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Abstract: Functionalized cyclic organic carbonates and carbamates are frequently used in a number
of transition metal-catalyzed decarboxylative reactions for the construction of interesting molecules.
These decarboxylative transformations have attracted more and more research attention in recent
years mainly due to their advantages of less waste generation and versatile reactivities. On the basis
of previous reviews on this hot topic, the present review will focus on the development of transition
metal-catalyzed decarboxylative transformations of functionalized cyclic carbonates and carbamates
in the last two years.

Keywords: carbonates; carbamates; decarboxylation; annulation; transition metal
catalysis; heterocycles

1. Introduction

Decarboxylation is generally associated with steps of C–C bond cleavage and CO2 generation.
As the sole byproduct of decarboxylative reactions, CO2 is non-flammable and non-toxic and can be
easily removed from the reaction system; thus, decarboxylative chemistry has become a very important
and attractive strategy in organic synthesis. Carboxylate groups have served as miscellaneous
connection points in the construction of various organic compounds [1–6]. In contrast, cyclic organic
carbonates and carbamates enabled new reactivities that go beyond classical carboxylic acid derivatives.
In the last few years, the research on this topic has been flowered and remarkable progress has been
made by different research groups. Specifically, vinyl and alkynyl substituted cyclic organic carbonates
were used as allylic and propargyl surrogates upon decarboxylation toward the formation of various
interesting O-heterocycles. In contrast, the corresponding vinyl and ethynyl cyclic organic carbamates
also showed marvelous reactivities in the construction of a number of N-heterocycles.

In early 2018, Lu [5], Guo [6] and co-workers conducted a detailed review in this area. In the
presence of transition metal catalysts, a number of structurally diverse N-heterocycles were synthesized
using vinyl or ethynyl cyclic carbamates as starting materials [5]. Decarboxylation of cyclic carbonates
proved to be a powerful tool to achieve chemo-, regio-, stereo- and enantioselective synthesis of
complex structures [6]. As a related research topic, the Harrity group recently released a review of
Pd-catalyzed cyclization reactions via π-allyl-Pd zwitterionic intermediates [7]. In order to avoid
unnecessary duplication, we herein would like to focus on reviewing the latest contributions in
the last two years, especially in transition metal-catalyzed decarboxylative transformations of cyclic
carbonates and carbamates. We will first discuss the decarboxylative chemistry with cyclic carbamates
as starting materials.
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2. Transition Metal-Catalyzed Decarboxylation of Cyclic Carbamates

Cyclic carbamates have been widely used in the synthesis of a range of N-heterocyclic compounds
through a key aza-quinone methide (aza-QM) intermediate. In the presence of a suitable palladium
catalyst, the decarboxylation of vinyl cyclic carbamate would generate a zwitterionic intermediate
(Scheme 1a) [8]. In contrast, the decarboxylation of ethynyl cyclic carbamate toward the formation of a
zwitterionic intermediate generally requires an appropriate copper catalyst (Scheme 1b) [9]. In the
presence of appropriate acceptors, a cyclization process would occur affording various interesting and
useful N-heterocycles. In this section, the examples that have been reviewed by Lu and co-workers
will not be discussed [5].
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Scheme 1. Palladium (a) or Copper (b) catalyzed decarboxylation of cyclic carbamates toward the
formation of zwitterionic intermediates.

