of psychomotor function and 

executive control were associated with the network-specific increase of between-network 

connectivity (see Supplemental Information for details). Future work will need to investigate 
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the behavioral correlates of these global network metrics in larger samples. Our preliminiary 

findings suggest the hypothesis that intact cognitive abilities in individuals with 

hemispherectomy are accompanied by more typical connectivity, and in turn, that those 

individuals with the greatest cognitive challenges are the ones who show increased 

connectivity across functional networks. These initial observations are consistent with the 

idea that more successful compensation is accompanied by more typical connectivity 

patterns. Longitudinal studies could further address the complex question of whether these 

changes are related to compensation and recovery from hemispherectomy.

Our study has several limitations. To address the limitation of small sample size, we 

presented both group-wise and subject-wise data in the HS patients, and we compared this 

sample with carefully matched healthy controls, as well as a large normative sample, aiding 

the interpretability and generalizability of our findings. To address the highly abnormal 

neuroanatomy (i.e., the loss of one hemisphere) and enable comparisons across groups, we 

employed a surface-based registration approach that takes individual anatomical features 

into account more sensitively than possible with a volumetric registration strategy (Fischl et 

al., 2008; Hinds et al., 2008). We also refrained from registering the functional imaging data 

directly to a common template and instead applied previously reported anatomical 

parcellations (Yeo et al., 2011) to each participant’s structural brain image and registered 

their functional data only to their individual anatomy. By doing so, we gained a common 

reference space (the parcellations in individual anatomy) with high individual anatomical 

sensitivity to cortical folding pattern.

We chose a rather fine-grained functional parcellation scheme of 200 parcels per individual 

hemisphere (400 parcels across the whole brain) compared to other often used parcellation 

schemes (e.g., Gordon et al., 2016). Even finer-grained parcellations (e.g., 500 parcels per 

hemisphere) might reveal more subtle reorganization; however, they also come at the cost of 

greater spatial distortions and show increased spatial variability in the typical population 

(Arslan et al., 2018; Salehi et al., 2018).

One important aspect of the intrinsic functional architecture of the human brain is a 

homotopic organization of bilaterally distributed functional regions that are strongly 

interconnected across the left and right hemispheres. Even in complete congenital absence of 

the corpus callosum, essentially intact homotopic resting-state networks have been reported 

(Tyszka et al., 2011). One plausible explanation for the largely preserved and bilateral 

resting-state networks in that population is the presence of other commissural pathways 

(e.g., the anterior commissure; Tyszka et al., 2011) and possibly the development of 

alternate interhemispheric connections (Tovar-Moll et al., 2014). It is presumed that the 

relatively normal levels of cognitive functioning reported in individuals with agenesis of the 

corpus callosum results from their relatively intact resting-state networks (Paul et al., 2007; 

Tyszka et al., 2011). While such white matter abnormalities raise interesting questions about 

alternate routing of information flow in the brain, (e.g., novel white matter connections; 

Tovar-Moll et al., 2014), the cortical substrate for typical resting-state networks is still intact 

in these individuals, presumably supporting bilateral contributions to cognitive abilities.
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Our findings raise intriguing new questions about the neural basis of integrated cognition 

and conscious experience. In our HS patients (with full anatomical resection), there is 

simply no contralateral hemisphere present at all, eliminating bilateral resting-state networks 

and the possibility of bilateral contributions to conscious experience.

In sum, the current study provides evidence on the neural reorganization that produces 

compensated cognition after the surgical removal of one hemisphere. Functional 

connectivity of the human brain, as measured with resting-state fMRI, leaves open exciting 

future questions for task-based functional localization in hemispherectomy. Insights from 

these rare patients argue that intrinsic mechanisms of brain organization in only half of the 

typically available cortex can be sufficient to support extensive cognitive compensation.

STAR★METHODS

CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resource should be directed to and will be fulfilled by 

the lead contact, Dr. Dorit Kliemann, dorit@caltech.edu.

