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Abstract
Background  Colorectal cancer (CRC) is one of the most common and deadly malignancies worldwide, with a particularly 
low 5-year survival rate in advanced patients. Immune cells in the tumor microenvironment, especially mast cells, play 
crucial roles in tumor initiation and progression. However, the dual role of mast cells in CRC remains poorly understood.
Methods  In this study, we used single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing, and bioinformatics 
analyses to explore the heterogeneity of mast cell subpopulations in the CRC tumor microenvironment and their relationship 
with prognosis. We analyzed gene expression signatures associated with mast cell subpopulations derived from single-cell 
data of 40 CRC tumor samples and combined bulk RNA-seq data from HMU, GEO, and TCGA cohorts for prognostic 
prediction. Non-negative matrix factorization was used for clustering of mast cell subpopulations, followed by analysis of 
their specific gene markers, transcription factor activity, and biological pathways. Survival analysis and ROC curves were 
performed to assess their prognostic significance.
Results  Mast cells in the CRC tumor microenvironment were classified into three distinct subpopulations, each with unique 
gene markers and functional pathways. Mast cell subpopulations 1 and 3 were highly associated with pro-tumor pathways, 
while mast cell subpopulation 2 primarily exhibited anti-tumor immune regulatory characteristics. High expression of mast 
cell subpopulations 1 and 3 was associated with poor survival prognosis, while high expression of subpopulation 2 was 
linked to a better survival outcome. Key marker genes such as DNAJB1, SEMA7A, and XCR1 were identified as potential 
prognostic factors, with high expression of DNAJB1 and SEMA7A being significantly associated with poor prognosis, while 
high expression of XCR1 was linked to a favorable prognosis.
Conclusion  This study reveals the functional heterogeneity of mast cell subpopulations in the CRC tumor microenvironment 
and their differential roles in tumor progression. Identification of mast cell subpopulation-specific marker genes provides 
new molecular targets for clinical diagnosis, prognostic prediction, and personalized immunotherapy in CRC.

Keywords  Colorectal cancer · Tumor microenvironment · Mast cells · Single-cell RNA sequencing · Prognosis · 
Immunotherapy · Marker genes

Introduction

Colorectal cancer (CRC) is one of the most common and 
deadly malignancies worldwide [1]. According to the 
World Health Organization (WHO), CRC has become the 
third most common cancer globally and the second leading 
cause of cancer-related death [2]. Despite recent advances 
in early screening, surgical treatment, chemotherapy, 
targeted therapy, and immunotherapy, the 5-year survival 
rate for CRC remains low, especially in advanced-stage 
patients [3]. Therefore, treatment of CRC continues to pose 
a significant challenge, necessitating deeper research into 
its pathogenesis and the development of more effective 
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therapies. The occurrence and progression of CRC involve 
complex interactions of multiple factors, including genetic 
susceptibility, environmental influences, and changes in the 
tumor microenvironment. The tumor microenvironment 
(TME) refers to the complex environment surrounding 
tumor cells, which includes non-tumor cells, blood vessels, 
immune cells, extracellular matrix, and signaling molecules 
[4]. The tumor microenvironment plays a critical role in 
cancer initiation, progression, metastasis, and therapeutic 
response. Immune cells, especially mast cells (MCs), play a 
significant role in the CRC microenvironment.

Mast cells are immune cells derived from the bone 
marrow, widely distributed in various tissues, particularly in 
the skin, lungs, intestines, and urinary tract [5, 6]. Mast cells 
play a key role in immune responses, mainly by releasing 
various bioactive substances stored in their granules, 
such as histamine, cytokines, chemokines, proteases, 
and lipid mediators, which regulate immune responses, 
inflammation, and tissue repair [7]. The role of mast cells 
in the tumor immune microenvironment has been a focus 
of research. Mast cells are not only involved in allergic 
reactions, antimicrobial immunity, and tissue repair but are 
also believed to be closely related to tumor initiation and 
progression[8]. Mast cells can regulate the immune response 
in the tumor microenvironment by secreting various 
mediators, thereby influencing tumor growth, metastasis, 
and response to treatment [9].

The role of mast cells in cancer is complex and 
bidirectional. Studies have shown that mast cell abundance 
is closely associated with cancer prognosis [10]. Some 
studies suggest that mast cell infiltration in tumors correlates 
with higher malignancy, increased metastasis, and drug 
resistance. In such cases, mast cells may promote tumor 
progression by secreting pro-tumor factors [11, 12]. In 
contrast, other studies have reported that mast cells can 
suppress tumor development. They may do so by enhancing 
anti-tumor immune responses and inducing apoptosis in 
tumor cells. In the cancer immune microenvironment, mast 
cells serve as key regulatory immune cells. They interact 
with tumor-associated immune cells—such as T cells, B 
cells, and macrophages—by releasing bioactive substances 
[13]. Through the secretion of cytokines and chemokines, 
mast cells can also recruit other immune cells to the tumor 
site, influencing immune evasion mechanisms.