Decarboxylative cyclization of vinyl cyclic carbamates and benzylidene malononitriles toward the
formation of chiral tetrahydroquinolines was first reported by Tunge et al. in 2008 [8]. In the following
decade, cycloaddition reactions of vinyl cyclic carbamates with a variety of different electrophiles
and nucleophiles have been boosted. In addition to previous achievements [5], new opportunities
with neoteric acceptors have been discovered (Scheme 2). For instance, the decarboxylative formation
of dihydroquinazolinones through a Pd-catalyzed [4 + 2] cycloaddition using sulfonyl isocyanates
as electrophiles was reported by Shi and co-workers [10]. With the introduction of cyclic imines or
barbiturate-based olefin reactants, it is feasible to construct highly functionalized quinazolines through
decarboxylative cycloadditions [11–13]. Most recently, the annulation of deconjugated butenolides
or azlactones with vinyl carbamates towards highly functionalized chiral dihydroquinol-2-ones was
released by the Xiao group [14]. It was found that the utilization of the newly exploited chiral P,S-ligand
and hydrogen bonding is the key to control the regioselectivity for this reaction. Apart from palladium
catalysis, iridium/Brønsted acid co-catalytic system was applied for the preparation of quinolinones
through a formal [4 + 2] cycloaddition by the Shi group [15]. Later, the same group developed a
palladium-catalyzed cascade cyclization reaction of para-quinone methides and cyclic carbamates [16].
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Interestingly, the Zhai group developed a palladium-catalyzed decarboxylative coupling of
arynes and vinyl benzoxazinanones toward the formation of functionalized indoles (Scheme 3a).
In allylic chemistry, the nucleophilic attack of π-allyl palladium intermediate generally occurred at
the terminal or internal carbon. However, this conversion features an intramolecular nucleophilic
attack of the amide group at the central carbon of the π-allyl palladium intermediate, though a
deeper understanding of the mechanism is still required [17]. The Shibata group reported an
unprecedented intermolecular cyclization of cyclic carbamate and sulfur ylides toward the formation
of 4-trifluoromethyl-dihyroquinolines (Scheme 3b, path a); without externally added acceptors, a
cyclization process would also be possible through an intramolecular attack of the zwitterionic π-allyl
intermediate (Scheme 3b, path b) [18]. In contrast, the same group also proved [4 + 1] diastereoselective
intermolecular cyclization using sulfur ylides and non-vinyl-substituted benzoxazinanones, affording
various trifluoromethyl-substituted indolines [19]. Moreover, a three-component domino reaction
via decarboxylation, allylation, and N-H carbene insertion in the sequence was reported by Yang
and co-workers toward the formation of various allylic sulfone-containing amino acid derivatives
(Scheme 3c) [20].

Comparatively, the decarboxylative annulation of ethynyl cyclic carbamates has mostly been
achieved through Cu-allenylidene intermediate. The Cu-allenylidene dipole species could be trapped
by different nucleophiles toward the formation of various functionalized indole skeletons (Scheme 4).
In the presence of phosphonate nucleophile, 2-phosphorylmethyl indoles could be produced with
this strategy [21]. The use of an indole nucleophile allows the facile synthesis of a variety of
3,3’-biindoles [22]. In the presence of an appropriate copper catalyst and chiral urea-cinchona
organocatalyst, enantioselective decarboxylative propargylation and hydroamination of ethynyl
benzoxazinanones were established affording chiral 3-indolin malononitrile derivatives [23]. Notably,
the Zhao group reported a metal-free decarboxylative protocol utilizing propargylic carbamates
and aldehydes as substrates. In this methodology, a range of 4-alkynyl dihydroquinolinones and
2, 3-difunctionalized indoles could be readily synthesized under the catalysis of N-heterocyclic
carbene [24].
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In the presence of suitable reagents, the decarboxylative annulation process using ethynyl cyclic
carbamates proved to be a feasible method for the preparation of N-heterocycles. In this sense, different
chemicals such as pyrazolones, hexahydro-1,3,5-triazines, azlactones, and C,N-cyclic azomethineimines
were submitted for the reactions toward the formation of various N-heterocycles (Scheme 5) [25–28]. It
is worth noting that the Wu group accomplished an enantioselective [4 + 2] cycloaddition reaction of
ethynyl benzoxazinanones and silyloxyfurans toward the formation of tetrahydroquinolines featuring
three stereo carbon centers [29].
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3. Transition Metal-Catalyzed Decarboxylation of Cyclic Carbonates

As stable and readily accessible allylic and propargylic donors, cyclic carbonates have emerged
as highly reactive substrates in various stereo- and enantioselective reactions. In the past ten years,
the synthetic potential of these cyclic carbonates has been greatly demonstrated in a wide variety
of decarboxylative processes. Decarboxylation of vinyl cyclic carbonate with a palladium catalyst
would generate a zwitterionic intermediate featuring a nucleophilic alkoxide and an electrophilic
π-allyl-palladium site. This reactive zwitterionic species can serve as 1,3- or 1,5-dipole. The reaction of
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this dipole species with different cyclization acceptors would lead to formal [3 + 2], [5 + 2], [5 + 3] or [5
+ 4] annulation reactions.

