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Abstract: Deterministic lateral displacement (DLD) is a microfluidic method for the continuous
separation of particles based on their size. There is growing interest in using DLD for harvesting
circulating tumor cells from blood for further assays due to its low cost and robustness. While DLD
is a powerful tool and development of high-throughput DLD separation devices holds great promise
in cancer diagnostics and therapeutics, much of the experimental data analysis in DLD research still
relies on error-prone and time-consuming manual processes. There is a strong need to automate data
analysis in microfluidic devices to reduce human errors and the manual processing time. In this work,
a reliable particle detection method is developed as the basis for the DLD separation analysis. Python
and its available packages are used for machine vision techniques, along with existing identification
methods and machine learning models. Three machine learning techniques are implemented and
compared in the determination of the DLD separation mode. The program provides a significant
reduction in video analysis time in DLD separation, achieving an overall particle detection accuracy
of 97.86% with an average computation time of 25.274 s.

Keywords: deterministic lateral displacement; machine vision; machine learning; high throughput;
separation and purification; analysis automation

1. Introduction

In 2004, Huang et al. [1] developed a method to separate particles in a solution based
on their size through mechanical methods, known as deterministic lateral displacement
(DLD). DLD was created to improve upon the separation techniques, such as hydrodynamic
chromatography, which had limited resolution, or devices dependent upon diffusion for
the primary separation method [1]. The DLD system has many advantages compared to
other microfluidic particle separation techniques including simplicity, low cost, a unique
flow field for manipulating cells, superior resolution, and a low degree of clogging [2]. For
the original DLD design presented by Huang et al. [1], there was a significant decrease
in process time for DNA separation of bacterial chromosomes, only taking ten minutes
compared to the hours it would take for more traditional techniques. Since DLD is me-
chanically deterministic and continuous, the devices could easily be scaled into a larger
automated system that fully analyzes a sample [3]. DLD is often used to filter the relatively
smaller particles from the larger particles in the solution. One of the more popular types of
media for filtration is human blood. The idea is to filter and sort out circulating tumor cells
from the smaller red blood cells and other blood components. Circulating tumor cells are
approximately 10–20 µm in diameter, whereas the red blood cells are approximately 6 µm
in diameter; other cells, such as leukocytes and lymphocytes, are approximately 5–10 µm in
diameter; platelets are around 10 µm in diameter [4–6]. The extreme rarity of CTCs in the
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peripheral blood (a few CTCs per mL of blood [7,8]) makes CTC detection and separation
from blood cells a difficult task. Consequently, it is necessary to carefully design a DLD
device with an optimal critical diameter to filter a large portion of the circulating tumor
cells solely by size. This means that the DLD should be carefully designed with either
an optimal critical diameter or a range of critical diameters. Much of the early work in
DLD was conducted in the very low Reynolds number (Re). However, this low-throughput
flow is not conducive to the level needed for rapid analysis and testing of devices. Din-
cau et al. [3] explored vortex formation in DLD with circular pillars in high-throughput
environments, while mitigating vortex formation later through the use of airfoil-shaped
pillars [9]. When DLD is high-throughput or high Re flow, there is a shift in particle trajec-
tory due to the transformation of the streamlines [3]. In other words, the intended critical
diameter of the device no longer applies in the same manner. Additionally, the expected
DLD mode will change as the flow rate increases. With the change to high-throughput
DLD experimentation, a large amount of data is generated and current research with DLD
devices often requires time-consuming and error-prone manual analysis of the resulting
particle separation. Depending upon the device and the parameters of the experiment, the
analysis can consume many hours of the researchers’ time, which could be better spent
designing new devices or creating models through simulations that may assist in the design
of the device. Additionally, in order to achieve efficient high-throughput operation, a high
concentration of sample is used, and manual analysis time increases, so there is a need for
an automated system for device analysis.