The occurrence of CRC is closely related to the 
interactions of various cells in the tumor microenvironment. 
As one of the key immune cells in the tumor 
microenvironment, the role of mast cells in CRC is not yet 
fully understood. The dual role of mast cells in CRC makes 
them a promising research subject. Future studies may reveal 
their important roles in immune evasion, tumor metastasis, 
and immunotherapy. Therefore, further investigation into the 
functional mechanisms of mast cells in CRC will provide 

new insights and potential targets for tumor immunotherapy 
strategies.

Materials and methods

Patients

This study included 40 formalin-fixed paraffin-embedded 
CRC specimens from patients treated at the Second 
Affiliated Hospital of Harbin Medical University between 
2010 and 2020 (HMU Cohort). The inclusion criteria were: 
(1) Patients aged 18 to 75; (2) Diagnosis of adenocarcinoma 
confirmed by postoperative pathology; (3) Underwent 
R0 surgical resection; (4) At least 5 years of follow-up 
data available. Exclusion criteria were: (1) patients who 
had received neoadjuvant therapy before surgery and (2) 
patients with incomplete clinicopathological data or missing 
postoperative follow-up and treatment information. The 
study was approved by the ethics committee of the Second 
Affiliated Hospital of Harbin Medical University (Approval 
number: YISKY2024-269).

RNA isolation and sequencing

The RNA quality and quantity were assessed through several 
steps: (1) Initial contamination and degradation checks 
were performed using 1% agarose gel electrophoresis; 
(2) RNA purity and concentration were measured with 
a NanoPhotometer® spectrophotometer; and (3) RNA 
integrity was further analyzed using the RNA Nano 6000 
Assay Kit on the Bioanalyzer 2100 system [14]. These RNA 
samples were then used for library preparation. First, mRNA 
was captured using mRNA Capture Beads with Oligo(dT), 
followed by purification with Binding and Washing Buffers. 
The mRNA was then randomly fragmented to 100–200 nt 
using Fragmentation Buffer and reverse-transcribed into 
cDNA. The resulting cDNA was purified using DNA Clean 
Beads and prepared for adaptor ligation. After ligation with 
adaptors containing UMIs, cDNA underwent one-step PCR 
amplification. The PCR products were then purified again 
using DNA Clean Beads and eluted in nuclease-free water. 
The final library was pooled and sequenced on the Illumina 
Novaseq 6000 platform, generating 6G of raw paired-end 
data (150 nt reads)[15].

For initial processing, Perl scripts were used to process 
raw FASTQ data. Low-quality reads, those containing 
adapters, or poly-N sequences were removed, resulting 
in clean reads. All subsequent analyses were performed 
using these high-quality clean reads. The reference genome 
(Homo sapiens GRCh38.103) index was created using STAR 
(version 2.7.11b), and the clean reads were aligned to this 
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reference genome with STAR. Gene expression counts were 
obtained using RSEM (version 1.3.3) [16]. 

Acquisition and preprocessing of single‑cell data

The CRC single-cell RNA sequencing (scRNA-seq) data 
were obtained from a dataset published by Pelk et  al., 
comprising 236,950 cells from 40 tumor tissue samples 
(Table 1) [17]. The scRNA-seq data were processed using 
the R package Seurat (version 5.2.1).

First, we converted the raw gene expression matrices 
into individual Seurat objects. Three quality control steps 
were applied: (1) genes expressed in fewer than five cells 
were removed; (2) cells with fewer than 100 detected 
genes were excluded; and (3) cells with more than 5% 
mitochondrial gene content were filtered out. Each sample 
was normalized using the NormalizeData() function with the 
default "LogNormalize" method, and the top 2,000 highly 

variable genes were identified using FindVariableFeatures() 
(selection.method = "vst").

To correct for batch effects and integrate the 40 samples, 
we used Seurat’s integration workflow. Specifically, 
we applied FindIntegrationAnchors() with dims = 1:20 
to identify shared features across samples, followed 
by IntegrateData() using the same dimensions. The 
integrated dataset was then scaled using ScaleData() and 
dimensionality reduction was performed using RunPCA(). 
The top 20 principal components were selected for 
downstream clustering analysis using FindNeighbors() and 
FindClusters().