This study did not create new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data was either acquired at the California Institute of Technology or obtained from a 

publicly available dataset of fMRI data, described in detail below.

Caltech dataset—Six adults with hemispherectomy in childhood (HS; 2 males, 2 left-

handed, mean age = 24.33 (SD = 4.62) years) and six typically developed adults (CNT; 2 

males, 2 left-handed, mean age = 26.8 (SD = 4.26)) were scanned at the Caltech Brain 

Imaging Center. Participants signed written informed consent prior to participation in 

accordance with protocols approved by the Institutional Review Board of the California 

Institute of Technology. These participants were similar with respect to intellectual 

functioning levels (mean full scale IQ: HS = 90.83 (SD = 7.41), CNT = 95.5 (SD = 3.86)), 

age, handedness, and sex. Demographic sample information as well as detailed previous and 

current neurological history about the individuals with HS is provided in the Supporting 

Information (Table S3). In an exploratory analysis (see Table S9), we further assessed 

intellectual and cognitive abilities in relation to functional connectivity with the following 

measures: intellectual functioning (WAIS-III, (Wechsler, 2011), executive function (D-

KEFS, Delis-Kaplan Executive Function System (Delis et al., 2011); social function (Social 

Responsiveness Scale-2 Adult Self report (Constantino and Gruber, 2012), SRS-2).

Hemispherectomy cases: The dataset included four individuals with right and two with left 

hemispherectomy with different etiology (L-HS, perinatal stroke n = 2; R-HS: Rasmussen 

encephalitis n = 3, cortical dysplasia n = 1), age at seizure onset (minutes after birth to 10 

years-old) and age at hemispherectomy surgery (3 month – 11 years-old; see Supplemental 

Information, Table S1).
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Four individuals underwent functional hemispherectomy, i.e., large sections of the affected 

hemisphere were resected and all connections of remaining tissue to the functional 

hemisphere were disconnected. Two patients had a complete anatomical hemispherectomy. 

Presence of any missed connections (i.e., complete disconnection of remaining tissue) was 

assessed by two neurosurgeons specialized in hemispherectomy surgeries (A.F., H.W.P).

Brain Genomics Superstruct Project Dataset—We compared both HS and CNT data 

to publicly available data from the Brain Genomics Superstruct Project (GSP, https://

www.neuroinfo.org/gsp/), collected from 1482 healthy young adults (621 males, mean age = 

21.53 years) at Harvard University and the Massachusetts General Hospital (Holmes et al., 

2015). Raw data was processed by the laboratory of B.T.T.Y. at Singapore University within 

the context of previous publications (Schaefer et al., 2018, Kong et al., 2019)

METHOD DETAILS

Brain Genomics Superstruct Project Dataset—Data from GSP were acquired on 

matched 3 Tesla TIM Trio scanners (Siemens Healthcare, Erlangen, Germany) at the 

Massachusetts General Hospital and Harvard University with the vendor-supplied 12-

channel phased-array head coil. Details on the data collection are described elsewhere 

(Holmes et al., 2015; Yeo et al., 2011). In short, each subject had one (n = 405) or two (n = 

1077) T2*-weighted EPI resting state runs (3 mm isotropic voxel size, TR = 3.0 s, duration 6 

min 12 s) and one structural MR scan (1.2 mm isotropic voxel size).

Preprocessing is described in detail elsewhere (Holmes et al., 2015; Kong et al., 2019). In 

short, processing steps included slice-time correction, motion correction, motion time-point 

outlier detection (frame wise displacement (FD) > 0.2 mm, voxel-wise differentiated signal 

variance (DVARS) > 50, uncensored segments of data lasting less than 5 contiguous 

volumes by FD/DVARS (Gordon et al., 2016)), regression of nuisance variables (global 

signal (GSR), six motion correction parameters, ventricular signal, white-matter signal, and 

their temporal derivatives), interpolation (Power et al., 2014) across motion outlier time-

points and application of band-pass filtering (0.009 Hz ≤ f ≤ 0.08 Hz). Preprocessed 

functional data was subsequently projected onto FreeSurfer fsaverage6 surface space (1mm 

vertex spacing), smoothed using a 6 mm full-width half-maximum (FWHM) kernel, and 

downsampled to the fsaverage5 surface space (4 mm vertex spacing) for functional 

connectivity analyses.

