
Basal Levels of (p)ppGpp in Enterococcus faecalis: the Magic beyond
the Stringent Response

Anthony O. Gaca,a Jessica K. Kajfasz,a James H. Miller,a Kuanqing Liu,b Jue D. Wang,b Jacqueline Abranches,a José A. Lemosa

Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USAa; Department of
Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USAb

ABSTRACT The stringent response (SR), mediated by the alarmone (p)ppGpp, is a conserved bacterial adaptation system control-
ling broad metabolic alterations necessary for survival under adverse conditions. In Enterococcus faecalis, production of
(p)ppGpp is controlled by the bifunctional protein RSH (for “Rel SpoT homologue”; also known as RelA) and by the monofunc-
tional synthetase RelQ. Previous characterization of E. faecalis strains lacking rsh, relQ, or both revealed that RSH is responsible
for activation of the SR and that alterations in (p)ppGpp production negatively impact bacterial stress survival and virulence.
Despite its well-characterized role as the effector of the SR, the significance of (p)ppGpp during balanced growth remains poorly
understood. Microarrays of E. faecalis strains producing different basal amounts of (p)ppGpp identified several genes and path-
ways regulated by modest changes in (p)ppGpp. Notably, expression of numerous genes involved in energy generation were in-
duced in the �rsh �relQ [(p)ppGpp0] strain, suggesting that a lack of basal (p)ppGpp places the cell in a “transcriptionally re-
laxed” state. Alterations in the fermentation profile and increased production of H2O2 in the (p)ppGpp0 strain substantiate the
observed transcriptional changes. We confirm that, similar to what is seen in Bacillus subtilis, (p)ppGpp directly inhibits the
activity of enzymes involved in GTP biosynthesis, and complete loss of (p)ppGpp leads to dysregulation of GTP homeostasis.
Finally, we show that the association of (p)ppGpp with antibiotic survival does not relate to the SR but rather relates to basal
(p)ppGpp pools. Collectively, this study highlights the critical but still underappreciated role of basal (p)ppGpp pools under bal-
anced growth conditions.

IMPORTANCE Drug-resistant bacterial infections continue to pose a significant public health threat by limiting therapeutic op-
tions available to care providers. The stringent response (SR), mediated by the accumulation of two modified guanine nucleo-
tides collectively known as (p)ppGpp, is a highly conserved stress response that broadly remodels bacterial physiology to a sur-
vival state. Given the strong correlation of the SR with the ability of bacteria to survive antibiotic treatment and the direct
association of (p)ppGpp production with bacterial infectivity, understanding how bacteria produce and utilize (p)ppGpp may
reveal potential targets for the development of new antimicrobial therapies. Using the multidrug-resistant pathogen Enterococ-
cus faecalis as a model, we show that small alterations to (p)ppGpp levels, well below concentrations needed to trigger the SR,
severely affected bacterial metabolism and antibiotic survival. Our findings highlight the often-underappreciated contribution
of basal (p)ppGpp levels to metabolic balance and stress tolerance in bacteria.
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Despite being a commensal of the gut microbiota, the Gram-
positive pathogen Enterococcus faecalis ranks among the lead-

ing causative agents of severe and costly nosocomial infections (1).
The prevalence of E. faecalis in hospital settings has been attrib-
uted to its capacity to survive under adverse conditions, including
prolonged starvation and exposure to detergents and commonly
used antibiotics, to which E. faecalis has both intrinsic and ac-
quired tolerance (2). This inherent resilience allows E. faecalis to
survive under conditions lethal to most other bacteria, pathogenic
or nonpathogenic, a trait that seems to be intertwined with its
virulence.

The stringent response (SR) is a highly conserved bacterial
stress response mediated by the accumulation of the alarmone

(p)ppGpp, which refers to two modified guanine nucleotides, py-
rophosphorylated GDP or GTP (herein abbreviated as ppGpp and
pppGpp, respectively) (3). While initially defined as a response to
amino acid starvation, the term SR has since expanded to include
any regulatory effect exerted by robust (p)ppGpp accumulation,
irrespective of the triggering mechanism. During the SR, the ac-
cumulation of (p)ppGpp induces large-scale transcriptional alter-
ations, leading to general repression of genes required for rapid
growth, such as rRNA genes, and concomitant activation of genes
involved in nutrient synthesis or acquisition and stress survival, a
response that shifts cellular resources toward adaptation to a non-
growth state (4–7). In Gram-negative bacteria, (p)ppGpp primar-
ily interacts with RNAP, in synergy with DksA, to directly affect
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transcription (3). However, direct (p)ppGpp-RNAP interactions
do not seem to occur in Gram-positive species (8, 9), and the
current model suggests that (p)ppGpp affects transcription of
rRNA genes in this bacterial group by reducing the availability of
the initiating nucleotide GTP (8). In addition to transcriptional
control, (p)ppGpp allosterically inhibits the activity of enzymes
other than RNAP, including DNA primase, exopolyphosphatase,
lysine decarboxylase, and several enzymes involved in GTP syn-
thesis (10–12).

In Gram-negative proteobacteria, such as Escherichia coli,
(p)ppGpp is metabolized by the strong (p)ppGpp synthetase RelA
and the bifunctional protein SpoT, which exerts weak synthetase
and strong hydrolase activities (13, 14). In Gram-positive organ-
isms, the bifunctional protein RSH (for “Rel SpoT homologue”),
also known as RelA or Rel, is a strong (p)ppGpp synthetase, like
the E. coli RelA, that also possess (p)ppGpp hydrolase activity
characteristic of SpoT (15, 16). In addition to RSH, Gram-positive
Firmicutes encode one or two (p)ppGpp synthetases (termed RelP
and RelQ) that lack the N-terminal Mn2�-dependent hydrolase
domain required for (p)ppGpp hydrolysis and the C-terminal
regulatory region of RSH enzymes (17–21). Transcriptomic and
phenotypic analysis indicated that the bifunctional RSH is the
principal enzyme responsible for the rapid accumulation of
(p)ppGpp during nutrient limitation but also controls the magni-
tude and duration of (p)ppGpp accumulation through regulation
of (p)ppGpp synthetase activity, hydrolase activity, or both (5, 15,
17–19). However, the specific roles of RelP and RelQ remain elu-
sive.