Differentially expressed genes for each cluster were 
identified using FindAllMarkers() with the following 
thresholds: FDR < 0.05 and |log2(fold change)|> 0.25.

For cell-type annotation, major immune and stromal 
cell types were identified based on canonical marker genes, 
including CD3D, CD8A, CD4, CD56, FOXP3 (T cells and 
NK cells); CD79A, MS4A1 (B cells); CD14, CD68 (myeloid 
cells); COL1A2, COL3A1 (fibroblasts); VWF, PECAM1 
(endothelial cells); EPCAM (epithelial cells); and TPSAB1, 
CPA3 (mast cells).

Acquisition and preprocessing of bulk RNA‑Seq data

We performed a comprehensive search for CRC 
transcriptome data in public databases, including GEO 
(Gene Expression Omnibus, GEO Cohort) and TCGA (The 
Cancer Genome Atlas, TCGA Cohort). Inclusion criteria 
were as follows: (1) patients had not received chemotherapy 
or radiotherapy prior to surgery; (2) samples were primary 
CRC tumor tissues; (3) datasets contained at least 1,000 
genes; and (4) microarray datasets were in CEL format. A 
total of 27 microarray datasets were collected from GEO, 
including 2,619 tumor samples (Table 1). The R package 
affy (version 1.78.0) was used to process and normalize the 
CEL files of these microarray datasets, and probe IDs were 
converted to gene symbols.

Cell–cell interaction analysis

We used the Python package CellPhoneDB (version 2.0) 
[18] to construct a cell–cell interaction network in the CRC 
tumor immune microenvironment, following the software's 
default settings. The potential interaction strength between 
different cell subpopulations was predicted based on the 
expression levels of ligand-receptor pairs. The interactions 
were subsequently trimmed based on significance 
(P < 0.05). Specifically, interactions were defined as input 
or output if the cell expressed a receptor or a ligand, 
respectively. Biologically relevant ligand-receptor pairs 
were analyzed between different cell subpopulations. The 
relative expression levels (Z-scores) and adjusted P-values 

Table 1   Datasets related colorectal cancer

Number Samples Platform Type

GSE225857 40 GPL24676 scRNA-seq
GSE110223 13 GPL96 Array
GSE12945 62 GPL96 Array
GSE24514 34 GPL96 Array
GSE46862 69 GPL6244 Array
GSE143985 91 GPL570 Array
GSE161158 250 GPL570 Array
GSE39582 566 GPL570 Array
GSE110224 17 GPL570 Array
GSE13067 74 GPL570 Array
GSE13294 155 GPL570 Array
GSE18088 53 GPL570 Array
GSE18105 77 GPL570 Array
GSE31595 37 GPL570 Array
GSE33113 90 GPL570 Array
GSE35452 46 GPL570 Array
GSE35896 62 GPL570 Array
GSE37892 130 GPL570 Array
GSE38832 122 GPL570 Array
GSE39084 70 GPL570 Array
GSE45404 42 GPL570 Array
GSE60697 20 GPL570 Array
GSE64857 81 GPL570 Array
GSE75316 59 GPL570 Array
GSE81980 150 GPL570 Array
GSE9348 70 GPL570 Array
GSE81558 23 GPL15207 Array
GSE103479 156 GPL23985 Array
TCGA Cohort 571 Illumina Bulk RNA-seq
HMU Cohort 80 Illumina Bulk RNA-seq
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of ligand-receptor pairs were visualized using dot plots or 
interaction heatmaps.

Prediction of transcription factor activity using 
SCENIC

We used the SCENIC Python workflow (version 0.12.1, 
https://​github.​com/​aerts​lab/​pySCE​NIC) to analyze gene 
regulatory networks (GRNs) and transcription factor 
(TF) activity, using default parameters [19]. The input 
data were a normalized expression matrix of the target 
cells. The analysis used the RcisTarget and GRNboost 
transcription factor binding site databases (Homo sapiens), 
which are available from official resources (https://​pysce​
nic.​readt​hedocs.​io/​en/​latest). The SCENIC workflow 
generated regulon-specificity scores and identified active 
transcription factors in a binary matrix. Additionally, we 
used the Wilcoxon test on the AUC matrix to identify 
differentially active transcription factors, with thresholds 
set at FDR < 0.05 and Fold change > 2. The results were 
visualized using heatmaps.

