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Abstract

Background Colorectal cancer (CRC) is one of the most common and deadly malignancies worldwide, with a particularly
low 5-year survival rate in advanced patients. Immune cells in the tumor microenvironment, especially mast cells, play
crucial roles in tumor initiation and progression. However, the dual role of mast cells in CRC remains poorly understood.
Methods In this study, we used single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing, and bioinformatics
analyses to explore the heterogeneity of mast cell subpopulations in the CRC tumor microenvironment and their relationship
with prognosis. We analyzed gene expression signatures associated with mast cell subpopulations derived from single-cell
data of 40 CRC tumor samples and combined bulk RNA-seq data from HMU, GEO, and TCGA cohorts for prognostic
prediction. Non-negative matrix factorization was used for clustering of mast cell subpopulations, followed by analysis of
their specific gene markers, transcription factor activity, and biological pathways. Survival analysis and ROC curves were
performed to assess their prognostic significance.

Results Mast cells in the CRC tumor microenvironment were classified into three distinct subpopulations, each with unique
gene markers and functional pathways. Mast cell subpopulations 1 and 3 were highly associated with pro-tumor pathways,
while mast cell subpopulation 2 primarily exhibited anti-tumor immune regulatory characteristics. High expression of mast
cell subpopulations 1 and 3 was associated with poor survival prognosis, while high expression of subpopulation 2 was
linked to a better survival outcome. Key marker genes such as DNAJB1, SEMA7A, and XCR1 were identified as potential
prognostic factors, with high expression of DNAJB1 and SEMAT7A being significantly associated with poor prognosis, while
high expression of XCR1 was linked to a favorable prognosis.

Conclusion This study reveals the functional heterogeneity of mast cell subpopulations in the CRC tumor microenvironment
and their differential roles in tumor progression. Identification of mast cell subpopulation-specific marker genes provides
new molecular targets for clinical diagnosis, prognostic prediction, and personalized immunotherapy in CRC.
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Introduction

Colorectal cancer (CRC) is one of the most common and
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18845055802@163.com third most common cancer globally and the second leading
B< Guiyu Wang cause of cancer-related death [2]. Despite recent advances
guiywang @hrbmu.edu.cn in early screening, surgical treatment, chemotherapy,

targeted therapy, and immunotherapy, the 5-year survival
rate for CRC remains low, especially in advanced-stage
patients [3]. Therefore, treatment of CRC continues to pose
a significant challenge, necessitating deeper research into
its pathogenesis and the development of more effective
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therapies. The occurrence and progression of CRC involve
complex interactions of multiple factors, including genetic
susceptibility, environmental influences, and changes in the
tumor microenvironment. The tumor microenvironment
(TME) refers to the complex environment surrounding
tumor cells, which includes non-tumor cells, blood vessels,
immune cells, extracellular matrix, and signaling molecules
[4]. The tumor microenvironment plays a critical role in
cancer initiation, progression, metastasis, and therapeutic
response. Immune cells, especially mast cells (MCs), play a
significant role in the CRC microenvironment.

Mast cells are immune cells derived from the bone
marrow, widely distributed in various tissues, particularly in
the skin, lungs, intestines, and urinary tract [5, 6]. Mast cells
play a key role in immune responses, mainly by releasing
various bioactive substances stored in their granules,
such as histamine, cytokines, chemokines, proteases,
and lipid mediators, which regulate immune responses,
inflammation, and tissue repair [7]. The role of mast cells
in the tumor immune microenvironment has been a focus
of research. Mast cells are not only involved in allergic
reactions, antimicrobial immunity, and tissue repair but are
also believed to be closely related to tumor initiation and
progression[8]. Mast cells can regulate the immune response
in the tumor microenvironment by secreting various
mediators, thereby influencing tumor growth, metastasis,
and response to treatment [9].

The role of mast cells in cancer is complex and
bidirectional. Studies have shown that mast cell abundance
is closely associated with cancer prognosis [10]. Some
studies suggest that mast cell infiltration in tumors correlates
with higher malignancy, increased metastasis, and drug
resistance. In such cases, mast cells may promote tumor
progression by secreting pro-tumor factors [11, 12]. In
contrast, other studies have reported that mast cells can
suppress tumor development. They may do so by enhancing
anti-tumor immune responses and inducing apoptosis in
tumor cells. In the cancer immune microenvironment, mast
cells serve as key regulatory immune cells. They interact
with tumor-associated immune cells—such as T cells, B
cells, and macrophages—by releasing bioactive substances
[13]. Through the secretion of cytokines and chemokines,
mast cells can also recruit other immune cells to the tumor
site, influencing immune evasion mechanisms.