Previous studies from our group identified and characterized
the two enzymes responsible for (p)ppGpp production in E. faeca-
lis, the bifunctional RSH and the monofunctional RelQ synthe-
tase; RelP homologues are not found in the genome of enterococci
(5, 17). To avoid ambiguity in the nomenclature between the
monofunctional RelA of Gram-negative bacteria and the bifunc-
tional enzyme of Gram-positive organisms, we have chosen to
adopt the term RSH to refer to the bifunctional enzyme of E. faeca-
lis, called RelA in previous publications (5, 17). Characterization
of strains lacking rsh, relQ, or both showed that RSH is responsible
for activation of the SR and that (p)ppGpp plays a crucial role in
stress survival and virulence (5, 17, 21). A complete lack of
(p)ppGpp, as seen in the (p)ppGpp0 (�rsh �relQ) strain, led to
overall decreased tolerance to vancomycin, reduced survival
within macrophages, and attenuated virulence in the Caenorhab-
ditis elegans and Galleria mellonella models (5, 17). Interestingly,
the �rsh strain, which like the (p)ppGpp0 strain is unable to
mount the SR, showed enhanced vancomycin tolerance and be-
haved like the wild-type strain in in vitro macrophage survival and
invertebrate virulence models.

Despite the relatively long history of (p)ppGpp in bacterial
research, substantially less effort has been made to understand its
regulatory effect during exponential (balanced) growth. Here,
balanced growth represents any physiological condition in which
cellular constituents are produced at constant rates relative to one
another, leading to a constant rate of cell division. Previous studies
have shown that during steady-state growth, E. coli produces low
basal levels of (p)ppGpp (22, 23). In these studies, a general in-
verse correlation between basal (p)ppGpp levels and growth rate
was established whereby lower growth rates are indicative of
higher basal (p)ppGpp pools (23–25). It was later postulated that
basal (p)ppGpp pools, despite being at concentrations consider-

ably lower than those observed during the SR, may be high enough
to have regulatory effects during balanced growth (26). This lead
to the idea that (p)ppGpp acts as a gradient over a range of growth
rates rather than a bistable switch to control cellular physiology
under nutrient replete (“off”) or starvation (“on”) conditions
(26).

Given the increasing number of studies that report the associ-
ation of (p)ppGpp with virulence expression, persister cell forma-
tion, and other survival-related phenotypes (3, 27–29), a compre-
hensive understanding of the pathways affected by (p)ppGpp may
reveal potential targets for the development of new antimicrobial
therapies. To gain a more thorough understanding of the genetic
basis through which (p)ppGpp maintains cell homeostasis during
balanced growth, we used microarrays to compare the transcrip-
tome of the wild-type strain E. faecalis OG1RF to a panel of mutant
strains producing different basal levels of (p)ppGpp during expo-
nential growth phase. The transcriptome of a bona fide
(p)ppGpp0 strain revealed that basal (p)ppGpp pools are essential
for a balanced metabolism, providing an additional explanation
for the reduced fitness and attenuated virulence of the (p)ppGpp0

mutant strain. As recently shown in Bacillus subtilis (11), we also
found that complete lack of (p)ppGpp led to aberrant regulation
of guanosine metabolism characterized by accumulation of intra-
cellular GTP and severe inhibition of growth in the presence of
exogenous guanosine. Finally, we expanded our previous obser-
vations by showing that the (p)ppGpp-mediated antibiotic toler-
ance, regardless of the drug target, occurs at (p)ppGpp concentra-
tions that are markedly lower than those achieved during the SR.
To the best of our knowledge, this report represents the first global
transcriptional comparison of strains with different basal
(p)ppGpp levels during balanced growth in any microorganism.

RESULTS
The �rsh strain has higher basal levels of (p)ppGpp. Among the
many phenotypic differences observed between the different
(p)ppGpp-deficient strains, the �rsh strain showed a slow-growth
phenotype in rich medium, whereas the �relQ and (p)ppGpp0

(�rsh �relQ) strains grew as well as the wild-type strain. Previ-
ously, we proposed that the slow growth of the �rsh strain is a
result of the strain’s inability to hydrolyze (p)ppGpp synthesized
by RelQ, thereby elevating basal (p)ppGpp above wild-type levels
(17). To measure basal levels of (p)ppGpp, cultures were uni-
formly labeled with 32P from early exponential to mid-log growth
phase. The basal (p)ppGpp level is defined here as the amount of
(p)ppGpp present in nonstressed, logarithmically growing cells.
Quantifications of extracted nucleotides separated by thin-layer
chromatography (TLC) (Fig. 1B) indicated that basal levels of
ppGpp were approximately 4-fold higher in the �rsh strain than
the wild-type strain. The increased ppGpp level in the �rsh strain
was accompanied by an ~40% reduction in GTP. In contrast to
ppGpp, pppGpp levels were similar in the wild-type and �rsh
strains. No significant differences in (p)ppGpp pools were ob-
served between wild-type and �relQ strains, and as expected, no
(p)ppGpp was detected in the (p)ppGpp0 strain.

The transcriptional profile of the �rsh and �rsh �relQ
strains under balanced growth conditions provides novel in-
sights into the physiological relevance of basal (p)ppGpp pools.
Here, microarrays were used to obtain the transcriptional profiles
of OG1RF and the �rsh, �relQ, and �rsh �relQ strains during
exponential growth. Given that the E. faecalis V583 genome anno-
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tation (30) has been widely used in the literature, we adopted the
same gene designation in tables depicting the microarray data.
However, genes present in the OG1RF genome but absent in V583
are presented with the original OG1RF designations (31).