To the best of our knowledge, there are no prevalent examples of automated analysis
of experimental DLD devices, except for a portable DLD solution from Salafi et al. [10].
The algorithm for the portable DLD was for very low Re flow and was incapable of
differentiating any possible repeated particle detections. The observation window for the
model was only a single line of pixels, which could easily miss the particles if the flow was
in a high Re environment and was not properly set. This design was due to the difficulties
with double-counting particles in past iterations.

In addition, there were examples of automated analysis including machine learning or
deep learning with other microfluidic techniques such as flow cytometry. Heo et al. [11]
presented a multiple-object-tracking solution to obtain single-cell images from a flow with
multiple cells by utilizing convolutional neural networks. While tracking the particles
through the flow, the algorithm determined the best image of each individual particle,
cropped an image of each cell, and then identified the cell type. Another example was the
protocol presented for the Intelligent Image Activated Cell Sorting (iICAS) system created
by Isozaki et al. [12] that was capable of real-time cell sorting and identification in addition
to population-level and cell-level analysis. The algorithm used in the system relied on
machine vision and image processing techniques from the OpenCV library and two deep
convolutional neural networks, constructed on the TensorFlow and Keras frameworks. The
neural networks were trained on over 2000 images of each type and successfully captured
images and identified the cells in less than 32 ms [7].

Chu et al. [8] reported a microfluidic device that utilized machine learning for au-
tomated manufacturing at high-throughput levels of encapsulated objects. The need for
automation of the process was due to the amount of data generated at high-throughput
levels, which would require a large number of trained operators to oversee the microen-
capsulation process. A convolutional neural network was trained on 6.7 million images
for the differentiation of four possible states: dripping, jetting, rupturing, and wetting [13].
The dataset was imbalanced for the images for each of the states, with 80% of the images
consisting of the desired state; this was reflected in the accuracy of identifying the encapsu-
lation state, with higher accuracy for the states with more images. The highest performing
automation occurred when the neural network was trained for the longest time, i.e., 45 h,
on the entire dataset of images.
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The objective of this research paper is to create a software tool that automates the
process of observing and characterizing the flow of particles through high-throughput
experimental DLD devices to minimize the time required for analysis. To achieve this, a
basis of accurately counting the particles with minimal error is established with influence
from a variety of works like those previously mentioned. A particle size similar to circu-
lating tumor cells and other blood components is used for testing. Machine learning is
employed to predict the DLD mode, including either zig-zag, mixed, or bumped modes, as
shown in Figure 1a. The training dataset for the machine learning is built from the particle
detection results of the program. In addition, tools to organize machine learning training
data, the storage of machine learning models, and the testing of the machine learning
models are developed.
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Figure 1. (a) The DLD modes “zig-zag” (green) and “bumped” (blue) occur depending upon the size
of the particle relative to the critical diameter of the device, which is calculated based the parameters
of the device, such as gap size (G), row shift (∆), and period (λ). (b) NACA 0030 Airfoil with a negative
angle of attack. (c) The DLD device used consisted of 3 inputs: one sample input and two buffer
inputs. There was a flow stabilizing region of cylindrical pillars and the displacement or pillar region
of airfoil-shaped pillars. There were 12 outlet channels that were the focus of the observation.

2. Materials and Methods
2.1. Device Design and Experimental Methods

The device used in the development of the program had NACA 0030 symmetric airfoil
pillars with no camber and a 30% thickness-to-cord ratio for the pillar region (Figure 1b).
The airfoils were approximately 90 µm in length and 27 µm in thickness. The airfoils had
a negative 15◦ angle-of-attack (α) from the bulk of the flow. Figure 1c shows the entire
DLD device. The gaps (G) between the airfoil pillars were 40 µm with a row shift (∆) of
8.4 µm. In addition, there was a filter region preceding the main displacement region with
cylindrical pillars that had a decreasing gap size from 50 to 35 µm. A flow stabilizing region
was located between the main array and the inlets of the device to reduce secondary flow
generation before particle injection.
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The SU-8 master molds were fabricated on a silicon wafer using a lithography tool. The
DLD devices were then fabricated using a polydimethylsiloxane (PDMS) molding process.
The cured PDMS was peeled off, and holes were punched for fluidic interconnects. Details of
the procedure used to manufacture the devices can be found in our previous works [3,9,14,15].