The occurrence of CRC is closely related to the
interactions of various cells in the tumor microenvironment.
As one of the key immune cells in the tumor
microenvironment, the role of mast cells in CRC is not yet
fully understood. The dual role of mast cells in CRC makes
them a promising research subject. Future studies may reveal
their important roles in immune evasion, tumor metastasis,
and immunotherapy. Therefore, further investigation into the
functional mechanisms of mast cells in CRC will provide
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new insights and potential targets for tumor immunotherapy
strategies.

Materials and methods
Patients

This study included 40 formalin-fixed paraffin-embedded
CRC specimens from patients treated at the Second
Affiliated Hospital of Harbin Medical University between
2010 and 2020 (HMU Cohort). The inclusion criteria were:
(1) Patients aged 18 to 75; (2) Diagnosis of adenocarcinoma
confirmed by postoperative pathology; (3) Underwent
RO surgical resection; (4) At least 5 years of follow-up
data available. Exclusion criteria were: (1) patients who
had received neoadjuvant therapy before surgery and (2)
patients with incomplete clinicopathological data or missing
postoperative follow-up and treatment information. The
study was approved by the ethics committee of the Second
Affiliated Hospital of Harbin Medical University (Approval
number: YISKY2024-269).

RNA isolation and sequencing

The RNA quality and quantity were assessed through several
steps: (1) Initial contamination and degradation checks
were performed using 1% agarose gel electrophoresis;
(2) RNA purity and concentration were measured with
a NanoPhotometer® spectrophotometer; and (3) RNA
integrity was further analyzed using the RNA Nano 6000
Assay Kit on the Bioanalyzer 2100 system [14]. These RNA
samples were then used for library preparation. First, mRNA
was captured using mRNA Capture Beads with Oligo(dT),
followed by purification with Binding and Washing Buffers.
The mRNA was then randomly fragmented to 100—200 nt
using Fragmentation Buffer and reverse-transcribed into
cDNA. The resulting cDNA was purified using DNA Clean
Beads and prepared for adaptor ligation. After ligation with
adaptors containing UMIs, cDNA underwent one-step PCR
amplification. The PCR products were then purified again
using DNA Clean Beads and eluted in nuclease-free water.
The final library was pooled and sequenced on the Illumina
Novaseq 6000 platform, generating 6G of raw paired-end
data (150 nt reads)[15].

For initial processing, Perl scripts were used to process
raw FASTQ data. Low-quality reads, those containing
adapters, or poly-N sequences were removed, resulting
in clean reads. All subsequent analyses were performed
using these high-quality clean reads. The reference genome
(Homo sapiens GRCh38.103) index was created using STAR
(version 2.7.11b), and the clean reads were aligned to this
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reference genome with STAR. Gene expression counts were
obtained using RSEM (version 1.3.3) [16].

Acquisition and preprocessing of single-cell data

The CRC single-cell RNA sequencing (scRNA-seq) data
were obtained from a dataset published by Pelk et al.,
comprising 236,950 cells from 40 tumor tissue samples
(Table 1) [17]. The scRNA-seq data were processed using
the R package Seurat (version 5.2.1).

First, we converted the raw gene expression matrices
into individual Seurat objects. Three quality control steps
were applied: (1) genes expressed in fewer than five cells
were removed; (2) cells with fewer than 100 detected
genes were excluded; and (3) cells with more than 5%
mitochondrial gene content were filtered out. Each sample
was normalized using the NormalizeData() function with the
default "LogNormalize" method, and the top 2,000 highly