At an assigned P value of �0.001 and a 2-fold cutoff, 51 genes
in the �rsh strain, 17 genes in the �relQ strain, and 246 genes in
the �rsh �relQ [(p)ppGpp0] strain were differentially expressed
compared to the wild-type strain. The complete list of these genes
is shown in Table S1 in the supplemental material. A subset of
these genes (n � 7) was selected for real-time quantitative RT-
PCR validation, and all results were consistent with the expression
trends observed in the microarrays (see Fig. S1 and Table S2 in the
supplemental material). The small number of genes found to be
differentially expressed in the �relQ strain is in agreement with the
nearly identical basal levels of (p)ppGpp in this strain and the wild
type (Fig. 1). Conversely, a much larger number of genes were
differentially expressed in the �rsh and (p)ppGpp0 strains, which
have 4-fold-higher basal (p)ppGpp levels and no (p)ppGpp, re-
spectively. Among the genes that were differentially transcribed in
the �rsh strain, 60.8% were upregulated and 39.2% were down-
regulated. Most notable among the downregulated genes were
those involved in nucleotide metabolism, including those encod-
ing nucleoside diphosphate kinase (ndk) and GMP reductase (gu
aC). Among the genes activated in the �rsh strain, a subset corre-
spond to de novo pyrimidine biosynthesis (nrdG, nrdD, pyrDII,
pyrB, pyrDB, pyrE, purA, pyrC, and carB), suggesting that elevated
basal levels of (p)ppGpp interfere with pyrimidine metabolism.

The most prominent differences were observed in the tran-

scriptome of the (p)ppGpp0 strain. Remarkably, the overwhelm-
ing majority of the differentially expressed genes in this strain were
activated (92.6%). A closer evaluation of these genes revealed a
dramatic upregulation of genes associated with energy generation,
in particular, genes involved in pyruvate production from alter-
ative carbon sources (Fig. 2; also, see Table S1 in the supplemental
material). This is surprising, as the cells were grown in a defined
but complete medium containing 10 mM glucose, which is suffi-
cient to repress alternate carbon metabolism pathways (32). For
example, many genes (n � 35) of the various phosphoenolpyru-
vate:sugar phosphotransferase systems (PTS), the major sugar
transport systems at low carbohydrate concentrations, were acti-
vated. Likewise, all 13 genes encompassing the citCL locus, which
is involved in citrate transport and metabolism, were highly in-
duced (ranging from 27- to 134-fold induction) as well as the
genes encoding glycerol-3-phosphate oxidase (glpO) and glycerol
uptake protein (glpF), involved in the GlpK pathway of glycerol
metabolism (33). Three genes involved in serine degradation
(serS1, sdhA-1 and sdhB-1), which convert serine into pyruvate,
were also highly induced (�66-fold induction). Finally, the gene
encoding the catabolite control protein CcpA, which is responsi-
ble for carbon catabolite repression (CCR), was induced 3.2-fold.
Among the few repressed genes in the (p)ppGpp0 strain (7.4%), a
subset are involved in purine metabolism and salvage pathways,
including GMP reductase (guaC), guanine deaminase (guaD), a
putative xanthine/uracil permease, IMP cyclohydrolase (purH),
and adenylosuccinate synthase (purA).

FIG 1 Determination of basal (p)ppGpp levels during nonstressed growth. (A) 2D TLC of [32P]orthophosphate labeled cells. Cells were grown in low-phosphate
FMCG to an OD600 of 0.25, labeled with 150 �Ci ml�1 of 32P, and grown to a final optical density (600 nm) of 0.4. The identity of the spot appearing at the top
left quadrant of each TLC plate is unknown. (B) Fold change of guanine nucleotide pools compared to the wild-type from 1D TLC separation of 32P-labeled cell
extracts. GTP, ppGpp, and pppGpp spots were quantified using a phosphorimager.
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The fermentative profile of the (p)ppGpp0 strain supports
the altered transcriptome. As a typical lactic acid bacterium,
E. faecalis usually exhibits homolactic fermentation. However, en-
vironmental changes, including changes in oxygen availability,
pH, and carbon source, can rapidly trigger a switch from homo-

lactic to mixed-acid (heterolactic) fermentation (34). The major
end products from heterolactic fermentation include lactate, ace-
tate, formate, acetoin, and ethanol. To investigate whether the
transcriptional activation of alternate carbon and energy metabo-
lism genes in the (p)ppGpp0 strain is manifested at the physiolog-
ical level, we compared the intracellular concentration of pyruvate
as well as the production of lactate, ethanol, formate, and acetoin
secreted into the growth medium between wild-type and
(p)ppGpp0 strains. We also attempted to measure acetate produc-
tion, but even with the removal of exogenous acetate, the chemi-
cally defined FMC medium was incompatible with the enzymatic
assay, leading to high background readings. Despite the transcrip-
tional induction of genes involved in different pathways linked to
pyruvate production, the intracellular pyruvate levels of the
(p)ppGpp0 strain were comparable to those observed in OG1RF
(Fig. 3A). However, the (p)ppGpp0 strain produced less lactate
than OG1RF (e.g., an 11% decrease at an optical density at 600 nm
[OD600] of 0.7; P � 0.0001) and produced more acetoin, formate,
and ethanol (Fig. 3B to E). The relatively small total amounts of
formate produced [e.g., 2.4% of the total lactate produced at an
OD600 of 0.7 for the (p)ppGpp0 strain] and the marginal differ-
ence in ethanol production between OG1RF and the (p)ppGpp0

strain (e.g., 4.6% at an OD600 of 0.7) is likely to have little, if any,
impact on cell physiology. However, the increased production of
acetoin (105% increase at an OD600 of 0.7; P � 0.0001) coupled
with the reduced production of lactate observed in the (p)ppGpp0

strain is more likely to have biological implications, as acetoin is a
nonacidic fermentative end product. To assess this possibility, the
pH of culture supernatants from wild-type and (p)ppGpp0 strains
was measured over the different growth phases. In agreement with
our metabolite analysis, the wild-type strain was able to reduce the

FIG 2 Genes and pathways induced in the (p)ppGpp0 strain that lead to the
production of pyruvate and heterolactic fermentation products derived from
pyruvate in E. faecalis. Shaded pathways or proteins specify activated genes
detected from microarray analysis. Proteins and protein complexes responsi-
ble for the chemical conversion of pyruvate into the five different fermentation
end products are in bold but were not detected in microarray comparisons.
Dashed lines represent multistep processes. Oad, oxaloacetate dehydrogenase
complex; Cit, citrate lyase complex; CitH, citrate transporter; CitM, malate
dehydrogenase; Sdh, L-serine dehydratase complex; GlpF, glycerol permease;
GlpO, glycerol phosphate oxidase.

