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ABSTRACT The problem of creating a personalized seizure detection algorithm for newborns is tackled
in this paper. A probabilistic framework for semi-supervised adaptation of a generic patient-independent
neonatal seizure detector is proposed. A system that is based on a combination of patient-adaptive (generative)
and patient-independent (discriminative) classifiers is designed and evaluated on a large database of unedited
continuous multichannel neonatal EEG recordings of over 800 h in duration. It is shown that an improvement
in the detection of neonatal seizures over the course of long EEG recordings is achievable with on-the-fly
incorporation of patient-specific EEG characteristics. In the clinical setting, the employment of the developed
system will maintain a seizure detection rate at 70% while halving the number of false detections per hour,
from 0.4 to 0.2 FD/h. This is the first study to propose the use of online adaptation without clinical labels,
to build a personalized diagnostic system for the detection of neonatal seizures.

INDEX TERMS Neonatal, seizure, detection, online adaptation.

I. INTRODUCTION
Individual healthcare decisions [1] empowered by techno-
logical solutions such as automatic diagnostic systems have
been shown to be more accurate than more generic sys-
tems in many areas of biomedical signal processing. These
systems are built using the data of a targeted user/patient
which eliminates the inter-subject variability of the training
data and allows the system to focus on learning intra-subject
characteristics, thus simplifying the estimation and recogni-
tion problem. Well-known examples include subject-specific
brain computer interfaces [2], patient-specific epilepsy detec-
tion systems [3] and patient-specific diagnostic consultation
However, in the development of an EEG-based seizure detec-
tor for the newborn [5], the EEG data of the baby cannot be
obtained before the baby is born. The successful system must
be able generalize over the pre-recorded and pre-annotated
data from other babies to be able to detect seizures from the
data of the new baby and alarm the clinical personnel. There
are also significant clinical pressures for the availability of

useful information from EEG monitoring, within hours
of birth.

A number of research groups [5]–[13] have previously
developed neonatal seizure detection algorithms (SDA) in
an attempt to assist healthcare professionals with objective
decision support. A typical SDA comprises of the follow-
ing main stages: i) The signal representation stage (feature-
level) – where relevant features are robustly extracted from
the pre-processed EEG signal. ii) The classification stage
(classifier level) – where the extracted feature or feature
vectors are assigned to the seizure or non-seizure class using
a set of rules and thresholds which are either automatically
derived from the data (classifier) [5], [8], [13] or man-
ually adjusted following or mimicking the reasoning of
expert neurologists [6], [7], [9], [12]. iii) The post-processing
stage (decision level) – this involves both temporal smooth-
ing to reduce noise and possibly other transformations that
may offer some support in the decision making process to a
clinician.
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FIGURE 1. From generic to personalized neonatal seizure detector. The adaptation of the generic model can be performed on the fly. The
optional clinical feedback in the testing stage can be used to purify the hypothesised decisions.

A notable improvement has recently been achieved in
neonatal seizure detection with the development of a Sup-
port Vector Machine (SVM) based neonatal seizure detec-
tor [14], [15] which has completed a pre-market European
multi-centre clinical investigation1 to support its regulatory
approval and clinical adoption [16]. This system utilises
an SVM classifier trained on a high dimensional set of
extracted features that carry temporal, frequency, structural
and energy information about the neonatal EEG. The analysis
of algorithmic performance in [17] and [18] revealed that the
performance of the detector is significantly correlated with
seizure duration, amplitude, rhythmicity and the number of
EEG channels involved in the seizure during peak seizure
activity.

The combination of various (even many) classifiers has
been widely researched both theoretically in the litera-
ture [19] and practically through public competitions such
as Kaggle [20]. The underlying principle here is that per-
formance improvement may be obtained from the diversity
of classification methods; popular classifier combinations
include blending, bagging, boosting, stacking, etc. Such clas-
sifier ensembles tend to yield good results when there is a
significant diversity among the models. This diversity can
come from inherent algorithmic randomness (like random

1https://clinicaltrials.gov/ct2/show/NCT02160171,
https://clinicaltrials.gov/ct2/show/NCT02431780

decision trees) or from a deliberate difference in the optimisa-
tion functions used in training (such as the difference between
the discriminative SVM and the generative GMM) or the
usage of different training datasets. For example, consider a
situation in which there are two seizure classifiers; to make
this conceptually easy, consider that one classifier utilises the
EEG and the other uses video. If the EEG based classifier
just misses a seizure, whilst the other classifier confidently
identifies a seizure based on some video cues, it would seem
sensible that given its confidence, the video based classifier
becomes the expert at this particular moment and can there-
fore guide the EEG based classifier to better performance
over this data. Each classifier is looking at the problem in a
different way and may contribute complementary expertise.

In neonatal intensive care units (NICU), neonates that
are suspected of developing neurological complications can
be continuously monitored using EEG for several days;
indeed, pre-term infants can often be monitored over a period
of a few weeks. Seizure characteristics can vary between
neonates and thus long EEG recordings can be exploited,
as shown in Fig. 1, to derive individualized models from
generic patient-independent systems. Such a subject adaptive
system must capture the specifics of the monitored neonate
on-the-fly in order to improve its performance; however, data
annotations are required to drive this optimisation. One way
to achieve this is to utilize clinical feedback for the small
number of suspected events (alarms) and re-build or adapt
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the model to each specific newborn, incorporating the new
annotated information. EEG experts are generally not avail-
able during unsociable hours and NICU staff typically lack
EEG training and many feel unsupported in the interpreta-
tion of neonatal EEG [21]. Since the purpose of building
the automated SDA is to provide continuous objective brain
monitoring that will typically produce alerts when the clinical
expertise is not available – this solution may not be practical.
An alternative solution is to allow the detector to learn from its
own decisions, balancing the gain obtained from new patient-
specific information with the uncertainty of its automated
hypothesised labels.