Table 1 Datasets related colorectal cancer

Number Samples Platform Type
GSE225857 40 GPL24676 scRNA-seq
GSE110223 13 GPL96 Array
GSE12945 62 GPL96 Array
GSE24514 34 GPL96 Array
GSE46862 69 GPL6244 Array
GSE143985 91 GPL570 Array
GSE161158 250 GPL570 Array
GSE39582 566 GPL570 Array
GSE110224 17 GPL570 Array
GSE13067 74 GPL570 Array
GSE13294 155 GPL570 Array
GSE18088 53 GPL570 Array
GSE18105 77 GPL570 Array
GSE31595 37 GPL570 Array
GSE33113 90 GPL570 Array
GSE35452 46 GPL570 Array
GSE35896 62 GPL570 Array
GSE37892 130 GPL570 Array
GSE38832 122 GPL570 Array
GSE39084 70 GPL570 Array
GSE45404 42 GPL570 Array
GSE60697 20 GPL570 Array
GSE64857 81 GPL570 Array
GSE75316 59 GPL570 Array
GSE81980 150 GPL570 Array
GSE9348 70 GPL570 Array
GSE81558 23 GPL15207 Array
GSE103479 156 GPL23985 Array
TCGA Cohort 571 Illumina Bulk RNA-seq
HMU Cohort 80 Ilumina Bulk RNA-seq

variable genes were identified using FindVariableFeatures()
(selection.method = "vst").

To correct for batch effects and integrate the 40 samples,
we used Seurat’s integration workflow. Specifically,
we applied FindIntegrationAnchors() with dims=1:20
to identify shared features across samples, followed
by IntegrateData() using the same dimensions. The
integrated dataset was then scaled using ScaleData() and
dimensionality reduction was performed using RunPCAJ().
The top 20 principal components were selected for
downstream clustering analysis using FindNeighbors() and
FindClusters().

Differentially expressed genes for each cluster were
identified using FindAllMarkers() with the following
thresholds: FDR < 0.05 and llog2(fold change)l> 0.25.

For cell-type annotation, major immune and stromal
cell types were identified based on canonical marker genes,
including CD3D, CDSA, CD4, CD56, FOXP3 (T cells and
NK cells); CD79A, MS4A1 (B cells); CD14, CD68 (myeloid
cells); COL1A2, COL3A1 (fibroblasts); VWF, PECAM1
(endothelial cells); EPCAM (epithelial cells); and TPSABI,
CPA3 (mast cells).

Acquisition and preprocessing of bulk RNA-Seq data

We performed a comprehensive search for CRC
transcriptome data in public databases, including GEO
(Gene Expression Omnibus, GEO Cohort) and TCGA (The
Cancer Genome Atlas, TCGA Cohort). Inclusion criteria
were as follows: (1) patients had not received chemotherapy
or radiotherapy prior to surgery; (2) samples were primary
CRC tumor tissues; (3) datasets contained at least 1,000
genes; and (4) microarray datasets were in CEL format. A
total of 27 microarray datasets were collected from GEO,
including 2,619 tumor samples (Table 1). The R package
affy (version 1.78.0) was used to process and normalize the
CEL files of these microarray datasets, and probe IDs were
converted to gene symbols.

Cell-cell interaction analysis

We used the Python package CellPhoneDB (version 2.0)
[18] to construct a cell—cell interaction network in the CRC
tumor immune microenvironment, following the software's
default settings. The potential interaction strength between
different cell subpopulations was predicted based on the
expression levels of ligand-receptor pairs. The interactions
were subsequently trimmed based on significance
(P <0.05). Specifically, interactions were defined as input
or output if the cell expressed a receptor or a ligand,
respectively. Biologically relevant ligand-receptor pairs
were analyzed between different cell subpopulations. The
relative expression levels (Z-scores) and adjusted P-values
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of ligand-receptor pairs were visualized using dot plots or
interaction heatmaps.

Prediction of transcription factor activity using
SCENIC

We used the SCENIC Python workflow (version 0.12.1,
https://github.com/aertslab/pySCENIC) to analyze gene
regulatory networks (GRNs) and transcription factor
(TF) activity, using default parameters [19]. The input
data were a normalized expression matrix of the target
cells. The analysis used the RcisTarget and GRNboost
transcription factor binding site databases (Homo sapiens),
which are available from official resources (https://pysce
nic.readthedocs.io/en/latest). The SCENIC workflow
generated regulon-specificity scores and identified active
transcription factors in a binary matrix. Additionally, we
used the Wilcoxon test on the AUC matrix to identify
differentially active transcription factors, with thresholds
set at FDR < 0.05 and Fold change > 2. The results were
visualized using heatmaps.