CytoTRACE analysis

The CytoTRACE (version 0.3.3) algorithm, developed by 
Gulati et al., is an advanced tool for analyzing scRNA-
Seq data, with the core function of capturing, refining, 
and quantifying gene expression levels that are highly 
correlated with single-cell gene counts. After CytoTRACE 
calculations, each cell was assigned a score describing its 
stemness state within the specific dataset. As a reliable 
computational method, CytoTRACE can accurately predict 
cell differentiation states and has been validated in large-
scale datasets, outperforming traditional stemness evaluation 
algorithms [20]. In this study, we used the R package 
CytoTRACE to compute CytoTRACE scores for malignant 
cells, with scores ranging from 0 to 1. Higher scores indicate 
stronger stemness (lower differentiation), while lower scores 
suggest weaker stemness (higher differentiation).

Pseudotime trajectory analysis

We used Monocle2 (version 2.20.0) [21] for pseudotime 
analysis to determine the differentiation trajectory of cells. 
After reading the UMI matrix from the Seurat object, we 
created the object using the newCellDataSet function. 
For trajectory analysis, we selected genes with a mean 
expression greater than 0.1, followed by dimensionality 
reduction using the DDRTree method and sorting cells with 
the orderCells function.

Gene set enrichment analysis

To investigate the heterogeneous expression features 
of different cell subtypes, we used the R package GSVA 
(version 1.44.3) to perform Gene Set Variation Analysis 
(GSVA). Pathway enrichment analysis used gene sets from 
the Molecular Signatures Database (MSigDB, https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp), specifically the 
Hallmark gene sets.

Statistical analysis

We used the R package survminer (version 0.4.9) to calculate 
the optimal cutoff value using the surv_cutpoint function 
and grouped patients accordingly. Kaplan–Meier survival 
curves were plotted for different subtypes of patients using 
the survminer and survival (version 3.3–1) packages, and 
the log-rank test was performed to assess the significance 
of differences. All statistical analyses were conducted using 
the R programming language (version 4.2.0), with P < 0.05 
considered statistically significant.

Results

Single‑cell atlas of the tumor microenvironment 
in colorectal cancer

We obtained 10 × scRNA-seq data from a previous study 
[17], including 40 colon tumor samples. To eliminate 
batch effects between samples, the single-cell dataset was 
integrated, ensuring minimal differences in the major cell-
type characteristics across different patients. After quality 
control and filtering, a total of 236,950 immune cells were 
retained for unsupervised clustering analysis, resulting in 
33 clusters (Fig. 1A). Based on typical marker genes, we 
successfully identified 11 major cell subtypes, including B 
cells, CD4 + T cells, NK cells, exhausted T cells, regulatory 
T cells, cytotoxic T cells, germinal neutrophils, myeloid 
cells, fibroblasts, epithelial cells, and endothelial cells 
(Fig. 1B-C). Additionally, we displayed the marker genes 
of six major cell types (Fig. 1D-I), including myeloid cells 
(CD68), B cells (CD79A), T cells (CD3E), fibroblasts 
(COL1A2), endothelial cells (VWF), and epithelial cells 
(EPCAM).

Myeloid cell subpopulation characteristics

Through unsupervised clustering analysis, 19,722 myeloid 
cells were divided into 22 clusters (Fig. 2A), which were 
further classified into 11 major subtypes (Fig. 2B-C). 
These subtypes included monocytes, M0 macrophages, 
M1 macrophages, M2 macrophages, tumor-associated 

https://github.com/aertslab/pySCENIC
https://pyscenic.readthedocs.io/en/latest
https://pyscenic.readthedocs.io/en/latest
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp


Cancer Immunology, Immunotherapy          (2025) 74:255 	 Page 5 of 13    255 

macrophages (TAM), classical dendritic cells 1 (cDC1), 
classical dendritic cells 2 (cDC2), activated dendritic 
cells (aDC), plasmacytoid dendritic cells (pDC), 
central granulocytes, and mast cells. The analysis 
revealed significant molecular differences between 
the subpopulations (Fig. 2D). For instance, mast cells 
specifically overexpress XCR1, CLEC9A, and CLNK, 
whereas TAMs highly express SPP1, ERRFI1, and 
RNASE1. When comparing characteristics of different 

subpopulations, we found significant differences in cell 
subpopulation features from various tissues and patients. 
Despite the lower proportion of mast cells among all cell 
types, their gene expression levels were among the highest, 
suggesting high activity in these subpopulations. In 
contrast, monocytes dominate the tumor microenvironment 
but exhibit lower overall gene expression, indicating 
weaker activity.