A patient-adaptive neonatal SDA is proposed here which
combines generic and personalized seizure detectors. Previ-
ous work has demonstrated that different classifiers (even
when trained on the same data) can provide useful comple-
mentary performance to each other for the neonatal patient
independent seizure detection task. The novelty of this cur-
rent study is that a patient adaptive classifier is proposed
that will adapt and improve its performance to a spe-
cific neonate over the first hours after birth, without the
need for clinical labels. A pre-trained patient independent
SVM-based system that was developed in [5] and [14] is
used to automatically provide labels for data from a new
unseen baby which can then be utilised to adapt a Gaus-
sian Mixture Model (GMM) [22] based detector to achieve
improved personalised performance, in real time. To the best
of our knowledge, this work provides the first application
of adaptive personalised neonatal seizure detection without
the need for clinical input – this provides state of the art
performance for neonatal seizure detection.

II. MATERIALS AND METHODS
A. DATASET
The database is composed of EEG recordings from
18 full-term newborns recruited in the Neonatal Intensive
Care Unit (NICU) of Cork University Maternity Hospi-
tal (CUMH), Cork, Ireland. The CareFusion NicOne video
EEGmonitor was used to recordmulti-channel EEG at 256Hz
using the modified 10-20 system of electrode placement
with the following 8 EEG bipolar channels F4-C4, C4-O2,
F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 and C3-T3. All electro-
graphic seizures were annotated independently by an experi-
enced neonatal neurophysiologist (GB) using simultaneous
video EEG. The combined length of the EEG recordings
totalled 816.7 hours with per patient mean/median length of
45.4/48.5 hours and contained 1389 electrographic seizures.
The dataset contains a wide variety of seizure types, includ-
ing both electrographic-only and electro-clinical seizures of
focal, multi-focal and generalized types. The continuous EEG
recordings were not manually edited to remove the large
variety of artifacts and poorly conditioned signals that are
commonly encountered in long EEG recordings in the real-
world NICU environment. An additional dataset of 55 non-
seizure babies (1 hour per baby) is used to augment the
representation of the EEG background activity. This small

dataset is used only for training. The described dataset is used
to evaluate the developed algorithms retrospectively.

For performance evaluation, the leave-one-out (LOO) pro-
cedure was followed where all but one patients’ data are used
for training and the remaining patient’s data are used for test-
ing. The procedure is repeated until each of the 18 patients has
been a test subject and the mean results are reported. LOO is
known to be an unbiased estimation of the true generalization
error [23]. Additionally, the LOO eliminates any subjectivity
from the test protocol, hence it can be repeated and exactly
the same results will be obtained.

This dataset is truly representative of the real-life situation
in the NICU and it allows for a robust estimate of the algo-
rithm performance. In fact, the LOO performance estimated
on this dataset was shown to closely match the performance
which was independently assessed on a separate large clinical
dataset, as reported in [14] and [18].

B. PATIENT INDEPENDENT SEIZURE DETECTION
ALGORITHMS (PI-GMM, PI-SVM, PI-FUSION)
The typical patient-independent SDA consists of the fol-
lowing blocks: EEG signal pre-processing, feature extrac-
tion, modelling, post-processing and decision making.
Three patient independent classification algorithms have
been developed employing: the support vector machine
classifier (PI-SVM), a Gaussian mixture model based
classifier (PI-GMM) and a fusion of the two classifiers
(PI-Fusion). More details on these SDAs including the list
of extracted features and the probabilistic interpretation of
the classifier output can be found in Appendices A-D. These
SDAs as described in [14] and [22] are patient indepen-
dent systems, which have no prior sight of the EEG of the
neonate under test. Importantly, these systems have been
developed so that every channel of the EEG is processed
separately and independent of the other channels, which
means that the system is robust to the number and choice of
channels.

Both the GMM and SVM classifiers perform an extraction
of a compact representation of the training data for each class.
For the GMM this is based on the data centroids which are
obtained by averaging over the training data. In the case of
the SVM however, this is based on a subset of the training
data which lies close to the discriminative boundary. While
the support vectors are selected from the training data in
the context of both classes, the GMM centroids are however
class-indifferent, and thus are not optimized to increase the
separability of the problem. The previous work on combining
SVM and GMM classifiers for neonatal seizure detection
showed a significant disparity between classifier decisions,
resulting in an agreement of only approximately 50% of the
false positives [22].

A simple blending of patient-independent GMM and SVM
classifiers using the geometric mean is used to provide the
patient independent SDA, (PI-FUSION):

PPI−Fusion =
√
PPI−GMMPPI−SVM (1)
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FIGURE 2. The ensemble of patient-adaptive GMM and patient-independent SVM SDAs.

Here PPI−GMM and PPI−SVM are the probabilities of
seizure provided by the patient independent GMM and SVM
classifiers respectively. The geometric mean combination
was found more suitable than the arithmetic mean for fusing
classifiers with different probability density functions [20].
In fact, the SVM probabilities usually follow a gamma
distribution and the GMM posteriors follow a Gaussian
distribution.