CytoTRACE analysis

The CytoTRACE (version 0.3.3) algorithm, developed by
Gulati et al., is an advanced tool for analyzing scRNA-
Seq data, with the core function of capturing, refining,
and quantifying gene expression levels that are highly
correlated with single-cell gene counts. After CytoTRACE
calculations, each cell was assigned a score describing its
stemness state within the specific dataset. As a reliable
computational method, CytoTRACE can accurately predict
cell differentiation states and has been validated in large-
scale datasets, outperforming traditional stemness evaluation
algorithms [20]. In this study, we used the R package
CytoTRACE to compute CytoTRACE scores for malignant
cells, with scores ranging from O to 1. Higher scores indicate
stronger stemness (lower differentiation), while lower scores
suggest weaker stemness (higher differentiation).

Pseudotime trajectory analysis

We used Monocle2 (version 2.20.0) [21] for pseudotime
analysis to determine the differentiation trajectory of cells.
After reading the UMI matrix from the Seurat object, we
created the object using the newCellDataSet function.
For trajectory analysis, we selected genes with a mean
expression greater than 0.1, followed by dimensionality
reduction using the DDRTree method and sorting cells with
the orderCells function.
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Gene set enrichment analysis

To investigate the heterogeneous expression features
of different cell subtypes, we used the R package GSVA
(version 1.44.3) to perform Gene Set Variation Analysis
(GSVA). Pathway enrichment analysis used gene sets from
the Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp), specifically the
Hallmark gene sets.

Statistical analysis

We used the R package survminer (version 0.4.9) to calculate
the optimal cutoff value using the surv_cutpoint function
and grouped patients accordingly. Kaplan—Meier survival
curves were plotted for different subtypes of patients using
the survminer and survival (version 3.3—1) packages, and
the log-rank test was performed to assess the significance
of differences. All statistical analyses were conducted using
the R programming language (version 4.2.0), with P <0.05
considered statistically significant.

Results

Single-cell atlas of the tumor microenvironment
in colorectal cancer

We obtained 10 X scRNA-seq data from a previous study
[17], including 40 colon tumor samples. To eliminate
batch effects between samples, the single-cell dataset was
integrated, ensuring minimal differences in the major cell-
type characteristics across different patients. After quality
control and filtering, a total of 236,950 immune cells were
retained for unsupervised clustering analysis, resulting in
33 clusters (Fig. 1A). Based on typical marker genes, we
successfully identified 11 major cell subtypes, including B
cells, CD4 + T cells, NK cells, exhausted T cells, regulatory
T cells, cytotoxic T cells, germinal neutrophils, myeloid
cells, fibroblasts, epithelial cells, and endothelial cells
(Fig. 1B-C). Additionally, we displayed the marker genes
of six major cell types (Fig. 1D-I), including myeloid cells
(CD68), B cells (CD79A), T cells (CD3E), fibroblasts
(COL1A2), endothelial cells (VWF), and epithelial cells
(EPCAM).

Myeloid cell subpopulation characteristics

Through unsupervised clustering analysis, 19,722 myeloid
cells were divided into 22 clusters (Fig. 2A), which were
further classified into 11 major subtypes (Fig. 2B-C).
These subtypes included monocytes, MO macrophages,
M1 macrophages, M2 macrophages, tumor-associated
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Fig.1 Single-cell sequencing reveals the cellular heterogeneity
landscape in colorectal cancer. A UMAP dimensionality reduction
clustering plot of all cells, showing 33 distinct cell clusters, each
marked with a different color. B UMAP visualization of major cell

macrophages (TAM), classical dendritic cells 1 (cDC1),
classical dendritic cells 2 (cDC2), activated dendritic
cells (aDC), plasmacytoid dendritic cells (pDC),
central granulocytes, and mast cells. The analysis
revealed significant molecular differences between
the subpopulations (Fig. 2D). For instance, mast cells
specifically overexpress XCR1, CLEC9A, and CLNK,
whereas TAMs highly express SPP1, ERRFII, and
RNASE1. When comparing characteristics of different

types. C t-SNE dimensionality reduction showing the distribution
of cell types. D-I Differential expression plots of marker genes for
myeloid cells, B cells, T cells, fibroblasts, endothelial cells, and
epithelial cells

subpopulations, we found significant differences in cell
subpopulation features from various tissues and patients.
Despite the lower proportion of mast cells among all cell
types, their gene expression levels were among the highest,
suggesting high activity in these subpopulations. In
contrast, monocytes dominate the tumor microenvironment
but exhibit lower overall gene expression, indicating
weaker activity.
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Fig.2 Heterogeneity of myeloid cell subpopulations. A UMAP
distribution plot of myeloid cells, showing the distribution of
unannotated cell clusters, with different clusters marked by distinct
colors and numbers. B UMAP plot after annotating myeloid
cell subpopulations, displaying the distribution of different
subpopulations, including dendritic cells (DC), monocytes (Mon),
macrophages (Mac), and others. C tSNE plot after annotating
myeloid cell subpopulations, displaying the distribution of different
subpopulations, including dendritic cells (DC), monocytes (Mon),