More recently, a palladium and squaramide co-catalyzed decarboxylative [3 + 2] cyclization of
VCCs and β-nitroolefins was achieved by the Zhang group (Scheme 6a) [30]. The chiral squaramide
proved to be vital for achieving high enantioselectivity. A similar strategy was utilized for the
construction of furanbenzodihydropyran skeletons by the same group through a formal [3 + 2]
cyclization with VCC as substrates [31]. With the introduction of coumalates as acceptors, the Guo
group realized the chiral synthesis of nine-membered ethers with excellent enantioselectivities (mostly
> 99% ee) through a tandem [3 + 2] cycloaddition followed by Cope rearrangement (Scheme 6b).
The mechanism was further confirmed by DFT calculations [32].
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In addition to these aforementioned [3 + 2] annulations, the decarboxylative formation of
medium-membered heterocycles through a Pd-catalyzed [5 + n] annulation has been achieved by
different research groups (Scheme 7) [33–38]. For example, the Xiao group realized an enantioselective
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[5 + 2] cycloaddition reaction of VCCs and α-diazoketones by merging photoactivation and Pd
catalysis and a variety of seven-membered lactones bearing chiral quaternary stereocenters with high
enantioselectivity were delivered through this methodology [35].
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Umpolung reactivity of the π-allyl zwitterionic species was first noted by Guo and co-workers [39]
and later, it was further explored by the Zhao group [40]. In the presence of a palladium and
titanium catalyst, the umpolung annulation process occurred with the use of aurones and VCC as
starting materials toward the formation of [6,5] and [5,5] spiro-heterocycles bearing three contiguous
stereocenters (Scheme 8). Mechanistically, it was proposed that the Pd-π-allyl intermediate first
reacted with Ti(OiPr)4, followed by ligand exchange between titanium and palladium resulting in a
titanium-dienolate species through β elimination process.
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Scheme 8. Palladium-titanium relay catalysis enabled umpolung reactivity in the synthesis
of spiro-heterocycles.

The Zhai group accomplished a Pd-catalyzed decarboxylative umpolung reaction of VCCs
producing a variety of structurally diverse and synthetically useful all-carbon α-vinyl quaternary
aldehydes (Scheme 9) [41]. The key step is that the π-allyl-Pd intermediate undergoes β-H elimination
affording a nucleophilic dienolate. Most recently, a [3 + 3] cycloaddition of VCCs and triazinanes was
achieved under the co-catalysis of palladium and Lewis acid towards the formation of polysubstituted
tetrahydropyrimidines by the Yang group. Interestingly in this case, the vinyl carbonates served as a
3-carbon synthon, which is unique in this kind of decarboxylative cycloaddition process [42].
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Unlike the cyclization process mentioned above, in the presence of suitable palladium catalyst and
ligand, the stereoselective synthesis of a variety of highly functionalized allylic alcohols can be realized.
This concept was first proved by Guo and co-workers using aryl amine nucleophiles toward the
formation of highly functionalized (Z)-configured allylic alcohols/amines; the DFT (Density Functional
Theory) studies suggested that the formation of a six-membered palladacyclic intermediate is the key
for excellent stereocontrol [43]. Apart from amines, various other nucleophiles were demonstrated
to be efficient for the syntheses of a huge number of allylic alcohols with excellent stereoselectivity
(Scheme 10) [44–47]. By judicious choice of the palladium catalyst and ligand, the nucleophilic attack
could be switched toward the sterically hindered carbon of the palladium allyl intermediate that
derived from vinyl carbonate; this concept was first demonstrated by Guo and co-workers in the
preparation of chiral α,α-disubstituted allylic aryl amines [48], and later it was further developed
by the Khan group in the synthesis of chiral sulfones [49]. In the presence of naphthol nucleophile,
the Liang group disclosed an unprecedented [3 + 2] or [3 + 3] cycloaddition reaction using VCC as
substrates under palladium catalysis [50]. By simply switching the ligands, the cyclization mode can
be readily controlled toward the formation of O-heterocycles.
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alcohols from VCCs.