Caltech Dataset—Data from six individuals with hemispherectomy and six control 

participants were acquired at the Caltech Brain Imaging Center (CBIC) using a 3 Tesla MRI 

scanner (five CNT and five HS: Magnetom TIM Trio; one CNT and one HS: Magnetom 

Prisma, Siemens Medical Solutions, Erlangen, Germany) with almost identical imaging 

parameters. For each participant, we analyzed T1w structural data (MP-RAGE, TR/TE/TI = 

1590ms/2.7ms/800ms, 1 mm (TIM Trio) or 0.9mm (Prisma) isotropic voxel size, flip angle 

= 10°) and two runs of T2*-weighted EPI (TR = 1000ms and 400 images, 6 minutes and 40 

s (TIM Trio) or 700ms and 600 images, 7 minutes (Prisma), TE = 30ms, flip angle = 60° 

(TIM Trio) or 53° (Prisma), 2D multiband acquisition (Multiband acceleration factor = 6) 

with 2.5 mm isotropic voxels). For the participants acquired with the TIM TRIO, gradient 
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echo field mapping data was acquired with identical geometry to the EPI data for EPI off-

resonance distortion correction (TR/TE = 400/5 ms, flip angle = 45°), for the Prisma, two 

SE-EP images with opposite phase encode directions (TR/TE = 5005/48 ms, flip angle = 

90°).

Raw DICOM images were converted to Nifti-1 format files and organized according to the 

BIDS convention (Gorgolewski et al., 2016; https://bids.neuroimaging.io/) with the docker 

version of BIDSKIT version 1.0.0 (https://github.com/jmtyszka/bidskit). After conversion, 

minimal preprocessing was performed using FMRIPREP version 1.0.7, a Nipype based tool 

(Esteban et al., 2018; Gorgolewski et al., 2011). Each T1-weighted (T1w) volume was 

corrected for intensity non-uniformity using N4BiasFieldCorrection v2.1.0 (Tustison et al., 

2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template). 

Segmentation of cerebro-spinal fluid, white matter and gray matter was performed on the 

brain-extracted T1w using FAST (FSL v5.0.9). Functional EPI data was motion corrected 

using MCFLIRT (FSL v5.0.9). Susceptibility distortion correction was performed using an 

implementation of the TOPUP technique (Andersson et al., 2003) using 3dQwarp v16.2.07 

distributed as part of AFNI (Cox, 1996) for the two participants with SE-EPI images and 

with FUGUE v5.0.9 (Jenkinson, 2003) tool for all other participants with GRE fieldmaps. 

This was followed by spatial co-registration to the individual’s T1w control image using 

boundary-based registration with 9 degrees of freedom, using FLIRT (FSL). FD and DVARS 

metrics were calculated for each functional run using the methods implemented by Nipype.

Preprocessing of the structural and functional data was conceptually very similar to the 

above-described GSP data processing with some differences: structural processing with 

FreeSurfer was performed with version 6.0 for control subjects and developmental version 

of FreeSurfer (Fischl et al., 2001; Fischl et al., 2002) for the hemispherectomy subjects to 

allow for reconstruction of acallosal surface space in only one hemisphere. For all 

participants, data was carefully inspected and manual corrections applied where necessary. 

The level of necessary manual intervention for HS and CNT data was comparable and the 

quality of the surface estimation was typical. For the HS participants, only the functional 

hemisphere was analyzed and subsequently segmented. Interpolation over motion-censored 

time-points was performed with linear interpolation (versus least estimated squares). Band-

pass filtering was performed with a Butterworth filter (0.009 Hz ≤ f ≤ 0.08 Hz). Given the 

significantly shorter TR, no slice timing correction was applied. Functional data was 

projected onto each subjects’ native anatomical space only once, to reduce distortion of 

multiple surface projections of the atypical hemispherectomy anatomy.