Particles injection through the DLD was achieved with the use of three mechanical
syringe pumps (kDScientific KDS-200: KD Scientific Inc. 84 October Hill Road Holliston,
MA 01746, New Era NE-1000X: New Era Pump Systems Inc. 138 Toledo St. Farmingdale,
NY 11735). The overall flow rate was controlled by the ratio of the three pumps [14]. Once
the flow was stabilized, polystyrene particles of 10, 15, or 20 µm diameter were injected into
the flow. For the development of the cell detection program using computer vision, only
videos with the smallest CTCs (10 µm particles) were utilized, with the assumption that if
the model can detect a particle of 10 µm, it shall be able to detect larger particles. It has been
shown by Hou et al. [16] that the results of such particles are extrapolatable to a high degree
of accuracy for actual biological samples. The combined overall flow rate through the device
per the ratio of the syringe pumps ranged from 0.5 to 4.0 mL/min. A high-speed camera
(Phantom Mira 310) was mounted to an optical microscope (Nikon Eclipse Ci) [9] to record
the experiments. The frame rate of the camera varied within 1000–10,000 frames per second,
depending upon the flow rate injected into the DLD.

2.2. Program General Information

Python, specifically version 3.7, was chosen as the programming language due to the
availability of existing libraries and other resources for data management, machine vision,
and machine learning. The Python packages used in the development of the program were
as follows: Imutils [17], MatplotLib [18], NumPy [19], OpenCV [20], pandas [21], PIMS [22],
scikit-learn [23], SciPy [24], and Yellowbrick [25].

Twelve videos with 10 µm diameter particles were used for the analysis tool develop-
ment. Each video was manually analyzed to compare the manual results to the automation
tool results. In order to examine the total particle count and the particle distribution, the
focus of the program was on the outlet channels of the device, as shown in Figure 1. The
computational time for analysis by the program was also calculated. The computational
time did not include any time that required user interaction; the timer was paused any time
for user interaction that occurred in the middle of the computation. The initial testing was
completed on a computer with an Intel i7-7700K processor clocked at 4.20 GHz with 16 GB
of RAM; the total computational time is affected by the computer hardware specifications.

It was decided to create an all-inclusive executable that contained all of the resources
for the program to avoid the user managing proper installations of Python and the appropri-
ate packages and versions. To do this in a clean manner, a graphics user interface (GUI) was
created using Tkinter, a native Python package. An example of the main menu GUI can be
seen in Figure 2. The three major functions available for use are particle detection, machine
learning model training, and testing existing machine learning models with new data. The
particle detection functionality is the basis for the machine learning model training, since it
is used to create a dataset that can be labeled for use in model training. Once an acceptable
model is saved, it can be tested later on new data, but this will not be discussed in detail
due to the similarity to the testing that is completed in the process of training machine
learning models.
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Figure 2. GUI used as the main window, which can launch one of three actions: the particle detection
function, the machine learning model training function, and the function to test the existing machine
learning models, if any are saved.

2.3. Machine Vision—Particle Detection

The analysis automation tool’s particle detection portion has the following major
functions: automatic frame rotation, outlet channel detection, outlet channel wall detection,
and particle detection with repeat detection prevention.

2.3.1. Automatic Frame Rotation

The program was designed with the outlet channels horizontal in the observation
window, or zero degrees in the unit circle. In those cases where the orientation of the
DLD in the frame was not within a certain horizontal tolerance, the program would
automatically rotate and crop the frame to maintain the outlet channels at a horizontal.
This was accomplished through the use of probabilistic Hough transforms.