S0115_SampleTag02-5_7 s1125_SampleTag02-1 2 $0813_SampleTag1-3 4

Heterogeneity of mast cells in colorectal cancer

Given the high activity of mast cells in the tumor
microenvironment, we explored the activity differences of
mast cells from a heterogeneity perspective in CRC. First,
we performed non-negative matrix factorization on 535 mast
cells and found that k=3 was the optimal number of clusters
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macrophages (Mac), and others. D Bubble plot showing the
differential expression of marker genes for each cell subpopulation.
E. Basic characteristics of myeloid cell subpopulations, from
left to right: distribution of subpopulation proportions across
different samples (stacked bar chart); cell count statistics for each
subpopulation (bar chart); distribution of UMI counts for each
subpopulation (box plot, logarithmic scale); distribution of gene
counts for each subpopulation (box plot)

(Fig. 3A), resulting in three mast cell subpopulations:
Mast Cell 1, Mast Cell 2, and Mast Cell 3. To identify
specific marker genes for each mast cell subpopulation,
we performed differential expression analysis and selected
specific marker genes based on thresholds (avg_log2FC > 0.5
& pet.1>0.4 & pct.2 <0.6). The differential expression
results revealed that Mast Cell 1 had five specific marker
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genes, Mast Cell 2 had 51, and Mast Cell 3 had 25 (Fig. 3B).
We also displayed the top 10 differentially expressed genes
for each subpopulation (Fig. 3C), such as DNAJB1 in Mast
Cell 1, XCR1 in Mast Cell 2, and SEMA7A in Mast Cell 3.

Next, we performed GO and KEGG pathway enrichment
analysis on the specific marker genes of each mast cell
subpopulation, revealing significant functional heterogeneity
across the subpopulations. Mast Cell 1 and Mast Cell 3
were mainly enriched in cancer-related pathways (Fig. 3D-
E), such as “serine phosphorylation of STAT protein,”
PPAR signaling, and AMPK signaling in Mast Cell 1, and
“Transcriptional misregulation in cancer,” FoxO signaling,
and MAPK signaling in Mast Cell 3. In contrast, Mast Cell
2 was mainly enriched in pathways related to inflammatory
responses, such as “regulation of inflammatory response”
and “positive regulation of cytokine production.”

Further SCENIC transcriptional network analysis
revealed highly specific transcription factor activity in
each mast cell subpopulation (Fig. 3F). In Mast Cell 1,
transcription factors like CLOCK and GATA2 had high
regulatory specificity, suggesting their potential role in
promoting tumor proliferation. In Mast Cell 2, transcription
factors such as FOXB1 and TAF1A exhibited high regulatory
specificity; previous studies have shown that knocking out
FOXBI1 enhances cisplatin sensitivity and inhibits cell
proliferation [22]. In Mast Cell 3, transcription factors like
ATF5 and HOXAO9 had high regulatory specificity; HOXA9
is considered a prognostic factor for various cancers [23].

Additionally, CytoTrace analysis was used to evaluate
the differentiation potential of different mast cell
subpopulations, with results showing a decreasing trend in
CytoTrace scores across the three subpopulations, indicating
that Mast Cell 1 may differentiate into Mast Cell 2 and Mast
Cell 3 (Fig. 3G). Pseudotime trajectory analysis further
confirmed the developmental relationship between the
three subpopulations (Fig. 3H-I). The expression levels of
specific marker genes for the three subpopulations showed
significant changes with pseudotime (Fig. 3J).