C. ORACLE SYSTEMS – PATIENT DEPENDENT SDAS
USING PATIENT SPECIFIC CLINICAL LABELS
(PD-SVM AND PD-GMM)
The patient dependent seizure detectors, PD-SVM and
PD-GMM, were constructed in the same way as their
patient-independent alternatives, but with a small portion
(a few minutes) of the test patient data (with ‘true’ clini-
cal neurophysiologist annotations) used in training. These
systems, PD-SVM and PD-GMM are referred to as Oracle
systems, as they use labels provided by a clinical expert.
These systems are used to estimate the theoretical per-
formance improvements that could be obtained if some
clinical labels were available for the test patient. In our
case, the Oracle systems were not fully patient-dependent
as they were still trained with data from other patients
(not just with the targeted patient’s data). Moreover, no spe-
cial emphasis was given to the sampling of the tar-
geted patient data – the new data were simply randomly
mixed with the existing training data. These resultant sys-
tems were then tested on the remaining unseen data from
that specific test patient – the systems are therefore no
longer patient-independent as they have seen samples of
seizure and non-seizure activities from the targeted testing
patient.

Patient-dependent SDAs are quite popular in the adult pop-
ulation (especially those that are based on intracranial EEG),
where the data collected during previous hospital visits are
annotated and used to develop patient-specific models for
subsequent visits [24], [20]. In fact, it has been shown in [13]
that a fully patient-dependent neonatal SDA performs much
better than a patient-independent one. However, in the neona-
tal population such systems are impossible as EEG data
from the newborn brain is not typically recorded until the
baby is born. There is a significant clinical time pressure –
the detection system should be functioning and supporting
clinical decisions from the moment the EEG electrodes are

placed on the newborn’s scalp, literally within a few hours
of birth.

The Oracle systems used here mimic a scenario where
small portion of annotated data of the testing subject is avail-
able beforehand: For example when a clinician (a neurophys-
iologist) who is alerted by an alarm generated by the generic
neonatal SDA (SVM or GMM), is able to provide feedback
about the true label of this alarm (as shown in Fig. 1). The
label (seizure or non-seizure) can then be used to adapt auto-
matically the models with this new information, thus making
the models personalised.

D. A SEMI-SUPERVISED LEARNING SCHEME FOR
PATIENT ADAPTIVE SDA (PA-GMM AND PA-FUSION)
This section details an alternative technique for the blending
of the two classifiers where the PI-SVM system is used to
automatically label new data, for example from a new unseen
patient – these labels can then be used for the on-line adapta-
tion of a GMM based detector (PA-GMM). The final ensem-
ble (PA-FUSION) consists of the fixed patient-independent
PI-SVM classifier and the changing patient-adaptive
PA-GMM classifier, which are then blended, as shown
in Fig. 2.

The SVM paradigm has achieved considerable success in
a wide variety of problems in a batch setting where all of
the training data is available in advance. Several learning
techniques have been developed to facilitate SVM training
over very large datasets, however, only a few have been
proposed for incremental, online and active learning. Most
of active learning techniques, such as adiabatic learning [25],
are approximate and require several passes through the data
to reach convergence. Although these algorithms allow for
training on large datasets that is significantly faster than
typical state-of-the-art SVM solvers, they are still incapable
of real-time training and allow for little (or no) control over
the confidence of the new data during the training procedure.
This results in the limited use of these methods in an online
setting suitable for real-time medical applications [26].

In contrast to the SVM, several well-established techniques
exist to perform online learning for a Gaussian mixture model
based classifier. These are widely used in the area of speech
processing, for instance to improve the speech recognition
accuracy by adapting the generic phonetic models to those
of a specific speaker [27], [28].
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1) MAP ADAPTATION OF THE GMM MODEL
Given an ordered set of N new feature vectors X =

{x1, . . . , xN }, a corresponding ordered set of the associated
seizure probabilities produced from the PI-SVM, are gener-
ated as, PS−SVM =

{
PS−SVM ,1,PS−SVM ,2, . . . ,PS−SVM ,N

}
.

The seizure and non-seizure GMMs, are parameterised
by θS =

{
µS,j,wS,j, 6S,j : ∀j ∈ {1, 2, . . . ,MS}

}
and

θNS =
{
µNS,j,wNS,j, 6NS,j : ∀j ∈ {1, 2, . . . ,MNS}

}
, respec-

tively, (see Appendix C). The patient-adaptive models are
then developed by the adaptation of the original patient-
independent models based on new test patient data. The con-
ventional maximum a-posteriori (MAP) adaptation is used
here and consists of the following steps:

a) Compute the occupational likelihood for each feature
vector, xi, with respect to the mth Gaussian component
of each class model θC . The occupational likelihood
determines how relevant a particular new feature vector
is to the given Gaussian component,

PC,m (xi, θC ) =
wC,mg

(
xi|µC,m, 6C,m

)∑MC
j=1 wC,jg

(
xi|µC,j, 6C,j

) . (2)

b) Compute the mean of the adaptation data, weighted
by the occupational likelihood, over the N new feature
vectors,X. For themth Gaussian component of class C ;
this yields,

EC,m (X) =
∑N

i=1 PC,m (xi, θC ) xi∑N
i=1 PC,m (xi, θC )

. (3)

c) Update the new mean of the mth Gaussian component
of class C as the weighted average of the original mean
and the adaptation data mean,

µC,m← αµC,m + (1− α)EC,m (X) . (4)

In this manner every single mean component of the models
for each class are updated based on the weighted average
of the original mean and the mean of the adaptation data
weighted by the occupational likelihood. Three iterations are
used in the MAP adaptation routine in this work.