Fig. 1   Single-cell sequencing reveals the cellular heterogeneity 
landscape in colorectal cancer. A UMAP dimensionality reduction 
clustering plot of all cells, showing 33 distinct cell clusters, each 
marked with a different color. B UMAP visualization of major cell 

types. C t-SNE dimensionality reduction showing the distribution 
of cell types. D–I Differential expression plots of marker genes for 
myeloid cells, B cells, T cells, fibroblasts, endothelial cells, and 
epithelial cells
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Heterogeneity of mast cells in colorectal cancer

Given the high activity of mast cells in the tumor 
microenvironment, we explored the activity differences of 
mast cells from a heterogeneity perspective in CRC. First, 
we performed non-negative matrix factorization on 535 mast 
cells and found that k = 3 was the optimal number of clusters 

(Fig.  3A), resulting in three mast cell subpopulations: 
Mast Cell 1, Mast Cell 2, and Mast Cell 3. To identify 
specific marker genes for each mast cell subpopulation, 
we performed differential expression analysis and selected 
specific marker genes based on thresholds (avg_log2FC > 0.5 
& pct.1 > 0.4 & pct.2 < 0.6). The differential expression 
results revealed that Mast Cell 1 had five specific marker 

Fig. 2   Heterogeneity of myeloid cell subpopulations. A UMAP 
distribution plot of myeloid cells, showing the distribution of 
unannotated cell clusters, with different clusters marked by distinct 
colors and numbers. B UMAP plot after annotating myeloid 
cell subpopulations, displaying the distribution of different 
subpopulations, including dendritic cells (DC), monocytes (Mon), 
macrophages (Mac), and others. C tSNE plot after annotating 
myeloid cell subpopulations, displaying the distribution of different 
subpopulations, including dendritic cells (DC), monocytes (Mon), 

macrophages (Mac), and others. D Bubble plot showing the 
differential expression of marker genes for each cell subpopulation. 
E. Basic characteristics of myeloid cell subpopulations, from 
left to right: distribution of subpopulation proportions across 
different samples (stacked bar chart); cell count statistics for each 
subpopulation (bar chart); distribution of UMI counts for each 
subpopulation (box plot, logarithmic scale); distribution of gene 
counts for each subpopulation (box plot)
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genes, Mast Cell 2 had 51, and Mast Cell 3 had 25 (Fig. 3B). 
We also displayed the top 10 differentially expressed genes 
for each subpopulation (Fig. 3C), such as DNAJB1 in Mast 
Cell 1, XCR1 in Mast Cell 2, and SEMA7A in Mast Cell 3.

Next, we performed GO and KEGG pathway enrichment 
analysis on the specific marker genes of each mast cell 
subpopulation, revealing significant functional heterogeneity 
across the subpopulations. Mast Cell 1 and Mast Cell 3 
were mainly enriched in cancer-related pathways (Fig. 3D-
E), such as “serine phosphorylation of STAT protein,” 
PPAR signaling, and AMPK signaling in Mast Cell 1, and 
“Transcriptional misregulation in cancer,” FoxO signaling, 
and MAPK signaling in Mast Cell 3. In contrast, Mast Cell 
2 was mainly enriched in pathways related to inflammatory 
responses, such as “regulation of inflammatory response” 
and “positive regulation of cytokine production.”

Further SCENIC transcriptional network analysis 
revealed highly specific transcription factor activity in 
each mast cell subpopulation (Fig. 3F). In Mast Cell 1, 
transcription factors like CLOCK and GATA2 had high 
regulatory specificity, suggesting their potential role in 
promoting tumor proliferation. In Mast Cell 2, transcription 
factors such as FOXB1 and TAF1A exhibited high regulatory 
specificity; previous studies have shown that knocking out 
FOXB1 enhances cisplatin sensitivity and inhibits cell 
proliferation [22]. In Mast Cell 3, transcription factors like 
ATF5 and HOXA9 had high regulatory specificity; HOXA9 
is considered a prognostic factor for various cancers [23].

Additionally, CytoTrace analysis was used to evaluate 
the differentiation potential of different mast cell 
subpopulations, with results showing a decreasing trend in 
CytoTrace scores across the three subpopulations, indicating 
that Mast Cell 1 may differentiate into Mast Cell 2 and Mast 
Cell 3 (Fig. 3G). Pseudotime trajectory analysis further 
confirmed the developmental relationship between the 
three subpopulations (Fig. 3H-I). The expression levels of 
specific marker genes for the three subpopulations showed 
significant changes with pseudotime (Fig. 3J).