Through CellPhoneDB analysis, we explored the
cell—cell interactions between mast cell subpopulations
(Mast Cell 1, Mast Cell 2, and Mast Cell 3) within the CRC
tumor microenvironment (Supplementary Fig. 1 A-D).
While the overall interaction patterns between cells show
relatively small differences (Supplementary Fig. 1 E-G),
subtle variations in ligand-receptor interactions were
observed among the different mast cell subpopulations.
Mast Cell 1 and Mast Cell 3 mainly interact with TAM,
Exhausted T cells, Treg cells, fibroblasts, and M2
macrophages, with stronger outgoing interactions. The
ligand-receptor pairs identified in these interactions,
such as CCL2—-CCR2 and CXCL8-CXCR2, suggest pro-
inflammatory and immune-suppressive roles, which could
contribute to tumor immune evasion and progression

(Supplementary Fig. 1 E, G). Mast Cell 2, in contrast,
shows stronger interactions with M1 macrophages,
cytotoxic T cells, and NK cells, particularly through
CXCL10-CXCR3 and TNFSF14-LTBR. These immune-
activating ligand-receptor pairs indicate that Mast Cell 2
may enhance anti-tumor immune responses by recruiting
cytotoxic T cells and activating NK cells, thus inhibiting
tumor progression (Supplementary Figs. 1 F).

Prognostic value of mast cell subpopulation
characteristics in colorectal cancer

To further investigate the prognostic significance
of the specific marker genes of the three mast cell
subpopulations, we collected three bulk RNA-seq datasets:
the HMU cohort, the GEO cohort, and the TCGA cohort.
We constructed features based on the specific marker
genes for each subpopulation and calculated standardized
enrichment scores for each patient using single-sample
gene set enrichment analysis (ssGSEA). Subsequently,
we calculated the optimal cutoff value for each patient’s
standardized enrichment score and divided patients into
high and low scoring groups. The clustering analysis
revealed that the standardized enrichment scores of the
Mast Cell 2 were mainly concentrated in normal tissue
samples, while those of Mast Cell 1 and Mast Cell 3 were
mainly concentrated in tumor tissue samples (Fig. 4A-
C). Figure 4D-F shows the distribution of standardized
enrichment scores, overall survival time, survival status,
and expression patterns of Mast Cell 1, Mast Cell 2, and
Mast Cell 3 subpopulations in the HMU cohort. The
results showed that patients with low scores in Mast Cell
1 and 3 had lower mortality rates, while patients with high
scores in Mast Cell 2 had lower mortality rates, suggesting
that Mast Cell 1 and 3 characteristics may be detrimental
to CRC prognosis, while Mast Cell 2 characteristics
may be beneficial. Similar trends were observed in the
GEO and TCGA cohorts (Supplementary Fig. 2A-F).
Kaplan—Meier survival curve analysis further showed that
patients with high scores in Mast Cell 1 and 3 had shorter
overall survival, suggesting that their higher standardized
enrichment scores may act as potential promotors of
CRC (Fig. 4G, I). In contrast, patients with high scores
in Mast Cell 2 had longer overall survival, indicating that
their higher standardized scores may serve as potential
inhibitors of CRC (Fig. 4H, Supplementary Fig. 2G-L).
To assess the accuracy of the mast cell subpopulation
characteristics in predicting patient prognosis, we
performed ROC curve analysis, and the results showed
good predictive power for all three mast cell subpopulation
characteristics, particularly in the HMU cohort (Fig. 4J-L).
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«Fig.3 Clustering analysis of mast cell subpopulations. A The
relationship between the coefficients in NMF and the number of mast
cell clusters (k). B Heatmap showing the differential expression of
significant genes across the 3 mast cell subpopulations. C Bubble plot
illustrating the differential expression of marker genes in the 3 mast
cell subpopulations. D Bubble plot showing the GO terms enriched in
the 3 mast cell subpopulations. E Bubble plot displaying the KEGG
pathways enriched in the 3 mast cell subpopulations. F Heatmap of
the transcriptional regulatory networks specific to the 3 mast cell
subpopulations, revealed by SCENIC analysis, showing the activity
of key transcription factors in different mast cell subpopulations.
G CytoTRACE2 analysis revealing the differentiation potential
differences among the 3 mast cell subpopulations. H Monocle2
pseudotime analysis showing the developmental trajectories of
the 3 mast cell subpopulations. The color gradient represents the
progression of pseudotime. I The cell subpopulation types are marked
on the pseudotime trajectory. J The expression of the three mast cell
subpopulation marker genes changes as pseudotime progresses

Gene expression of mast cell subpopulation features
in colorectal cancer

To further validate the accuracy of the mast cell
subpopulation characteristics, we compared the expression
levels of the specific marker genes of the three mast cell
subpopulations. The results showed that the specific marker
genes DNAJB1 and SEMAT7A of Mast Cell 1 and 3 were
highly expressed in tumor tissues, while the specific marker
gene XCR1 of Mast Cell 2 was lowly expressed in tumor
tissues (Fig. SA-C). We also verified the protein expression
levels of these three genes. In the immunohistochemical
analysis from the HPA database, DNAJB1 and SEMA7A
exhibited higher protein expression levels in tumor tissues,
while XCR1 had higher protein expression levels in normal
tissues (Fig. SD-F).