FIG 3 Metabolic profile of wild-type OG1RF and (p)ppGpp0 strains. The soluble fraction of whole-cell lysates (for pyruvate measurements) or culture
supernatants (for fermentation end products) from E. faecalis grown in FMCG were harvested by centrifugation at the indicated optical densities (600 nm) and
used to determine the concentrations of pyruvate (A), lactate (B), formate (C), ethanol (D), and acetoin (E) and the culture pH (F). For all assays, n � 6 (*, P �
0.032; **, P � 0.005; ***, P � 0.0001).
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external pH to values significantly lower than those achieved by
the (p)ppGpp0 strain (Fig. 3F). Collectively, these results serve to
validate the microarray results and suggest that, to maintain py-
ruvate homeostasis, the (p)ppGpp0 strain switches from a pre-
dominant homolactic fermentation to heterolactic fermentation.

The (p)ppGpp0 strain produces high levels of H2O2. Cata-
bolic control, or the ability to regulate the rate and direction of
carbon flow, is important for balancing proliferative capacity with
the damaging effects of metabolic by-products, such as reactive
oxygen species (ROS) (35). Enterococcus faecalis is a potent pro-
ducer of ROS, including H2O2 and superoxide, which are by-
products of aerobic glycerol metabolism and the interaction of
respiratory chain semiquinone radicals with oxygen (36, 37). At

neutral or low pH, like those in our culture media, H2O2 can also
rapidly form (8 � 104 M�1 s�1) from the spontaneous dismuta-
tion of superoxide resulting from the random interaction of two
superoxide molecules (38). We compared the production of H2O2

between the wild-type OG1RF and (p)ppGpp0 strains. The
(p)ppGpp0 cells produced at least 6.8-fold more H2O2 than the
wild type at early log, mid-log, and late log growth phases (Fig. 4).
This increased H2O2 production further suggests that the
(p)ppGpp0 strain is unable to maintain a balanced metabolism.

Lack of (p)ppGpp disrupts GTP homeostasis. Recently,
(p)ppGpp was shown to directly inhibit multiple enzymes in-
volved in GTP synthesis, and disruption of GTP homeostasis in a
B. subtilis (p)ppGpp0 strain resulted in metabolic changes that
negatively affected cell viability, even in the absence of starvation
(11). Addition of exogenous guanosine to the B. subtilis
(p)ppGpp0 strain, which is converted to GTP via the salvage path-
way, dramatically increases GTP levels, suggesting that (p)ppGpp
maintains GTP homeostasis via negative feedback control (11). As
demonstrated in B. subtilis, the hypoxanthine-guanine phospho-
ribosyltransferase (HprT) homologue from E. faecalis was also
specifically inhibited by pppGpp in a dosage-dependent manner
with a 50% inhibitory concentration (IC50) of 89.8 � 10.49 �M
(Fig. 5A, top). Although guanylate kinase (Gmk) was inhibited by
pppGpp with an IC50 of 461.9 � 106.4 �M (data not shown), this
was nonspecific, as GTP was able to inhibit Gmk with an efficiency
similar to that of pppGpp (Fig. 5A, bottom). To assess whether
(p)ppGpp also exerts posttranscriptional control over GTP syn-
thesis in vivo, we investigated the effects of exogenous guanosine
on the wild-type and (p)ppGpp-defective strains. Similar to what
was seen with B. subtilis, addition of guanosine resulted in a sharp

FIG 4 Enhanced H2O2 production by the (p)ppGpp0 strain. Cells of E. faeca-
lis OG1RF and (p)ppGpp0 strains grown in FMCG were harvested at the indi-
cated optical densities and washed in PBS buffer. The washed cell suspension
was mixed with an equal volume of buffer to determine H2O2 production over
a 30-min incubation period. For all assays, n � 9 (*, P � 0.0001).

FIG 5 Dysregulation of guanosine metabolism in the (p)ppGpp0 strain. (A) (Top) HprT inhibition by increasing concentrations of pppGpp in vitro. Error bars
represent standard errors of three independent experiments. (Bottom) Relative enzymatic activity of HprT and Gmk in the presence of GTP or pppGpp. (B) TLC
of 32P-labeled cells showing GTP accumulation in the presence of exogenous guanosine. Cells were grown in FMCG lacking nucleobase supplementation to an
OD600 of 0.3, labeled with 150 �Ci ml�1 of 32P, and treated with 2 mM guanosine (rG) for 15 min. Control (Ctrl) samples were not treated with guanosine. (C)
Growth inhibition of the (p)ppGpp0 strain caused by addition of excess guanosine. Cells were grown to early log phase in complete FMCG and diluted into FMCG
lacking exogenous nucleobases supplemented with 1 mM guanosine (n � 3).
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increase in GTP levels in the (p)ppGpp0 strain, whereas GTP levels
remained constant in the wild-type, �rsh, and �relQ strains
(Fig. 5B). As an apparent result of GTP accumulation, growth of
the (p)ppGpp0 strain was completely inhibited by as little as 1 mM
guanosine (Fig. 5C). In contrast with what was seen with B. subtilis
(11), no significant effect on cell viability was observed in the
(p)ppGpp0 strain following exposure to exogenous guanosine
(data not shown). These results serve to highlight another crucial
function of (p)ppGpp, that seems to be separate from the SR ac-
tivation, in balancing guanosine metabolism with cellular de-
mands for macromolecular biosynthesis and energy generation.