Through CellPhoneDB analysis, we explored the 
cell–cell interactions between mast cell subpopulations 
(Mast Cell 1, Mast Cell 2, and Mast Cell 3) within the CRC 
tumor microenvironment (Supplementary Fig. 1 A-D). 
While the overall interaction patterns between cells show 
relatively small differences (Supplementary Fig. 1 E–G), 
subtle variations in ligand-receptor interactions were 
observed among the different mast cell subpopulations. 
Mast Cell 1 and Mast Cell 3 mainly interact with TAM, 
Exhausted T cells, Treg cells, fibroblasts, and M2 
macrophages, with stronger outgoing interactions. The 
ligand-receptor pairs identified in these interactions, 
such as CCL2–CCR2 and CXCL8–CXCR2, suggest pro-
inflammatory and immune-suppressive roles, which could 
contribute to tumor immune evasion and progression 

(Supplementary Fig. 1 E, G). Mast Cell 2, in contrast, 
shows stronger interactions with M1 macrophages, 
cytotoxic T cells, and NK cells, particularly through 
CXCL10–CXCR3 and TNFSF14–LTBR. These immune-
activating ligand-receptor pairs indicate that Mast Cell 2 
may enhance anti-tumor immune responses by recruiting 
cytotoxic T cells and activating NK cells, thus inhibiting 
tumor progression (Supplementary Figs. 1 F).

Prognostic value of mast cell subpopulation 
characteristics in colorectal cancer

To further investigate the prognostic significance 
of the specific marker genes of the three mast cell 
subpopulations, we collected three bulk RNA-seq datasets: 
the HMU cohort, the GEO cohort, and the TCGA cohort. 
We constructed features based on the specific marker 
genes for each subpopulation and calculated standardized 
enrichment scores for each patient using single-sample 
gene set enrichment analysis (ssGSEA). Subsequently, 
we calculated the optimal cutoff value for each patient’s 
standardized enrichment score and divided patients into 
high and low scoring groups. The clustering analysis 
revealed that the standardized enrichment scores of the 
Mast Cell 2 were mainly concentrated in normal tissue 
samples, while those of Mast Cell 1 and Mast Cell 3 were 
mainly concentrated in tumor tissue samples (Fig. 4A-
C). Figure 4D-F shows the distribution of standardized 
enrichment scores, overall survival time, survival status, 
and expression patterns of Mast Cell 1, Mast Cell 2, and 
Mast Cell 3 subpopulations in the HMU cohort. The 
results showed that patients with low scores in Mast Cell 
1 and 3 had lower mortality rates, while patients with high 
scores in Mast Cell 2 had lower mortality rates, suggesting 
that Mast Cell 1 and 3 characteristics may be detrimental 
to CRC prognosis, while Mast Cell 2 characteristics 
may be beneficial. Similar trends were observed in the 
GEO and TCGA cohorts (Supplementary Fig.  2A-F). 
Kaplan–Meier survival curve analysis further showed that 
patients with high scores in Mast Cell 1 and 3 had shorter 
overall survival, suggesting that their higher standardized 
enrichment scores may act as potential promotors of 
CRC (Fig. 4G, I). In contrast, patients with high scores 
in Mast Cell 2 had longer overall survival, indicating that 
their higher standardized scores may serve as potential 
inhibitors of CRC (Fig. 4H, Supplementary Fig. 2G-L). 
To assess the accuracy of the mast cell subpopulation 
characteristics in predicting patient prognosis, we 
performed ROC curve analysis, and the results showed 
good predictive power for all three mast cell subpopulation 
characteristics, particularly in the HMU cohort (Fig. 4J-L).
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Gene expression of mast cell subpopulation features 
in colorectal cancer

To further validate the accuracy of the mast cell 
subpopulation characteristics, we compared the expression 
levels of the specific marker genes of the three mast cell 
subpopulations. The results showed that the specific marker 
genes DNAJB1 and SEMA7A of Mast Cell 1 and 3 were 
highly expressed in tumor tissues, while the specific marker 
gene XCR1 of Mast Cell 2 was lowly expressed in tumor 
tissues (Fig. 5A-C). We also verified the protein expression 
levels of these three genes. In the immunohistochemical 
analysis from the HPA database, DNAJB1 and SEMA7A 
exhibited higher protein expression levels in tumor tissues, 
while XCR1 had higher protein expression levels in normal 
tissues (Fig. 5D-F).

Based on the expression levels of these genes in each 
patient, we calculated the optimal cutoff values and divided 
patients into high and low expression groups. Kaplan–Meier 
survival curve analysis showed that patients with high 
expression of DNAJB1 and SEMA7A had shorter overall 
survival, suggesting that these two genes may be potential 
risk factors for CRC (Fig. 5G-I). In contrast, patients with 
high expression of XCR1 had longer overall survival, 
suggesting that XCR1 may be a potential protective factor 
for CRC (Fig. 5G-I, Supplementary Fig. 3A-F).