Based on the expression levels of these genes in each
patient, we calculated the optimal cutoff values and divided
patients into high and low expression groups. Kaplan—-Meier
survival curve analysis showed that patients with high
expression of DNAJB1 and SEMA7A had shorter overall
survival, suggesting that these two genes may be potential
risk factors for CRC (Fig. 5G-I). In contrast, patients with
high expression of XCR1 had longer overall survival,
suggesting that XCR1 may be a potential protective factor
for CRC (Fig. 5G-1, Supplementary Fig. 3A-F).

Discussion

This study integrates single-cell transcriptomics and bulk
transcriptomics data to explore the heterogeneity of mast
cell subpopulations in the CRC microenvironment and their
impact on disease prognosis, revealing the complex role of
mast cells in the CRC tumor microenvironment.

Mast cells, as important immune cells in the tumor
microenvironment, have long been a subject of debate

regarding their role in CRC. Previous studies have
suggested that mast cells may have a dual role in the tumor
microenvironment: on one hand, they may promote cancer
by releasing histamine, proteases, chemokines, and other
pro-tumor mediators, facilitating angiogenesis, tumor
invasion, and metastasis; on the other hand, some studies
have found that mast cells can exert anti-tumor effects by
inducing endoplasmic reticulum stress in tumor cells or
directly promoting tumor cell apoptosis [24]. For example,
recent studies have shown that cystatin C secreted by mast
cells significantly inhibits CRC progression by inducing
endoplasmic reticulum stress, further supporting the
potential anti-tumor role of mast cells [25]. In this study, we
also found that mast cell subpopulations exhibit significant
functional heterogeneity, with Mast Cell 1 and Mast Cell
3 being highly associated with pro-cancer pathways (such
as STAT, MAPK, and FoxO signaling), while Mast Cell 2
is mainly involved in immune inflammation regulation and
anti-tumor immune responses. This suggests that mast cells
may simultaneously play both pro-tumor and anti-tumor
roles in CRC, consistent with previous findings, highlighting
the complexity and heterogeneity of mast cells in CRC.

Compared to previous single-cell studies, this study
further investigates the transcriptomic heterogeneity of mast
cells. Xie et al.’s single-cell study found that mast cells in
CRC exhibit distinct activation characteristics, such as high
expression of TPSAB1, CPA3, and KIT, indicating that
mast cells in the CRC microenvironment are activated and
associated with good prognosis [24]. Consistent with this,
our study also observed an activated state of gene expression
in mast cell subpopulations, but further revealed functional
differences and developmental trajectory changes between
the subpopulations, with Mast Cell 1 in an undifferentiated
state gradually differentiating into Mast Cell 2 and Mast
Cell 3. Furthermore, we systematically analyzed the
transcriptional regulatory networks specific to mast cell
subpopulations using SCENIC analysis, identifying key
transcription factors such as CLOCK, GATA2, FOXBI1, and
HOXAJ9 with differential activity in different subpopulations,
providing insights into the functional diversity of mast
cells and offering potential therapeutic targets for precision
immunotherapy in CRC.