Similar to the outlet channel detection, the Hough transform output a series of coordi-
nates that represented lines. The angle of these lines was calculated from the horizontal and
then averaged. The frame was then rotated through Imutils’ [17] rotate_bound function to
quickly rotate and crop the image about its center. The Hough transform was then repeated
to confirm that the image after the rotation was within a certain tolerance. If the tolerance
was not met, the process was repeated until the rotation converged into the tolerance;
otherwise, it was stopped after a set number of repetitions. The total angle needed to rotate
the frame was stored for further use. If the angle to rotate the frame was greater than twice
the first value for rotation, the first rotation multiplied by a factor of 1.5 was used instead.

2.3.2. Automatic Outlet Channel Detection

The automatic outlet channel detection was created due to a difference in practices
when capturing data between the different researchers. This problem could have been
solved through a standard procedure when recording data or with a fixture that guided
the operator to the ideal recording location. However, it was decided to add some form of
automated correction to the program.
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The outlet channel detection relies upon OpenCV’s matchTemplate function to per-form
a template matching technique to detect the outlet channels. Two templates were saved into
the system for the DLD device that was prevalent in the development, one for the upper
bound of the outlet channels and another for the lower bound of the outlet channels. The
matchTemplate function would then output the upper-left corner of the matched location
in conjunction with the use of the minMaxLoc function. An example of template matching
results is demonstrated by Figure 3. These locations were used to determine the left and
right bounds of the observation window by averaging the locations of the templates. The
frame must be rotated to the horizontal prior to the template matching function, since the
template matching function is sensitive to changes in rotation angle.
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Figure 3. (a) The results of the template matching process on the original video frame. The location of
the top and bottom templates is indicated by the white outline. The top and bottom templates’ most
likely location is given by the minMaxLoc function when it is run on the output of the matchTemplate
function. The left and right bounds of the observation window are calculated by averaging the results
of the template matching. (b) Hough transform results where the white represents lines that were
detected by the function. The row values that are the upper-most and lowest of the lines detected are
used for the upper and lower bounds of the observation window, respectively.

The upper and lower bounds of the observation window were found with the use
of probabilistic Hough transforms, which were also a function in the OpenCV package.
Based on the parameter input into the function, it output coordinates for lines found within
the frame, based on the left and right bounds from the results of the template matching.
From this, those lines were filtered for the upper-most and lowest lines detected, with the
aim that it would detect the outermost walls of the outlet channels. The bounds of the
observation window were stored for further use throughout the program.

2.3.3. Outlet Channel Wall Detection

In order to properly determine the distribution of the particles in the outlet channels,
the outlet channels themselves had to be defined by the program. The outlet channels
were obtained through a combination of edge detection methods developed by Canny [26]
and the Hough transforms. Canny edge detection resulted in a binary image containing
those regions that were considered edges, or areas of higher contrast, and would typically
represent the walls of the outlet channels if looking at the observation window calculated
from previous steps. Those rows that were considered edges were then combined with
a list of the rows that were considered lines by the Hough transform. All of the rows
were then filtered through by grouping consecutive rows together and breaking the group
when there was a significant gap. A row value was considered a wall when it had the
greatest number of reported values in the list and a gap in reported values existed between
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it and the next grouping of values. An example of the output for the wall detection is
demonstrated in Figure 4a.

Micromachines 2022, 13, 661 7 of 14 
 

 

 
Figure 4. Each section is an example of the following: (a) wall detection results, (b) particle detection 
results, (c) a detailed summary of the particle detection results with the particle distribution calcu-
lation. 

2.3.4. Particle Detection 
The particle detection portion of the program compared two consecutive video 

frames to detect the particles in the flow. For reliable particle detection, the background 

subtraction method has been implemented. The background, consisting of the walls of the 
DLD, had to be isolated from any particles in the flow. Usually, this could be achieved by 
using a blank background image, but this is not easily achieved through various users 
with different practices when recording videos. The background had to be constructed 
from the video itself, with the “zeroth” or the very first frame of the video considered to 
be the most likely frame to contain solely the background. OpenCV’s SimpleBlobDetector 
function was run on the zeroth frame of the video to determine if particles were detected. 
If the zeroth frame was absent of particles, it was used for the background as is; those 
regions that were detected as particles were replaced with the average of each row the 
value was located in. This would replace any pixels that were particles with what should 
be the background brightness levels of the image. An example of this is presented in Fig-
ure 5. 