(p)ppGpp-mediated antibiotic protection occurs indepen-
dently of SR activation. Although the association of (p)ppGpp
metabolism with antibiotic tolerance has been known for several
years (39, 40), recent studies suggested that activation of the SR is
central to the formation of persister cells in Gram-negative bacte-
ria (28, 41). Previously, we showed that the E. faecalis (p)ppGpp0

strain (�rsh �relQ) was significantly more sensitive to vancomy-
cin, whereas the �rsh strain showed increased survival rates (17).
Here, we expanded this initial finding by conducting time-kill
kinetics studies with two additional bactericidal drugs: ampicillin
(�-lactam) and norfloxacin (DNA gyrase inhibitor) (Fig. 6). In
both cases, the survival rates of the �relQ strain were not statisti-
cally different from those of the wild type. However, the
(p)ppGpp0 strain was killed more rapidly (P � 0.001). Despite the
fact that the �rsh strain has only RelQ as a source of (p)ppGpp
synthesis and is unable to activate the SR (5), this strain showed
rates of survival against ampicillin or norfloxacin similar to those
of the wild-type strain. To verify that the survival differences
among strains were not due to differences in long-term viability,
cells were exposed to the bacteriostatic antibiotic chlorampheni-
col. Despite a small reduction in the viability of the (p)ppGpp0

strain after 48 h, the differences observed were not statistically
significant (Fig. 6C). These results indicate that, in E. faecalis,
(p)ppGpp-mediated protection occurs at levels that are well below
those needed to trigger the SR.

DISCUSSION
Lack of RSH results in constitutively high levels of (p)ppGpp.
Previously, we demonstrated that inactivation of the bifunctional
RSH resulted in a slow-growth phenotype, a characteristic that
could be rescued with the simultaneous inactivation of RelQ (17).
Identical observations have been made in Streptococcus mutans

and B. subtilis, which encode two small (p)ppGpp synthetases,
indicating that the slow growth of rsh mutants is associated with
reduced intracellular GTP due to constitutive production of
(p)ppGpp by one (in the case of E. faecalis) or two monofunc-
tional (p)ppGpp-synthetases (18, 19, 42, 43). In the present study,
by extending the duration of isotopic labeling under nonstringent
conditions, we acquired unequivocal evidence that the �rsh strain
accumulates higher basal levels of (p)ppGpp at the expense of
intracellular GTP. Interestingly, the differences in (p)ppGpp lev-
els were restricted to ppGpp, not pppGpp. This observation may
have important biological implications, as studies conducted with
E. coli revealed that ppGpp is a more effective regulator (~10 times
more potent than pppGpp) for several SR-controlled phenomena
(44). Previous studies have shown that RelQ paralogs can effi-
ciently utilize GDP or GTP to synthesize, respectively, ppGpp and
pppGpp, although no substrate preference experiments have been
conducted (19, 45). The accumulation of ppGpp in the �rsh strain
may be an indication that RelQ preferentially utilizes GDP over
GTP. Another possible explanation for the ppGpp accumulation
in �rsh is that pppGpp produced from GTP is unstable and rap-
idly degraded into ppGpp (46). In Gram-negative bacteria,
guanosine pentaphosphatases (Gpp) are responsible for the con-
version of pppGpp to ppGpp in vivo, although alternate pathways
for (p)ppGpp degradation have been shown in vitro (47, 48).
However, no homologues of gpp have been identified in E. faecalis
and closely related Gram-positive bacteria. At the present time,
the reasons for the accumulation of ppGpp, but not of pppGpp, in
the �rsh strain remain undetermined. Work is under way to in-
vestigate the possibility that the E. faecalis RelQ preferentially uti-
lizes GDP over GTP.

The activation of alternate carbon and energy metabolism
genes in the (p)ppGpp0 strain may be linked to CCR alleviation.
The key finding from the microarray analysis was the observation
that a complete lack of (p)ppGpp caused large-scale transcrip-
tional alterations during balanced growth. A closer examination
of these transcriptional alterations showed that genes involved in
the production of pyruvate via multiple pathways, including gly-
colysis, secondary-carbon-source metabolism (citrate, glycerol,
and malate), and serine degradation, were highly induced in the
(p)ppGpp0 strain. Although we did not observe increased produc-
tion of pyruvate in the (p)ppGpp0 strain, the ability of this strain
to maintain pyruvate homeostasis is likely linked to enhanced ace-

FIG 6 Antibiotic survival of OG1RF, �rsh, �relQ, and (p)ppGpp0 strains. Exponentially grown cultures were diluted in fresh FMCG to 5 � 106 to 1 � 107 CFU
ml�1, and cell survival after addition of ampicillin (8 �g ml�1) (A), norfloxacin (64 �g ml�1) (B), or chloramphenicol (16 �g ml�1) (C) was monitored over time.
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toin production, as two molecules of pyruvate are consumed for
every molecule of acetoin generated. Additionally, the acetolactate
synthase (ALS) enzyme has a lower Km for pyruvate than other
competing fermentative enzymes. Hence, acetoin production is
favored when intracellular pyruvate is abundant.

Among the energy generation pathways transcriptionally in-
duced in the (p)ppGpp0 strain were multiple PTS genes, two di-
vergent citrate metabolism operons, and glycerol uptake and me-
tabolism genes. Notably, these metabolic pathways are known to
be under carbon catabolite regulation (CCR), mediated by CcpA,
in different Gram-positive bacteria (49–51). CcpA is a global reg-
ulator of carbon metabolism, either positive or negative, and its
activity is stimulated through interactions with PTS enzymes and
by the availability of the glycolytic intermediates glucose-6-
phosphate and fructose-1,6-bisphosphate (FBP) (52). Thus, met-
abolic alterations observed in the (p)ppGpp0 strain may serve as
an explanation for CCR alleviation. Moreover, when compared to
the parent strain, transcription of the ccpA gene was also induced.
While the concomitant upregulation of ccpA with CcpA-regulated
genes may appear counterintuitive, this likely represents an at-
tempt by the cell to constrain alternate carbon metabolism, divert-
ing it back to the utilization of preferential carbon sources such as
glucose. The upregulation of alternate carbon catabolism path-
ways suggests that the (p)ppGpp0 strain is unable to accurately
sense external and internal metabolic cues.