Previous studies mostly used immunohistochemistry
to assess mast cell density in CRC and its relationship
with prognosis [26]. However, the results have often been
controversial, with some studies showing that high mast cell
infiltration correlates with better prognosis, while others
suggest that it is closely associated with poor prognosis.
These discrepancies may be due to methodological
differences, heterogeneity of study cohorts, and different
localization of mast cell subpopulations within the tumor
tissue (differences between the tumor interior and the
periphery). Our study overcame the limitations of tissue
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Fig.4 Clinical significance of the 3 mast cell subpopulations. A
Differences in the standardized enrichment scores of the 3 mast cell
subpopulation signatures across different samples in the HMU cohort.
B Differences in the standardized enrichment scores of the 3 mast cell
subpopulation signatures across different samples in the GEO cohort.
C Differences in the standardized enrichment scores of the 3 mast
cell subpopulation signatures across different samples in the TCGA
cohort. D-F. Risk factor-related plots for the standardized enrichment
scores of the 3 mast cell subpopulation signatures in the HMU
cohort: Top plot: Risk scores for each patient are arranged from
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low to high, with a vertical dashed line indicating the optimal cutoff
value. This value divides patients into low-risk (green) and high-risk
(red) groups. Middle plot: The relationship between risk scores and
survival time, with green dots representing deceased patients and
red dots representing survivors. Bottom plot: Expression patterns of
the markers in patients. G-I Survival difference analysis based on
the standardized enrichment scores of the 3 mast cell subpopulation
signatures in the HMU cohort. J-L. ROC curve analysis of the
standardized enrichment scores of the 3 mast cell subpopulation
signatures in the HMU, GEO, and TCGA cohorts
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Fig.5 Expression of marker genes for the 3 mast cell subpopulations
and prognosis analysis. A Expression differences of the marker genes
DNAIJB1, XCR1, and SEMA7A in tumor and normal tissues in the
HMU cohort. B Expression differences of the marker genes DNAJBI,
XCR1, and SEMAT7A in tumor and normal tissues in the GEO cohort.

localization using single-cell and bulk transcriptomics
analysis, further clarifying the relationship between the
specific gene expression profiles of mast cell subpopulations
and patient prognosis. We have also clarified the differential
impact of different mast cell subpopulations on prognosis,
offering a new perspective to resolve the controversies in
previous research.

In addition, this study is the first to combine
CytoTrace and pseudotime analysis methods to explore
the developmental relationships between mast cell
subpopulations in the CRC microenvironment. This suggests
that the function of mast cells may undergo dynamic
changes depending on their differentiation status. This
represents a significant supplement to previous research,
which has mainly focused on the overall function of mast
cells, overlooking the potential dynamic evolution process
between subpopulations.

However, this study also has some limitations. First,
the sample size in our cohort is relatively small and

C Expression differences of the marker genes DNAJBI, XCRI,
and SEMAT7A in tumor and normal tissues in the TCGA cohort.
D-F. Immunohistochemical detection of protein levels for DNAJBI,
XCRI1, and SEMA7A. G-1. Survival analysis based on the expression
levels of DNAJB1, XCR1, and SEMA7A in the HMU cohort

comes from a single medical institution, which may limit
the generalizability of our findings. Larger, multi-center
independent cohorts are needed for further validation.
Second, while we identified mast cell subpopulation—specific
marker genes from scRNA-seq data using stringent criteria,
we acknowledge that these genes may not be exclusively
expressed by mast cells. This is particularly relevant when
applying gene signatures to bulk RNA-seq data, where the
expression may reflect not only mast cells but also other
cell types within the tumor microenvironment. Therefore,
the prognostic associations observed should be interpreted
as correlative rather than causal. Further functional and
spatial validation, such as multiplex immunostaining or
spatial transcriptomics, is needed to confirm the cell-type
specificity and biological relevance of these gene signatures.
Third, we did not perform multivariate Cox regression
analysis to adjust for clinical confounders such as tumor
stage, age, or treatment history. This was due to incomplete
or inconsistent clinical annotation across several public
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datasets, particularly from GEO. We acknowledge this as a
limitation, and future studies incorporating well-annotated
prospective clinical cohorts will be essential to evaluate
the independent prognostic value of mast cell-associated
signatures.

Conclusion

This study systematically revealed the heterogeneity of mast
cell subpopulations in the CRC tumor microenvironment
and their relationship with prognosis through single-cell
transcriptomics, bulk transcriptomics, and bioinformatics
analysis. Mast Cell 1 exhibits distinct pro-tumor
characteristics, Mast Cell 3 is highly associated with cancer-
related pathways, while Mast Cell 2 primarily displays anti-
tumor immune regulatory properties. High expression of
characteristics in Mast Cell 1 and 3 significantly predicts
poor overall survival, whereas high expression of Mast
Cell 2 is associated with better survival. The differential
expression of mast cell subpopulation-specific marker genes
(DNAJB1, SEMA7A, and XCR1) further confirms that high
expression of DNAJBI and SEMAT7A and low expression
of XCRI1 are significantly correlated with poor prognosis.
These findings provide new candidate molecules for clinical
diagnosis, prognostic prediction, and the development of
personalized immunotherapy targets in CRC.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
$00262-025-04119-8.
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