Psychiatric and neurological patient populations often exhibit greater levels of in-scanner 

head motion. As expected, we also found minimally elevated levels of head motion in some 

HS participants (see Supplementary Information, Table S2). To counteract data loss due to 

extensive motion time-point censoring, we applied a slightly more lenient FD threshold (0.4 

mm). We discuss motion in detail below. It is unlikely that the aforementioned minimal 

differences in preprocessing would lead to notable differences in the final connectivity 

estimation and comparisons between the samples. The main purpose of the GSP data is to 

provide a reference frame for both control and HS individuals, not to make specific claims 

about differences to the Caltech sample.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Parcellation—We used a parcellation into 7 larger, previously described, functional resting 

state networks and their respective sub-parcellations, into 400 bilateral parcels with 200 

parcels per hemisphere (Schaefer et al., 2018, Yeo et al., 2011, 2015).

Functional connectivity analyses—Preprocessed timeseries data was extracted from 

the surface for cortical regions and averaged within each parcel. To investigate functional 

connectivity between brain regions, each parcel’s timeseries data was correlated with all 

other parcels per run (excluding outlier time points) using Pearson correlation. For statistical 

comparisons, the resulting correlation coefficients were then Fisher r-to-z-transformed, 

resulting in a Ns (number of subjects) × Nr (number of runs) × Np (number of parcels) 

connectivity matrix. All analyses were done separately for a hemisphere for control 

participants, similar to single hemisphere data in hemispherectomy participants.

Parcel homogeneity: To investigate homogeneity (and consistency) of functional 

connectivity within-parcel at the level of individual subjects we investigated how well each 

vertex’s timeseries represented the average timeseries of its containing parcel. For each 

subject and run, we first calculated the Pearson correlation, r, between a vertex’s timeseries 

and the average timeseries of i) the assigned parcel without the tested vertex (within-parcel), 

ii) other parcels belonging to the same network of the vertex’s containing parcel (inside-

network) and iii) all parcels outside of the network (outside-network). Individual 

correlations were Fisher z transformed before averaging across conditions. We performed 

GSP homogeneity analyses on the fsaverage6 surface space, since it is the source space for 

the creation of the 400 Schaefer parcels. Note that we do not make new inferences about the 

parcellation’s homogeneity or validity based on the GSP analyses, instead these results are 

only for creating a normative comparison for the HS and CNT samples. One GSP subject’s 

data was excluded from homogeneity analyses due to a registration problem.

Connectome Fingerprinting: To assess reliability of functional connectivity within an 

individual across different measurements we conducted an analysis known as connectome 

fingerprinting (described in detail elsewhere (Finn et al., 2015)). In short, we correlated each 

participant’s connectivity matrix i) across the two runs of the same subject and ii) with all 

runs of all other subjects. If the highest correlation was found between the two runs of the 

same subject, connectome fingerprinting was deemed “successful” suggestive of reliable 

patterns of functional connectivity across two runs within an individual. Since some GSP 

participants only had one run of resting-state fMRI available, comparisons for the left 

hemisphere included 1087 participants (HS n = 4, CNT n = 6, GSP n = 1077) and for the 

right hemisphere 1085 participants (HS n = 2, CNT n = 6, GSP n = 1077).