2) NOVEL MAP ALGORITHM BASED ON THE CONFIDENCE
OF THE AUTOMATED LABELS
When applying MAP adaptation, a label is required for the
new feature vector to indicate which class specific model
should be adapted with these new data. These labels are
generated automatically using the PI-SVM based SDA. Such
labels could be generated by thresholding the SVMprobabili-
ties, for example with a threshold of 0.5. However, the choice
of any specific threshold would have a significant effect on
the performance of the system and as such would therefore
require careful tuning. Moreover, in this approach, the data
would be split between the two class specific models – that
is, a given chunk of data would be used to adapt either the
seizure model or the non-seizure model, depending on its
assigned label. Additionally, as seizures are relatively rare
events, it is likely that the seizure model would not be adapted

at all during the first few hours for a new patient. In order to
maximise the power of the data available from a new patient,
the MAP adaptation was modified to enable the use of all the
new testing data to adapt both the seizure and non-seizure
GMM models, simultaneously.

First, the data set ofN new feature vectors are grouped into
clusters according to their associated PI-SVM probabilistic
output. The grouping is performed by partitioning the prob-
ability space [0 1] into a set of non-overlapping bins; the
k th bin will have a lower limit Pk and an upper limit P̄k .
Given the ordered set of SVM probabilities PS−SVM ={
PSVM ,1,PSVM ,2, . . . ,PSVM ,N

}
, the corresponding ordered

set of N new feature vectors, X = {x1, x2, . . . , xN } is then
clustered for the seizure model using the rule, i ∈ IS,k if Pk ≤
PSVM ,i < P̄k , where IS,k is the indicial set for the k th cluster,
for seizure model adaptation. The N new feature vectors
would also be clustered for the non-seizure model using the
complementary rule, i ∈ INS,k if Pk ≤

(
1− PSVM ,i

)
< P̄k ,

where INS,k is the indicial set for the k th cluster, for the non-
seizure model adaptation. These clusters represent different
confidences of being relevant to a chosen class.

The MAP adaptation algorithm can now be reformulated
as a weighted combination of the statistics of each of the
K groups, with the weight-set, {β1, β2, . . . , βK },

µC,m← αµC,m +

K∑
k=1

βk

(∑
i∈IC,k PC,m (xi, θC ) xi∑
i∈IC,k PC,m (xi, θC )

)
,

where

C ∈ {S,NS} . (5)

The weights sum up to 1; the weight of the original data,
α = 1−

∑K
k=1 βk , determines how aggressive the adaptation

will be on the new data.
Intuitively, the cluster with a higher P̄k should have a larger

gain, βk . The four basic and intuitive weighting schedules
shown in Fig. 3 (a) are investigated. The group weights,
{β1, β2, . . . βK }, for both classes follow either of a simple
straight line, a sigmoid, or two exponential functions each
with a different decay rate. In all cases the weights increase
monotonically with confidence. In contrast to the linear func-
tion which gives linearly decaying weights to the groups as
confidence reduces, the sigmoid function nonlinearly empha-
sises the high-confidence groups and attenuates the low
confidence groups. The two exponential functions are more
conservative than the linear and sigmoid functions, in that
they allow for the adaptation of the class-specific models to
be focussed only on new data where the label confidence is
high.

The number of confidence-based data groups is first cho-
sen and the continuous probability space [0, 1] in Fig. 3 (a)
is then partitioned to provide K clusters. Fig. 3 (b) shows
how for example a sigmoid is sampled to provide the weights
for 5 clusters. Every point in the k th cluster is assigned the
same central weight hk ; after sampling these weights are then
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FIGURE 3. (a) Four different weight functions; here x = PSVM for providing weights for updates to seizure class GMM, x = (1-PSVM) for
updating non-seizure class GMM. (b) An example of a sampled sigmoid weighting using 5 clusters.

normalized to provide a partition of unity,

βk =
hk

h̄+
∑K

k=1 hk
. (6)

The weight of the original data, α, is always the largest and
effectively places more confidence on the original model for
which the training data (with clinical labels) are more certain.

The resultant patient-adaptive GMM system (PA-GMM)
is then blended with the patient-independent SVM clas-
sifier (PI-SVM) using the Eq. 1 to form the final
ensemble (PA-FUSION).

E. PERFORMANCE EVALUATION
The system performance is measured as the average area
under the receiver operating characteristic curve (AUC) [29].
The AUC is calculated by plotting the sensitivity vs speci-
ficity values computed over the probabilistic output produced
for every epoch of EEG. The area under the ROC curve is
an effective way of comparing the performance of different
systems - a random discrimination will give an area of 0.5
under the curve while perfect discrimination between classes
will give unity area under the ROC curve. Additionally,
the AUC90 is reported where the area under the curve is
computed for a specificity larger than 90%. The AUC90 is
more reflective of the potential clinical scenario as it focuses
and quantifies the performance in the area with very low false
detection rates.

Fig. 4 shows an example of the ROC curve for a typical
SDA from which AUC and AUC90 can be computed. The
mean AUC area across all patients is reported in this study.
The ROC area is related to the Wilcoxon test of signifi-
cance [30]. This relationship can be used to derive statistical
properties of the ROC area such as its standard error and
to calculate the statistical significance in the performance of
two algorithms (ROC areas) evaluated on the same data; this

FIGURE 4. Performance of a SDA - measured as the area under the ROC
curve.

TABLE 1. Performance of the neonatal seizure detection systems.

takes into account the correlation of the two ROC curves [14],
[30], [36]. The details of the statistical test can be found
in Appendix E.