In contrast, the catalytic transformations of alkynyl-substituted cyclic carbonates were less
investigated. The alkyne-functionalized carbonates were frequently used as important synthons in
asymmetric propargylation reactions for the construction of quaternary stereocenters. In the presence
of sodium sulfinate nucleophiles and copper catalyst, chiral propargylic sulfones can be synthesized
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with CO2 as the sole byproduct (Scheme 11a) [51]. Moreover, the coupling of malononitrile and
alkynyl-carbonates proved to be feasible resulting in a series of chiral polysubstituted dihydrofurans
with high enantioselectivities (up to 97% ee) (Scheme 11b) [52]. Most recently, the Gong group achieved
the asymmetric synthesis of numerous spiro compounds with this strategy using both ethynylethylene
carbonates and carbamates as starting materials through a NHC/copper cooperative catalytic system
(Scheme 11c) [53].Molecules 2019, 24, x FOR PEER REVIEW 11 of 16 
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4. Miscellaneous Substrates

1,4,2-Dioxazol-5-ones, known as dioxazolones, can be easily prepared from the corresponding
commercially available alkyl carboxylic acids. These substrates are relatively easy to be activated under
mild reaction conditions due to the presence of a weak N-O bond in the heterocycle. In general, due to the
inherent instability, carbonyl nitrenes are prone to undergo Curtius rearrangement affording isocyanates
as the main products. Based on the computational calculations reported by the Chang group [54,55], it
was believed that the Curtius rearrangement is more sensitive to the charge variations of the metal
center than the C-H insertion, thus electron-donating ligands may increase the Curtius-rearrangement
barrier to a larger extent than the C-H insertion barrier. In early 2018, Chang and co-workers developed
a method for the regioselective formation of γ-lactams with iridium catalysis (Scheme 12). The reactions
proceeded smoothly via sp3 and sp2 C-H amidation with exceptional selectivity. The application
potential of the methodology was further demonstrated by the late-stage functionalization of different
amino acid derivatives and other bioactive compounds [54]. Enantioselective nitrene insertion to
C(sp3)-H bonds was also developed by different research groups to afford chiral γ-lactams [55–58].
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Scheme 12. Selective formation of γ-lactams via C-H amidation.

A Rh-catalyzed three-component approach was reported for the synthesis of α-branched amines
with terminal alkenes as substrates. The reactions could be carried out under mild conditions and
tolerated well with different functionalities [59]. Regioselective amidation of allylic alkenes involving
inert C-H activation with the use of 1,4,2-Dioxazol-5-ones as starting materials was also feasible utilizing
Ir or Rh catalyst [60–62]. As analogs of cyclic carbamates, isatoic anhydrides have also emerged
as powerful building blocks for the preparation of functionalized N-heterocycles. For example,
Scheidt and co-workers disclosed an NHC-mediated [4 + 2] cycloaddition of isatoic anhydride and
trifluoromethyl ketones. Various enantioenriched dihydrobenzoxazin-4-ones functionalized with a
CF3 group can be produced with this protocol (Scheme 13a) [63]. In this transformation, the generation
of an NHC-bonded intermediate is vital for the success of the reactions. Additionally, a Brønsted
acid-catalyzed [4 + 3] cyclization of N,N’-cyclic azomethine imines with isatoic anhydrides was
accomplished by the Shi group (Scheme 13b) [64].
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5. Conclusions and Outlook

This review briefly summarizes the synthetic application of cyclic organic carbonates and
carbamates with transition metal catalysis in the last two years. More and more novel catalytic
transformations have been realized with efficient and vibrant reactivity and selectivity. The combination
of transition metal catalysis with the use of cyclic carbamates as starting materials provides new
strategies for the preparation of structurally diverse N-heterocycles. Cyclic carbonates played an
important role in the synthesis of O-heterocycles. The merging of dioxazolones and transition metal
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catalysts proved to be a powerful tool to achieve challenging C–H bond functionalization toward
the formation of interesting compounds. However, most of the decarboxylative transformations
with cyclic carbamate and/or carbonate substrates require expensive transition metal catalysts.
The development of interesting decarboxylative reactions with these cyclic structures as starting
materials with earth-abundant metal alternatives as catalysts would be highly desired and of significance.
Alternatively, the exploration of a metal-free strategy would be highly attractive for pharmaceutical
purposes. Furthermore, the combination of transition metal catalysts with photochemistry, radical
chemistry or organocatalyst may bring new opportunities during the exploration of novel and
interesting chemistry.
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