The enhanced generation of H2O2 may help explain several
phenotypes of the (p)ppGpp0 strain. The linkage of enhanced
ROS generation with the (p)ppGpp0 strain phenotypes is of par-
ticular interest due to the strain’s enhanced susceptibility to bac-
tericidal antibiotics, reduced survival within murine macro-
phages, and attenuated virulence in two invertebrate models (5,
17). In every case, a negative correlation between ROS generation
and bacterial viability appears to exist, although the model pro-
posing endogenous ROS generation as a common killing mecha-
nism of bactericidal antibiotics was recently challenged (53–55).
In line with the transcriptome analysis that suggested enhanced
metabolic flux, an indicator of increased ROS generation (35), we
detected a �5-fold increase in H2O2 production by the (p)ppGpp0

strain during exponential growth. As a potential protective mech-
anism to compensate for increased ROS production, the tran-
scription of several oxidative stress genes was induced in the
(p)ppGpp0 strain, including NADH peroxidase, peroxiredoxin,
thioredoxin disulfide reductase, and ferrodoxin reductase (see Ta-
ble S1 in the supplemental material). Thus, while the (p)ppGpp0

strain appears to be able to cope with intrinsically higher rates of
intracellular ROS under favorable growth conditions, this strain
may be at the limit of its antioxidant capacity and is, therefore,
more susceptible to exogenous ROS exposure.

Regulation of GTP pools by (p)ppGpp is central to adapta-
tion and survival. Recent advances defining the direct regulation
of GTP homeostasis by (p)ppGpp in B. subtilis and, more impor-
tantly, showing that GTP depletion enhances stress survival inde-
pendently of (p)ppGpp have provided new mechanistic insight
onto the underlying causes of the often divergent phenotypes in
our two SR-defective mutants (the �rsh and �rsh �relQ strains).
In accordance with results for B. subtilis (11), we observed that
(p)ppGpp directly controls GTP homeostasis in E. faecalis. Specif-
ically, HprT and Gmk were inhibited by pppGpp (IC50 ~ 100 �M
for HprT and 400 �M for Gmk) at physiologically relevant levels,
as (p)ppGpp levels can reach low-millimolar levels during a de-

veloped stringent response in other bacteria (56). At an concen-
tration equivalent to that of pppGpp, GTP had no effects on HprT
activity but similar effects on Gmk activity, indicating that
pppGpp inhibition is specific to HprT but nonspecific for Gmk.
Based on our results, pppGpp appears to be a more potent and
specific inhibitor for HprT than Gmk, suggesting that regulation
of HprT by pppGpp is probably the major mechanism for main-
taining GTP homeostasis in E. faecalis. In addition, we observed
GTP accumulation and severe growth inhibition when the
(p)ppGpp0 strain, but not the �rsh strain, was cultured in the
presence of excess guanosine. Thus, it is very likely that the differ-
ent, often opposing, phenotypes of �rsh and (p)ppGpp0 strains
result from differences in GTP levels (low and high GTP, respec-
tively) in these strains. Changes in GTP pools will directly affect
the activity of the metabolic regulator CodY, which senses both
carbon and nitrogen availability by responding to branched-chain
amino acids and GTP levels, creating a complex and integrated
system to control nutrient acquisition and utilization in Gram-
positive bacteria (57). The opposing 4-fold-elevated and no basal
(p)ppGpp levels in �rsh and (p)ppGpp0 strains may then correlate
to reduced and high CodY activity, respectively. In addition to
interference with CodY activity, the guanine energy charge (GTP/
GDP ratio) could also play a more direct role in the phenotypes
associated with the (p)ppGpp0 strain. GTP is a key component of
anabolic cellular processes, including synthesis of stable RNAs,
polyamine synthesis, and all three stages of translation (8, 58).

The relationship between (p)ppGpp and antibiotic tolerance
occurs at levels that do not trigger the classic SR. In Gram-
negative bacteria, recent studies proposed that (p)ppGpp partici-
pates in antibiotic tolerance by (i) controlling ROS metabolism
and activating detoxification enzymes (41, 59), (ii) functioning as
an unconventional metabolic toxin-antitoxin (TA) module (28),
and (iii) potentiating the action of the HipAB TA module (60).
Although we have a relatively good understanding of the under-
lying mechanisms by which (p)ppGpp modulates antimicrobial
tolerance in Gram-negative bacteria, much less is known about
the process in Gram-positive species. Interestingly, two indepen-
dent whole-genome sequencing studies identified point muta-
tions in the rsh gene of Staphylococcus aureus isolates, which re-
sulted in increased accumulation of (p)ppGpp, as being directly
responsible for the emergence of antibiotic-tolerant (persister)
cells (61, 62). Previously, we showed that a complete lack of
(p)ppGpp, as seen in the (p)ppGpp0 strain, resulted in increased
sensitivity to vancomycin (17). However, the �rsh strain showed
enhanced tolerance to vancomycin (17). By expanding our previ-
ous observation to other bactericidal antibiotics, we showed here
that only the (p)ppGpp0 strain, not the �rsh strain, displayed en-
hanced sensitivity to bactericidal antibiotics. Collectively, the dif-
ferences in antibiotic tolerance observed between �rsh and
(p)ppGpp0 strains clearly indicate that (p)ppGpp is central for
antibiotic tolerance but that this phenomenon occurs at
(p)ppGpp concentrations that are much lower than those neces-
sary to activate the SR. While the SR was abolished in both �rsh
and (p)ppGpp0 strains (5), the differences in basal (p)ppGpp and
GTP pools between these two strains appear to be directly associ-
ated with antibiotic tolerance. Work is under way to understand
how small changes in intracellular guanine nucleotide pools, me-
diated by RelQ, enhance E. faecalis tolerance to bactericidal anti-
biotics.
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Concluding remarks. Collectively, our microarray data and
supporting physiological assays indicate that the (p)ppGpp0 strain
cannot control the pace and direction of carbon flow and, as a
result, is unable to sense and respond to environment changes
accordingly. As a consequence, a strain unable to synthesize
(p)ppGpp may have uncontrolled consumption of energy stores,
unbalanced NAD�/NADH ratios, increased ROS generation due
to increased metabolic activity, and unbalanced GTP homeostasis.
All of these factors combined likely reduce the long-term fitness of
the cells.