III. EXPERIMENTAL RESULTS
Table 1 summarises the performance scores of the
various systems: Baseline patient independent systems

2800414 VOLUME 5, 2017
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FIGURE 5. Performance of the baseline SVM and adaptive fusion system measured as AUC (top) and AUC90 (bottom) as
a function of time.

(PI-SVM, PI-GMM and PI-FUSION), the Oracle systems
using some clinical labels for each test baby (PD-SVM,
PD-GMM) and the Adaptive systems in which automated
labels are generated, (PA-GMM and PA-FUSION).

The SVM patient-independent system (PI-SVM) on this
dataset yields a performance of 96.50% and 82.6% for AUC
and AUC90, respectively. The GMM patient-independent
system (PI-GMM) on this dataset yields a performance of
95.70% and 78.49% for AUC and AUC90, respectively.
The performance of a simple blending of GMM and SVM
(PI-Fusion) results in a performance of 96.62% and 82.65%
for AUC and AUC90. As can be seen, the performance of the
ensemble (PI-FUSION) is slightly improved in comparison
with the best single patient-independent classifier (PI-SVM),
which has an AUC of 96.50%.

The performance of the Oracle patient-dependent sys-
tem, PD-SVM, is 97.17% and 85.80%, for AUC and
AUC90, respectively. The performance of the Oracle patient-
dependent system, PD-GMM is 97.51% and 86.33% for AUC
and AUC90, respectively.

The adaptive GMM system (PA-GMM) provides a perfor-
mance which is an improvement over its patient-independent
GMM counterpart (PI-GMM) – 96.91% vs 95.70%
for AUC, and 82.6% vs 78.4% for AUC90. In fact,
it also outperforms the best baseline patient-independent
SVM system (PI-SVM), 96.91% vs 96.50% for AUC, with
the same performance as measured by AUC90.

Fig. 5 shows how the mean AUC and AUC90 (deter-
mined over all the unseen records in the LOO performance
assessment routine) evolve with training time, as compared
to the baseline PI-SVM performance. In this experiment,
the data from each unseen baby within the LOO validation
scheme is split into one hour segments. The PA-GMM is then

adapted sequentially on each hour of data, until eventually
all the data was used. The labels were produced automati-
cally using the PI-SVM – an exponential weighting function
(exp2) was used with 10 groups. The performance of the
fused classifier PA-FUSION was reported after each hour
of adaptation – this was evaluated over the whole recording
from the beginning, to allow for a fair comparison with the
baseline performance. This procedure was repeated for each
baby within the LOO scheme, where for each unseen test
baby the GMM was re-initialised to the PI-GMM. The last
point on the curves in Fig. 5 indicates the offline performance
of the fused classifier, that is, it provides the performance of a
retrospective corrected viewing of the unseen EEG recording.
Similarly, the first point on the curves in Fig. 5 represents
the performance of the PI-FUSION system which is simply
the geometric mean combination of the baseline PI-SVM
and PI-GMM, when adaptation has not yet been performed.
This evaluation strategy mimics the real-life operation of
the neonatal SDA – the system runs in real-time but it may
re-adjust or correct its previous decisions based on the evi-
dence observed.

Table 2 shows the effect the choice of the weights on the
adaptive systems. Here four different weight profiles were
considered: linear, sigmoidal, an exponential decay, and a
more aggressive exponential decay curve. Table 3 presents
the performance of the proposed patient adaptive systems for
different numbers of data clusters.

Fig. 6 shows the relative improvement in AUC90 for each
subject in the dataset between PA-FUSION and PI-FUSION,
to illustrate the effect of adaptation. The relative improvement
is calculated as (AUC90PA-FUSION – AUC90PI-FUSION)/
(1 – AUC90PI-FUSION). The statistically significant differ-
ence at α set to 1% as in [14] is indicated with the asterisk.
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TABLE 2. Performance with different adaptation weighting functions.

TABLE 3. Performance with different number of groups.

FIGURE 6. Relative improvement in AUC90 between the PA-FUSION and
PI-FUSION systems. ‘∗’ indicates statistical significance at á set to 1%.

IV. DISCUSSION
A. PERFORMANCE OF THE ORACLE SYSTEMS
(PD-SVM AND PD-GMM)
This work explores the unsupervised use of patient specific
test data to improve the developed models. It can be seen that
both PD-SVM and PD-GMM yield performance improve-
ments as compared with their patient-independent counter-
parts. The SVM system improved its AUC from 96.50%
to 97.17% and its AUC90 from 82.6% to 85.80% The GMM
system improved its AUC from 95.70% to 97.51% and its
AUC90 from 78.49% to 86.33%. Comparing the improve-
ments and the absolute performances of the Oracle systems
from Table 1, it can be seen that PD-GMM is more sensitive
to the new data and better exploits even small amounts of
the targeted patient data. The GMM based classifier is also

much easier to adapt because of the availability of the well-
established model adaptation routines – this is highlighted by
the performance improvement achieved for the GMM. As a
comparison, however, the baseline SVM patient-independent
SDA achieved a better performance (96.50% vs 95.70%
for AUC, and 82.6% vs 78.49% for AUC90) when compared
with the patient independent GMM – this shows that for
our experiments that the SVM provided better performance
than the GMM when dealing with batch data; this is also
confirmed in [22].

An important conclusion that can be extracted from the
performance of the Oracle systems is the upper bound on
the performance of automatic adaptive systems. In fact, what
the automatic adaptive SDA does is to create a system-
generated label to avoid consulting a clinician (or to keep
functioning in the absence of a neurophysiologist) and to use
this label to adapt themodels. As no SDA is error-free, the use
of the true label can be seen as an estimate of the maximum
achievable performance given the chosen methodology.