Discussion

This study integrates single-cell transcriptomics and bulk 
transcriptomics data to explore the heterogeneity of mast 
cell subpopulations in the CRC microenvironment and their 
impact on disease prognosis, revealing the complex role of 
mast cells in the CRC tumor microenvironment.

Mast cells, as important immune cells in the tumor 
microenvironment, have long been a subject of debate 

regarding their role in CRC. Previous studies have 
suggested that mast cells may have a dual role in the tumor 
microenvironment: on one hand, they may promote cancer 
by releasing histamine, proteases, chemokines, and other 
pro-tumor mediators, facilitating angiogenesis, tumor 
invasion, and metastasis; on the other hand, some studies 
have found that mast cells can exert anti-tumor effects by 
inducing endoplasmic reticulum stress in tumor cells or 
directly promoting tumor cell apoptosis [24]. For example, 
recent studies have shown that cystatin C secreted by mast 
cells significantly inhibits CRC progression by inducing 
endoplasmic reticulum stress, further supporting the 
potential anti-tumor role of mast cells [25]. In this study, we 
also found that mast cell subpopulations exhibit significant 
functional heterogeneity, with Mast Cell 1 and Mast Cell 
3 being highly associated with pro-cancer pathways (such 
as STAT, MAPK, and FoxO signaling), while Mast Cell 2 
is mainly involved in immune inflammation regulation and 
anti-tumor immune responses. This suggests that mast cells 
may simultaneously play both pro-tumor and anti-tumor 
roles in CRC, consistent with previous findings, highlighting 
the complexity and heterogeneity of mast cells in CRC.

Compared to previous single-cell studies, this study 
further investigates the transcriptomic heterogeneity of mast 
cells. Xie et al.’s single-cell study found that mast cells in 
CRC exhibit distinct activation characteristics, such as high 
expression of TPSAB1, CPA3, and KIT, indicating that 
mast cells in the CRC microenvironment are activated and 
associated with good prognosis [24]. Consistent with this, 
our study also observed an activated state of gene expression 
in mast cell subpopulations, but further revealed functional 
differences and developmental trajectory changes between 
the subpopulations, with Mast Cell 1 in an undifferentiated 
state gradually differentiating into Mast Cell 2 and Mast 
Cell 3. Furthermore, we systematically analyzed the 
transcriptional regulatory networks specific to mast cell 
subpopulations using SCENIC analysis, identifying key 
transcription factors such as CLOCK, GATA2, FOXB1, and 
HOXA9 with differential activity in different subpopulations, 
providing insights into the functional diversity of mast 
cells and offering potential therapeutic targets for precision 
immunotherapy in CRC.

Previous studies mostly used immunohistochemistry 
to assess mast cell density in CRC and its relationship 
with prognosis [26]. However, the results have often been 
controversial, with some studies showing that high mast cell 
infiltration correlates with better prognosis, while others 
suggest that it is closely associated with poor prognosis. 
These discrepancies may be due to methodological 
differences, heterogeneity of study cohorts, and different 
localization of mast cell subpopulations within the tumor 
tissue (differences between the tumor interior and the 
periphery). Our study overcame the limitations of tissue 

Fig. 3   Clustering analysis of mast cell subpopulations. A The 
relationship between the coefficients in NMF and the number of mast 
cell clusters (k). B Heatmap showing the differential expression of 
significant genes across the 3 mast cell subpopulations. C Bubble plot 
illustrating the differential expression of marker genes in the 3 mast 
cell subpopulations. D Bubble plot showing the GO terms enriched in 
the 3 mast cell subpopulations. E Bubble plot displaying the KEGG 
pathways enriched in the 3 mast cell subpopulations. F Heatmap of 
the transcriptional regulatory networks specific to the 3 mast cell 
subpopulations, revealed by SCENIC analysis, showing the activity 
of key transcription factors in different mast cell subpopulations. 
G CytoTRACE2 analysis revealing the differentiation potential 
differences among the 3 mast cell subpopulations. H Monocle2 
pseudotime analysis showing the developmental trajectories of 
the 3 mast cell subpopulations. The color gradient represents the 
progression of pseudotime. I The cell subpopulation types are marked 
on the pseudotime trajectory. J The expression of the three mast cell 
subpopulation marker genes changes as pseudotime progresses