Since the identification of (p)ppGpp more than four decades
ago, mounting evidence has shown that activation of the SR is
central for controlling responses that promote cell survival during
adverse conditions. In the past few years, stringent control and
(p)ppGpp metabolism have been, once again, the subject of in-
tense research. The picture emerging from these most recent in-
vestigations is that bacteria utilize (p)ppGpp in many different
ways, and that the paradigm for Gram-negative organisms does
not apply fully to Gram-positive bacteria. In this study, we pro-
vided new evidence that the role of (p)ppGpp in the physiology of
Gram-positive bacteria goes well beyond activation of the SR.

MATERIALS AND METHODS
Bacterial strains and growth conditions. E. faecalis OG1RF and its deriv-
atives JAL1 (�rsh, formerly �relA), JAL2 (�relQ), and JAL3 (�rsh �relQ,
formerly �relA �relQ) strains have been previously described (17). For
microarray analysis, cells were grown at 37°C in the chemically defined
medium FMC (63) containing all amino acids, eight vitamins, three
nucleobases (adenine, guanine, and uracil), and salts and supplemented
with 10 mM glucose (FMCG) to an optical density at 600 nm (OD600) of
0.3. To assess the effects of excess guanosine on growth, cells were cultured
in complete FMCG until the OD600 was 0.3 and diluted 1:100 into FMCG
lacking nucleobases but supplemented with increasing concentrations of
guanosine. For detection of (p)ppGpp, overnight cultures were diluted in
fresh FMCG containing reduced phosphate (8.6 mM) (17), grown to an
OD600 of ~0.25, and labeled with 150 �Ci ml�1 of carrier-free
[32P]orthophosphate (PerkinElmer, Waltham, MA) until each culture
reached an OD600 of 0.4 (~50 min for the OG1RF and �relQ strains,
~55 min for the �rsh �relQ strain, and ~70 min for the �rsh strain). For
GTP accumulation experiments, cells were grown in low-phosphate
FMCG lacking nucleotide, nucleoside, or nucleobase supplementation to
an OD600 of 0.3 and labeled with 150 �Ci ml�1 of 32P along with the
simultaneous addition of 2 mM guanosine to the growth medium for
15 min. Control samples received no exogenous guanosine.

Detection of intracellular guanine nucleotides. For (p)ppGpp and
GTP detection, nucleotides were extracted by adding an equal volume of
13 M formic acid followed by two freeze-thaw cycles in a dry-ice--ethanol
bath. Acid extracts were centrifuged, and the supernatants were spotted
onto polyethyleneimine cellulose plates (J. T. Backer/Avantor Perfor-
mance Materials, Center Valley, PA). For two-dimensional (2D) TLC
separation, samples were first separated in 3.3 M ammonium formate,
4.2% boric acid (pH 7.0 with NH4OH), followed by a second-dimension
separation in 1.5 M KH2PO4 (pH 3.4). TLC plates were desalted by soak-
ing for 5 min in methanol before and after each run. (p)ppGpp and GTP
pools were quantified using a phosphorimager (molecular imager FX;
Bio-Rad, Hercules, CA).

RNA extraction. To isolate RNA from E. faecalis, cells were harvested
by centrifugation at 4°C and then treated with the RNA Protect reagent
(Qiagen, Inc., Chatsworth, CA). Total RNA was isolated from homoge-
nized E. faecalis cells by the hot acid-phenol method as described previ-
ously (64). RNA pellets were resuspended in nuclease-free H2O and
treated with DNase I (Ambion/Life Technologies) at 37°C for 30 min. The
RNA was purified again using the RNeasy minikit (Qiagen), including a
second on-column DNase treatment that was performed as recom-

mended by the supplier. RNA concentrations were determined using a
NanoDrop ND-1000 spectrophotometer (Thermo, Fisher Scientific,
Waltham, MA).

Microarray experiments. Transcriptome analysis was performed us-
ing the E. faecalis microarrays provided by the J. Craig Venter Institute
Pathogen Functional Genomics Resource Center (PFGRC). Additional
details regarding the arrays can be found at http://pfgrc.jcvi.org/index
.php/microarray/array_description/enterococcus_faecalis/version1
.html. Microarray experiments were carried out as previously described
(5).

Real-time quantitative PCR. A subset of genes was selected to validate
the microarray analysis by real-time quantitative reverse transcription
(qRT) PCR. Gene-specific primers (see Table S3 in the supplemental ma-
terial) were designed using Beacon Designer 2.0 software (Premier Biosoft
International). Reverse transcription and real-time reverse transcriptase
PCR were carried out on a StepOnePlus real-time PCR system (Life Tech-
nologies, Grand Island, NY) according to protocols described elsewhere
(64). Student’s t test was performed to verify significance of the real-time
PCR quantifications.