B. PERFORMANCE OF THE PATIENT-ADAPTIVE SYSTEMS
(PA-GMM AND PA-FUSION)
The results of the proposed adaptive SDAs demonstrate the
ability of the proposed method to capture the test patient
specifics by the automatic, unsupervised (in the sense that
there is no human involved), on-the-fly adaptation of the
GMMmodels using well-established adaptation routines as a
core. The combination of PI-SVM and PA-GMM as an adap-
tive fusion system (PA-FUSION) provided comparable and
improved results in AUC and AUC90 values in comparison
with the GMM adaptive system alone (PA-GMM), 97.03% vs
96.91% for AUC, and 84.1% vs 82.6% for AUC90. This indi-
cates that the PA-GMM system still carries complementary
information to the PI-SVM system which is exploited with
the geometricmean fusion – even though it was adapted based
on the automatic labels provided by the PI-SVM classifier.

The Oracle systems achieve the best possible results. The
comparison of the adaptive systems with the Oracle indi-
cates that the adaptive SDA performance is close to that
of the human-supervised adaptation (Oracle). We can also
conclude that the use of a relatively small amount of
manually-annotated data can lead to better performance than
unsupervised adaptation with a lot of data – this is not unex-
pected given that the decisions produced by the PI-SVM
classifier contain errors; these errors inevitably affect the
model purity.

C. HOW THE PERFORMANCE OF PATIENT ADAPTIVE
SYSTEMS (PA-GMM AND PA-FUSION) DEPEND ON THE
DURATION OF ADAPTATION TO A SPECIFIC PATIENT
From Fig. 5 it can be appreciated that the performance of the
adaptive system increases rapidly during the first 6 hours of
recording with little or no additional performance improve-
ment after this time. Since the adaptation is driven by the
PI-SVM system, the PA-GMM adaptive system gradually
changes its nonlinear decision boundaries to approximate
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those of the SVM system - thus improving the GMM perfor-
mance for data for which the SVM was confident. However,
it is essential that the GMM is adapted to effectively fill in
the gaps in its performance, rather than to be over-trained to
fully mimic the PI-SVM. Therefore, as shown in Fig. 5, the
similarity between the outputs of the two classifiers increases
with increasing data which then leads to a slow-down in the
progress of the adaptive fusion system (PA-FUSION). The
adaptation data allow the GMM adaptive system to learn
the specifics of the test patient at the cost of incorporating
into its models the errors that come with the imperfect SVM
hypotheses. At the same time, the amount of the adaptation
data for the GMM adaptive system can be seen as a trade-
off between learning new information (and thus being more
accurate under the above-mentioned constraints) and being
different (and thus complementary) to the SVM baseline.
It can be seen that the in-built intrinsic difference between
the two classifiers such as the generative GMM and the dis-
criminative SVM allows the adaptive fusion system to benefit
from adaptation and to maintain a stable performance even
until the end of the recording.

Our previous work has demonstrated that the performance
of the PI-SVM and PI-GMM systems had a standard devia-
tion of AUC of ∼2% across all iterations of the LOO valida-
tion [22]. The performance of the presented patient-adaptive
method does not therefore depend on the group of patients
used in the training of the PI-SVM but rather on the specifics
of the testing patient – the amount of seizure data present
within the first few hours of recording.

D. THE INFLUENCE OF THE WEIGHT FUNCTION AND THE
NUMBER OF DATA GROUPS ON THE PERFORMANCE OF
PA-GMM AND PA-FUSION SYSTEMS
The weights in Eq. 5 and Eq. 6 control the trade-off between
the gain of learning new patient-specific information and the
cost of introducing noise into the models – non-seizure char-
acteristics to the seizure model and seizure characteristics to
the non-seizure model. It can be seen that the GMM adaptive
systems (PA-GMM)with any of these weighting profiles pro-
vided better performance than the PI-GMM system (results
in Table 1, AUC = 95.70%). The aggressive exponen-
tial decay weighting (Exp2) provides the best trade-off
(AUC = 97.03% as compared to 95.7%). This is a conser-
vative weighting function – the faster the decay, the lower
the influence of low-confidence groups in the adapta-
tion framework. For the number of clusters, the perfor-
mance was observed to be stable in the tested range
(5 – 25 clusters).

It is worth noting that the parameters of the system
were not tuned to reach the best possible performance. The
aim of this study was to demonstrate the potential of the
unsupervised on-line adaptation for improved performance
in neonatal SDA through the personalisation of detection
algorithms. Further performance improvements should be
possible, if instead of sampling common generic weighting
functions, the weights could instead be estimated on the

training data using maximum likelihood optimisation,
for example.

E. TRANSLATIONAL RELEVANCE AND STATISTICAL
SIGNIFICANCE
From Fig. 6 the comparison between patient-adaptive and
patient-independent ensemble systems can be performedwith
the test of statistical significance (Appendix E). Both sys-
tems represent a fusion of PI-SVM and either PI-GMM or
PA-GMM. The significance level to reject the null hypothesis
was set to 1% (α = 0.01). It can be seen that the adap-
tation improves the AUC90 significantly in 8 patients and
decreases the performance in 2 patients. In 4 out of 8 patients
with the improved AUC90, this increase was above 20%.
In the remaining 8 patients, the performance, as measured
in AUC90 with the chosen cut-off point, does not change
significantly. The average relative improvement in AUC90 in
those patients whose AUC90 changed significantly is approx-
imately 10%.