◂
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Fig. 4   Clinical significance of the 3 mast cell subpopulations. A 
Differences in the standardized enrichment scores of the 3 mast cell 
subpopulation signatures across different samples in the HMU cohort. 
B Differences in the standardized enrichment scores of the 3 mast cell 
subpopulation signatures across different samples in the GEO cohort. 
C Differences in the standardized enrichment scores of the 3 mast 
cell subpopulation signatures across different samples in the TCGA 
cohort. D–F. Risk factor-related plots for the standardized enrichment 
scores of the 3 mast cell subpopulation signatures in the HMU 
cohort: Top plot: Risk scores for each patient are arranged from 

low to high, with a vertical dashed line indicating the optimal cutoff 
value. This value divides patients into low-risk (green) and high-risk 
(red) groups. Middle plot: The relationship between risk scores and 
survival time, with green dots representing deceased patients and 
red dots representing survivors. Bottom plot: Expression patterns of 
the markers in patients. G–I Survival difference analysis based on 
the standardized enrichment scores of the 3 mast cell subpopulation 
signatures in the HMU cohort. J–L ROC curve analysis of the 
standardized enrichment scores of the 3 mast cell subpopulation 
signatures in the HMU, GEO, and TCGA cohorts
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localization using single-cell and bulk transcriptomics 
analysis, further clarifying the relationship between the 
specific gene expression profiles of mast cell subpopulations 
and patient prognosis. We have also clarified the differential 
impact of different mast cell subpopulations on prognosis, 
offering a new perspective to resolve the controversies in 
previous research.

In addition, this study is the first to combine 
CytoTrace and pseudotime analysis methods to explore 
the developmental relationships between mast cell 
subpopulations in the CRC microenvironment. This suggests 
that the function of mast cells may undergo dynamic 
changes depending on their differentiation status. This 
represents a significant supplement to previous research, 
which has mainly focused on the overall function of mast 
cells, overlooking the potential dynamic evolution process 
between subpopulations.

However, this study also has some limitations. First, 
the sample size in our cohort is relatively small and 

comes from a single medical institution, which may limit 
the generalizability of our findings. Larger, multi-center 
independent cohorts are needed for further validation. 
Second, while we identified mast cell subpopulation–specific 
marker genes from scRNA-seq data using stringent criteria, 
we acknowledge that these genes may not be exclusively 
expressed by mast cells. This is particularly relevant when 
applying gene signatures to bulk RNA-seq data, where the 
expression may reflect not only mast cells but also other 
cell types within the tumor microenvironment. Therefore, 
the prognostic associations observed should be interpreted 
as correlative rather than causal. Further functional and 
spatial validation, such as multiplex immunostaining or 
spatial transcriptomics, is needed to confirm the cell-type 
specificity and biological relevance of these gene signatures. 
Third, we did not perform multivariate Cox regression 
analysis to adjust for clinical confounders such as tumor 
stage, age, or treatment history. This was due to incomplete 
or inconsistent clinical annotation across several public 

Fig. 5   Expression of marker genes for the 3 mast cell subpopulations 
and prognosis analysis. A Expression differences of the marker genes 
DNAJB1, XCR1, and SEMA7A in tumor and normal tissues in the 
HMU cohort. B Expression differences of the marker genes DNAJB1, 
XCR1, and SEMA7A in tumor and normal tissues in the GEO cohort. 

C Expression differences of the marker genes DNAJB1, XCR1, 
and SEMA7A in tumor and normal tissues in the TCGA cohort. 
D–F. Immunohistochemical detection of protein levels for DNAJB1, 
XCR1, and SEMA7A. G-I. Survival analysis based on the expression 
levels of DNAJB1, XCR1, and SEMA7A in the HMU cohort
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datasets, particularly from GEO. We acknowledge this as a 
limitation, and future studies incorporating well-annotated 
prospective clinical cohorts will be essential to evaluate 
the independent prognostic value of mast cell–associated 
signatures.

Conclusion

This study systematically revealed the heterogeneity of mast 
cell subpopulations in the CRC tumor microenvironment 
and their relationship with prognosis through single-cell 
transcriptomics, bulk transcriptomics, and bioinformatics 
analysis. Mast Cell 1 exhibits distinct pro-tumor 
characteristics, Mast Cell 3 is highly associated with cancer-
related pathways, while Mast Cell 2 primarily displays anti-
tumor immune regulatory properties. High expression of 
characteristics in Mast Cell 1 and 3 significantly predicts 
poor overall survival, whereas high expression of Mast 
Cell 2 is associated with better survival. The differential 
expression of mast cell subpopulation-specific marker genes 
(DNAJB1, SEMA7A, and XCR1) further confirms that high 
expression of DNAJB1 and SEMA7A and low expression 
of XCR1 are significantly correlated with poor prognosis. 
These findings provide new candidate molecules for clinical 
diagnosis, prognostic prediction, and the development of 
personalized immunotherapy targets in CRC.
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