Functional network connectivity: To probe global network characteristics, we tested 

within-network and between-network connectivity by comparing connectivity between 

parcels of the same network and parcels of different networks, respectively. To establish the 

strength of within-network connectivity we averaged Fisher z-transformed correlation values 

between all parcels of each of the 7 networks. Similarly, the strength of between-network 

connectivity was calculated by averaging the strength of edges between parcels of each of 
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the 7 networks and all others. This resulted in 7 within- and 7 between-network summary 

connectivity strengths per participant. We created a summary index (see Table S6) (IndexFC) 

of between-network in relation to within-network connectivity as the quotient of between-

network connectivity (FCBtw) and within-network connectivity (FCWthn), for each of the 7 

networks:

IndexFC = FCBtw/FCWthn

Graph theoretical analyses: Graph theoretical analyses have become an important tool to 

investigate topological aspects of functional brain connectivity (and dysconnectivity) across 

different patient populations. We calculated the global efficiency and modularity metrics 

based on thresholded (z > 0.5) and binarized individual connectivity matrices (200×200). To 

explore potentially new functional segregation of network nodes we chose not to use a 

proportional thresholding approach (see, van den Heuvel et al., 2017, for further discussion). 

Graph metrics were calculated with a publicly available MATLAB toolbox (Rubinov and 

Sporns, 2010; brain-connectivity-toolbox.net) for each participant’s hemisphere separately 

(note that this approach results in two data points per control participant).

Classic statistical null hypothesis testing is not statistically meaningful for small patient 

population samples. We provide quantitative comparisons for the conclusions drawn in this 

study by a quantitative description of where in the normative distribution of the control 

sample each individual hemispherectomy participant’s relevant connectivity metric falls. 

This information is reported in the respective results section.

DATA AND CODE AVAILABILITY

The GSP dataset is available at https://dataverse.harvard.edu/dataverse/GSP (https://doi.org/

10.7910/DVN/25833). The Caltech control data is available from (https://openneuro.org/

datasets/ds002232). The hemispherectomy data is currently only available upon request due 

to pending IRB decisions. If the data will be made publicly available in the future, it will be 

deposited into the Caltech control repository. Code to preprocess and create FC for the GSP 

data is available at https://github.com/ThomasYeoLab/CBIG, subsequent GSP analyses and 

code to process Caltech datasets is available from the corresponding author upon request 

(https://github.com/doritdorit/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Intrahemispheric functional connectivity in 6 adults with childhood 

hemispherectomy

• Organization of canonical resting-state networks is preserved in intact 

hemisphere

• Communication between networks is increased compared to controls

• Known functional brain networks support cognition even in highly atypical 

anatomy
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Figure 1. Hemispherectomy Brain Anatomy
Six adult participants with left (n = 2, HS2 and HS3) or right (n = 4, HS1, HS4, HS5, and 

HS6) hemispherectomy. Axial slices were taken minimally above the anterior/posterior 

commissure line. L, left; R, right.
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Figure 2. Parcellation Scheme
Displayed as example on the left inflated hemisphere (fsaverage6 template) are (A, upper 

row) seven color-coded resting-state-derived connectivity networks (Yeo et al., 2011) (see 

color to network legend on the right) and (B, lower row) 200 outlined parcels (from the 400 

whole-brain parcellation; Schaefer et al., 2018).
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Figure 3. Connectivity Control Analyses
(A) Homogeneity of vertex to parcel time series responses within the originally assigned 

parcel (within), to all parcels inside the parcel’s network (inside), and to all parcels outside 

the network (outside) for the GSP (gray), CNT (blue) and HS (red) participants. Strengths of 

correlation (Z) for each comparison in HS were within the normal range of the CNT sample 

(see Table S1 for statistics). Each data point represents the average correlation for all 

vertices that comprise a given parcel (200 data points per subject/hemisphere). Boxplots 

represent distribution of the GSP data.

(B) Differences in strength of correlations between homogeneity comparisons (inside versus 

outside network, within parcel versus inside network, and within parcel versus outside 

network) were positive for all HS and control participants. Data points represent individual 

differences between averaged homogeneity comparisons per hemisphere. Boxplots represent 

distribution of the GSP data.