Event based metrics provide a better measure of the clin-
ical benefits of the adaptive fusion system. After 7 hours
of unsupervised adaptation for each unseen patient in the
LOO scheme, the average seizure detection rate (over all
unseen babies) improved from 63% to 70%, while keeping
a fixed false detection rate of 0.2 FD/h (on average 1 false
detection every 5 hours). This corresponds to an additional
90 detected seizures detected over the whole database. Alter-
natively, focusing on the reduction of the FD/h rate, while
maintaining a seizure detection rate at 70%, the number
of false detections per hour was halved, from 0.4 FD/h to
0.2 FD/h.

An example of the real-time functioning of the developed
algorithm is shown in Fig. 7, where the probabilistic output
of the PA-FUSION SDA is contrasted with the probabilistic
output of the baseline PI-SVM SDA for 1 hour of EEG with
the superimposed clinical annotations. It can be seen that
both seizures in the example result in a higher probability
output from the PA-Fusion system, whereas the probabilistic
output for the non-seizure EEG in-between is attenuated. This
improvement comes from learning patient-specific informa-
tion in an unsupervised way which makes the system more
robust to inter-patient variability and allows it to focus the
learning process on the difference between seizure and non-
seizure characteristics.

It is important to realise that from an event detection and
hence clinical point of view, this technique provides per-
formance improvements. If a decision threshold of 0.5 was
utilised in Fig. 7, then both systems would detect the two
seizure events shown; however there would be 4 false alarms
with the PI-SVM approach which would be reduced to 1 false
alarm with the proposed patient adaptive approach. If the
threshold was increased to 0.6, the PI-SVM approach would
miss one seizure event with the PA-FUSION approach still
detecting the 2 events. There would now only be one false
detection for the PI-SVM detector; this was improved to zero
false detections using the proposed PA-Fusion detector.
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FIGURE 7. Real-time functioning of the developed personalised SDA algorithm. A) Probabilistic output of patient-adaptive and
patient-independent SDAs with superimposed ground truth. B) 30s of seizure activity detected with higher probability with
adaptive fusion system. C) 30s of non-seizure activity detected with lower probability.
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FIGURE 8. Neonatal seizure detection system diagram.

TABLE 4. Extracted features of neonatal EEG.

V. CONCLUSIONS
This study has contributed to the implementation of per-
sonalised healthcare in the area of seizure detection in the
newborn. A combination of patient adaptive generative and
patient independent discriminative classifiers has led to an
improvement in the detection of neonatal seizures over the
course of long EEG recordings, as validated on a long
unedited EEG dataset. More accurate detection comes from
both the different nature of the classification approaches and
the real-time incorporation of patient-specific data. To the
best of our knowledge, this is the first study to propose the
use of online adaptation to build a personalized diagnostic
system for detection of neonatal seizures.

APPENDIX A
EEG PRE-PROCESSING AND FEATURE EXTRACTION
The EEG is filtered with a band-pass zero-phase fil-
ter [0.5-13Hz] and down-sampled from 256 to 32 Hz.
A 55-dimensional feature vector is extracted from an
8-second long single-channel EEG epoch, with 50% overlap.
The feature set considered have been shown to be useful
for neonatal seizure detection in a number of papers from

different groups [14], [31] and can capture temporal, fre-
quency, structural and energy information about neonatal
seizures. The features extracted are listed in Table 4. More
details can be found in [14]. The feature vectors are normal-
ized by subtracting the mean and dividing by the standard
deviation to assure commensurability of various features.
These 110 normalisation constants (55means and 55 standard
deviations) are estimated on the training data and applied to
the test data.

APPENDIX B
AN SVM BASED PATIENT INDEPENDENT CLASSIFIER
The SVM-based patient independent neonatal SDA is shown
in Fig. 8 and is described in detail in [5] and [14]. For a test
vector x ∈ Rd , and y ∈ {−1,+1}, the output decision of a
support vector machine is given by:

y (x) = sgn (f (x))

where

f (x) = b+
∑

j∈QSVM
αjyjK

(
x, x̃j

)
(7)

Here QSVM is the indicial set of the retained vectors from
the input training data which are called support vectors. The
jth support vector, x̃j, has an associated training label, yj, and a
non-zero weight αj; b determines the offset of the separating
hyperplane from the origin.

The Gaussian kernel is used:

K
(
x, x̃j

)
= exp

(
−

1
2σ 2

(
x− x̃j

)T (x− x̃j)) (8)

The SVM model was trained on data with per-channel
seizure and non-seizure annotations, thus resulting in a single
generic SVM classifier that can be applied to any EEG chan-
nel from any patient. This classifier was trained to maximise
the margin, with softening of this margin included to allow
a balance between decision errors and over-fitting. In the
dual form, the training algorithm can be stated as the follow-
ing optimisation problem over the training set consisting of
NT input feature vectors,

{
x1, x2, . . . , xNT

}
with associated
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labels
{
y1, y2, . . . , yNT

}
where yi ∈ {−1,+1}.

max
α

 NT∑
i=1

αi −
1
2

NT∑
i=1

NT∑
j=1

αiαjyiyjK
(
x, x̃j

)
s.t.

∑NT

i=1
αiyi = 0 and 0 ≤ αi ≤ C, i = 1, 2, . . . ,NT

(9)

The regularisation constant C helps to control the degree
of over-fitting.