Measurement of intracellular pyruvate and extracellular accumula-
tion of fermentation end products. Intracellular pyruvate levels were de-
termined as previously described (65). Briefly, cells were grown in FMCG
to early log phase (OD600 � 0.3), mid-log phase (OD600 � 0.5), and late
log phase (OD600 � 0.7), harvested by centrifugation, and washed twice in
50 mM sodium phosphate buffer (pH 6.7). Cell pellets were lysed using a
bead beater and centrifuged to remove insoluble matter. In opaque 96-
well microtiter plates, 50 �l of soluble lysate was added to 50 �l of reaction
buffer containing 100 mM NaPO4 (pH 6.7), 0.2 mM MgSO4, 10 �M FAD,
0.2 mM thiamine pyrophosphate (TPP), 0.2 U ml�1 pyruvate oxidase,
0.5 U ml�1 horseradish peroxidase (HRP), and 50 �M Amplex UltraRed
(Life Technologies). Reaction mixtures were incubated at 37°C for
30 min, and fluorescence was measured by excitation at 470 nm and
emission at 590 nm. Pyruvate concentrations were normalized to total cell
protein content, determined by bicinchoninic acid (BCA) assay.

Lactic acid, formate, and ethanol were measured using Megazyme
enzymatic kits (Megazyme International, Wicklow, Ireland). Assays were
conducted according to the manufacturer’s protocol using a 96-well plate
format. Acetoin production was measured using a Voges-Proskauer test
adapted for use in a 96-well plate as described previously (66). For all
analyses, cells were grown to early log, mid-log, and late log phase in
FMCG as described above. At the respective time points, aliquots were
centrifuged for 5 min, and the cell-free culture supernatants were stored
on ice, except for aliquots used for pH determination, which were assessed
immediately after centrifugation. Before use in fermentative assays,
chilled supernatants were removed from ice and allowed to equilibrate to
room temperature.

H2O2 measurements. The production of H2O2 was measured using
an H2O2-peroxidase assay kit (Life Technologies). Briefly, cells were
grown to early log, mid-log, or late log phase in FMCG as described above,
harvested by centrifugation, washed once in assay buffer (50 mM Tris-
HCl at pH 7.4), and diluted 1:2 in the assay buffer. Reactions were initiated
by mixing 50 �l of cell suspension with 50 �l of reaction mix (50 mM
Tris-HCl [pH 7.4], 20 �M Amplex UltraRed, and 0.2 U ml�1 horseradish
peroxidase) in opaque 96-well microtiter plates at 37°C for 30 min. Fluo-
rescence was read in a SpectraMax MX5 reader (Molecular Devices LLC,
Sunnyvale, CA) with excitation at 490 nm and emission at 590 nm. To
normalize fluorescence by CFU, cells aliquots from each growth phase
were serially diluted and plated onto BHI agar for colony enumeration.

Purification and enzymatic assays of HprT and Gmk. The genes en-
coding Gmk and HprT from E. faecalis OG1RF were cloned into
pLICTrPC-HA (67) using a ligation-independent cloning technique, and
the recombinant plasmids were transformed into E. coli BL21(DE3). Cells
were grown from a single colony at 37°C in LB supplemented with 100 �g
ml�1 carbenicillin to an OD600 of ~0.6, and isopropyl �-D-1-
thiogalactopyranoside was added to a final concentration of 1 mM. Cells
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were grown for another 3 h before harvest. Proteins were purified using
Ni-NTA spin columns (Qiagen) following the manufacturer’s instruc-
tions. Protein concentration was determined either by Bradford protein
assay (Bio-Rad) or by measuring absorbance at 280 nm using theoretical
molar extinction coefficients. Standard protocols for Gmk and HprT en-
zymatic assays were followed, with minor modifications (11). HprT reac-
tions were performed at 25°C in a 100-�l reaction mix containing 100 mM
Tris-HCl (pH 7.4), 1.2 mM MgCl2, 1 mM 5-phosphoribosyl
1-pyrophosphate (PRPP), 50 �M guanine, 20 nM purified HprT enzyme,
and various pppGpp concentrations. Reactions were initiated by adding
the enzyme and monitored for 10 min by measuring change of absorbance
at 257 nm. Gmk reactions were performed at 25°C in a 100-�l reaction
mix containing 100 mM Tris-HCl (pH 7.5), 100 mM KCl, 10 mM MgCl2,
4 mM ATP, 1.5 mM phospho(enol)pyruvic acid, 250 �M NADH, 2 U
pyruvate kinase (from rabbit muscle; Sigma), 2.64 U L-lactic dehydroge-
nase (from bovine heart; Sigma), 50 �M GMP, 10 nM purified Gmk, and
various pppGpp concentrations. Reactions were initiated by adding GMP
and monitored for 10 min by measuring the change in absorbance at
340 nm. Data were fitted into the equation y � 100%/[1 � (x/IC50)S],
where y is the relative enzyme activity, x is the inhibitor concentration,
and S is the slope factor (GraphPad Prism version 5.02 for Windows;
GraphPad Software, San Diego, CA). To confirm the specificity of HprT
and Gmk inhibition by pppGpp, control reactions were performed using
the conditions described above except that GTP was substituted for
pppGpp at concentrations approximately equivalent to the IC50s of
pppGpp (100 �M for HprT and 400 �M for Gmk).

Antibiotic time-kill kinetics. Cultures were grown in FMCG to expo-
nential phase and diluted in fresh FMCG to 5 � 106 to 1 � 107 CFU ml�1.
Time-kill studies were initiated by adding ampicillin (8 �g ml�1), nor-
floxacin (64 �g ml�1), or chloramphenicol (16 �g ml�1), which repre-
sents 5 to 10 times the MIC of these antibiotics for the wild-type OG1RF
strain. Viable counts were determined by plating cultures on tryptic soy
agar (TSA) plates at time zero, immediately before the addition of antibi-
otic, and then every 24 h following antibiotic exposure.

Microarray data accession number. Microarray data have been de-
posited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo) and are accessible through GEO Series accession number
GSE34561.

SUPPLEMENTAL MATERIAL
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/lookup/suppl/doi:10.1128/mBio.00646-13/-/DCSupplemental.
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