(C) Functional connectome fingerprinting per hemisphere. All but one hemisphere in each of 

the CNT and HS samples (CNT4L and HS5) showed successful connectome fingerprinting; 
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i.e., the functional connectome was most similar across two runs of the same participant 

(large dots) than in comparison with any other participant (small dots). Boxplots represent 

distribution of the GSP data. CNT, Caltech control group; GSP, Brain Genomics Superstruct 

control group; HS, hemispherectomy; L, left hemisphere; R, right hemisphere; Z, Fisher’s r 

to z transformed strength of correlation coefficient.
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Figure 4. Functional Connectivity
(A) Between- and within-network functional connectivity averaged across networks per 

group (GSP, CNT, and HS) (seven data points, one for each network, per participant). CNT 

and HS showed similar within-network connectivity as compared to the large GSP sample, 

while overall between-network connectivity was notably stronger for HS participants.

(B) High between-network connectivity was evident across all networks and in all but one 

(HS3) hemispherectomy participant.

Boxplots represent distribution of the GSP data. FC, functional connectivity; Sal/VAttn, 

salience and ventral attention network; DorsAttn, dorsal attention network; SomMot, 

somatosensory/motor network; z, Fisher’s r to z transformed correlation coefficient. See also 

Tables S4, S5, and S9.
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Figure 5. Functional Connectivity Correlation Matrices across Networks
Upper row: averaged connectivity between networks (diagonal = within, off diagonal = 

between) for the CNT control group (left) showed typical relations between known 

functional networks (e.g., anticorrelation of default and attention networks). Comparable yet 

overall stronger connectivity was found across the HS sample (middle). Differences between 

CNT and HS connectivity did not seem to be pronounced in connections that show greater 

variance in controls (right). Middle and lower row: connectivity matrix per 

hemispherectomy participant revealed individual characteristics; between-network 

connectivity patterns of HS2, HS3, and HS5 were most comparable to controls, while HS4 

showed weaker anticorrelations between default and attention networks. HS1 and HS6 

showed the strongest connectivity between almost all networks. Sal/VAttn, salience and 

ventral attention network; DorsAttn, dorsal attention network; SomMot, somatosensory/

motor network; V, variance; Z, Fisher’s r-to-z transformed strength of correlation. See also 

Table S6.
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Figure 6. Network Analyses of Functional Integration and Segregation Metrics
Each data point represents data from one participant’s hemisphere.

(A) Global efficiency. All hemispherectomy participants showed relative efficient global 

information processing.

(B) Modularity. Functional segregation of networks was very typical in hemispherectomy 

participants as compared to both control samples.

Sal/VAttn, salience and ventral attention network; DorsAttn, dorsal attention network; 

SomMot, somatosensory/motor network. Boxplots represent distribution of the GSP data. 

See also Tables S7 and S8.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE

SOURCE IDENTIFIER

Deposited Data

GSP MRI data Neuroinformatics Research Group (Harvard 
University) (NRG) http://www.neuroinfo.org/

https://dataverse.harvard.edu/dataverse/GSP https://
doi.org/10.7910/DVN/25833

Caltech MRI and behavioral 
data

California Institute of Technology, Pasadena, CA, 
USA

https://openneuro.org/datasets/ds002232

Experimental Models: Organisms/Strains

Human: patient, controls Neuroinformatics Research Group (Harvard 
University) (NRG) http://www.neuroinfo.org/;

N/A

California Institute of Technology, Pasadena, CA, 
USA

Software and Algorithms

MATLAB, 2017b Mathworks https://www.mathworks.com, RRID:SCR_00162

FreeSurfer Laboratory for Computational Neuroimaging, 
Athinoula A. Martinos Center for Biomedical 
Imaging, Charlestown, MA, USA

https://surfer.nmr.mgh.harvard.edu/, 
RRID:SCR_001847

FSL Analysis Group, FMRIB, Oxford, UK https://fsl.fmrib.ox.ac.uk/fsl/fslwiki, 
RRID:SCR_002823

Functional Brain 
Parcellation

Computational Brain Imaging Group, National 
University of Singapore, Singapore

https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/brain_parcellation/
Schaefer2018_LocalGlobal

Brain Connectivity Toolbox Rubinov & Sporns (2010) http://sites.google.com/site/bctnet/, RRID:SCR 
004841
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