Cross-validation on the training data is used to select suit-
able model parameters for the regularisation constant C and
the Gaussian kernel width σ . During the testing stage, the fea-
tures extracted from each EEG channel of multi-channel
EEG are fed into the trained model so that the SVM output
is generated separately for each EEG channel. The output of
each SVM is converted to posterior probabilities as explained
in Appendix D and then smoothed using a 15th order moving
average filter which corresponds to a span of ∼1 minute of
EEG. Depending on the user interface chosen, the output of
the system can be either per-channel probabilities, or a single
probability trace (by taking the maximum of probabilities
across channels), or binary decisions which are produced by
applying a threshold to the final probability followed by a
collar to compensate for the delay introduced by the moving
average filter.

APPENDIX C
A GENERATIVE APPROACH – USING THE
GAUSSIAN MIXTURE MODEL
The GMM is a generative approach in which the class-
specific probability density functions over the d dimensional
feature space are first modelled using a weighted sum ofMC
Gaussian components, for each class C ,

pc (x|θC ) =
MC∑
j=1

wC,j√
(2π)d

∣∣6C,j
∣∣

× exp
(
−
1
2

(
x− µC,j

)T
6−1C,j

(
x− µC,j

))
= wC,jg

(
x|µC,j, 6C,j

)
(10)

In the neonatal seizure detection problem presented
here it is assumed that there are only two classes,
C ∈ {non− seizure (NS) , seizure (S)}. Again x ∈ Rd is
a feature vector, the mixture weights for class C are wC,j,
j = 1, 2, . . . ,MC . The jth Gaussian component for class C is
a d dimensional Gaussian function with mean vectorµC,j and
covariance matrix 6C,j. The set of Mc mean vectors weights
and covariance matrices then form the parameter set θC for
class C .

In contrast to [22], the training procedure of the seizure
and non-seizure models is different in this study. First, a
so-called Universal Background Model (GMM-UBM) [32]
is constructed by training on all the available training data:
seizure, non-seizure, artefactual. This step does not require

any annotations and can benefit from the vast amount of
data that is available which do not have annotations. The
concept of the GMM-UBM has evolved from the speaker
identification area where it was used to create a general model
of human speech [32] from which a more accurate model
of a targeted speaker could be derived. Similarly, in this
case, the seizure and non-seizure models are derived from the
GMM-UBM using Maximum a Posteriori (MAP) adaptation
based on labelled class-specific data [33]. The main advan-
tage of building seizure and non-seizure models through
the GMM-UBM is that the class models inherit from the
GMM-UBM the wide diversity of signal characteristics
across all possible EEG states that would not have been
modelled with the direct training of individual models.
In effect, this controls the response of the models to ‘other’
EEG activity. If this activity is equally distanced from both
seizure and non-seizure models its effect will be the same and
hence it will not contribute to the decision making.

Principle Component Analysis (PCA) is first applied on
the features to de-correlate them and reduce the dimensional-
ity. This allows a diagonal covariance matrix to be used in
the GMM. In the PCA transformation, 99% of the cumu-
lative energy of the original space is retained whilst reduc-
ing the original 55 dimensional feature space to typically
20-25 dimensions (this depends on the training set used
in the leave-one-out scheme). The 64 Gaussian UBM
model was trained using the Expectation Maximisation (EM)
algorithm, [33], [34]. Class specificmodels were then trained,
one for seizure and one for non-seizure.

In the testing stage, the feature vectors of the test EEG data
are scored against the seizure and non-seizure models and the
output likelihood values are then converted into probabilities
using Bayes’ theorem. If equal priors are assumed, then
similar to Eq. 7, the decision boundary for the GMM can be
expressed as,

y (x) = sgn (f (x))

where

f (x) = lnPS (x|θS)− lnPNS (x|θNS) (11)

The same post-processing stage, as is utilised for the SVM
system is used with the GMM classifier as shown in Fig. 8.

APPENDIX D
A PROBABILISTIC OUTPUT FOR SVM
AND GMM CLASSIFIERS
To determine the class membership of each input vector
both classification algorithms calculate a weighted Gaussian
distance (a similarity measure) from a test feature vector to
each class, represented by either the Gaussian centroids for
GMM or the support vectors for SVM. The output of the
GMM and SVM can be converted to a probability of seizure
using a sigmoid function, in the form:

P (S|f (x)) =
1

1+ exp (λf (x)+ ε)
(12)
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where f (x) is provided for the SVM and the GMM classifiers
using Eq. 7 and Eq. 11, respectively. For the GMM classifier,
Bayes theorem provides λ = −1 and ε = 0. For the
SVM classifier, the parameters λ and ε are trained using
gradient descent over a subset of the training data [35].

APPENDIX E
A COMPARISON OF AUCS FOR TWO ALGORITHMS
The ROC area is related to the Wilcoxon test of signifi-
cance [14], [30], [36]. This relationship can be used to derive
statistical properties of the ROC area such as its standard
error (SE):

SE(γ )

=

√
γ (1−γ )+(nA−1)(Q1−γ 2)+(nN−1)(Q2−γ 2)

nAnN
(13)

where γ is the ROC area, Q1 = γ /(2 − γ ) and Q2 =

2γ 2/(1+γ ), nA and nN are the numbers of seizure (abnormal)
and non-seizure (normal) epochs. To calculate the statistical
significance of a difference of the performance (AUCs) of the
two algorithms evaluated on the same data, we compute the
z statistic by taking into account the correlation of the two
ROC curves [36]:

z =
γ1 − γ2√

SE(γ1)2 + SE(γ2)2 − 2rSE(γ1)SE(γ2)
(14)

where γ1 and γ2 refer to the observed areas associated with
algorithm 1 and 2, respectively. Here, r represents the esti-
mated correlation between the two ROC curves. The resultant
p values of the two-tailed test are reported and values less
than 0.01 are considered significant.
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