 
Figure 5. Steps of the particle detection process that include creating a background image for back-
ground subtraction and the intermediate steps of consecutive video frame comparison. (a) A zeroth 

Figure 4. Each section is an example of the following: (a) wall detection results, (b) particle detection
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2.3.4. Particle Detection

The particle detection portion of the program compared two consecutive video frames
to detect the particles in the flow. For reliable particle detection, the background subtraction
method has been implemented. The background, consisting of the walls of the DLD, had to
be isolated from any particles in the flow. Usually, this could be achieved by using a blank
background image, but this is not easily achieved through various users with different
practices when recording videos. The background had to be constructed from the video
itself, with the “zeroth” or the very first frame of the video considered to be the most
likely frame to contain solely the background. OpenCV’s SimpleBlobDetector function was
run on the zeroth frame of the video to determine if particles were detected. If the zeroth
frame was absent of particles, it was used for the background as is; those regions that were
detected as particles were replaced with the average of each row the value was located
in. This would replace any pixels that were particles with what should be the background
brightness levels of the image. An example of this is presented in Figure 5.

Once the background was subtracted from each of the two consecutive frames, the
two frames were subtracted from each other, to only leave those values that would be
particles in the compared values. With the subtraction, those negative values were replaced
with zeros, and any resulting non-zero values should represent particles, as represented
by the gray blobs in Figure 5c. The SimpleBlobDetector function was run on the resulting
values to determine what was actually a particle, with filtering parameters such as the
area and circularity used along with the thresholding capabilities of the function. The
analysis in OpenCV itself provides no limitation on the detection of the cell concentration
that is practical for the application of cell separation. In order to prevent repeat detection, a
system of checks was implemented in the particle detection function, with some simple
assumptions: particles will be flowing from left to right and never in the opposite direction,
any particles that stop moving will be filtered out by the subtraction method, and the
operator set an appropriate frame rate for the flow rate that was set for the system. In
this work, to determine the state of the detected particles, two consecutive frames are
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analyzed, and the locations of the centroids of the particles are stored and compared.
During comparison, if the row–column coordinates of the centroids of the new frame match
with the respective coordinates of the centroids of the previous frame, they are stored in one
array. Otherwise, if the centroids are different they are stored in another array. The row and
column values of the particles of the two arrays are then compared with the previous frame,
and only the new particles that are detected are stored. This yields three different scenarios
for the new particle detection: (i) If the rows are found to be different and outside the
tolerance of one pixel, then it is considered to be a new particle detection. (ii) If the columns
values are different and at the same time if the row value are found to be outside one pixel,
then it is considered to be a new particle. (iii) If the rows and columns of the centroid in the
new frame are found to be same as those of the previous frame, then it is considered to be a
new particle, since the particle will never stay in the same flow due to the motion of the
fluid. These new particles are stored in an array and if the array of the new particle has any
repeated values it is removed. By using the “unique” and “delete” functions of the open
source python library “numpy”, the repeated particles are deleted and only the unique
positions are kept. The rules for determining if a particle was already detected or not can
be seen in Figure 6. An example of the particles detected in the observation window is
displayed in Figure 4b.
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ground subtraction and the intermediate steps of consecutive video frame comparison. (a) A zeroth 

Figure 5. Steps of the particle detection process that include creating a background image for back-
ground subtraction and the intermediate steps of consecutive video frame comparison. (a) A zeroth
frame of a video that contains particles. The image cannot be used as a generic background without
modification due to the presence of particles. (b) The same zeroth frame of the video with the particles
replaced with the average row value. Regions outlined by the red circles represent those particles
that were removed from the newly created background image. (c) The intermediate step after the
comparison or subtraction of consecutive video frames and removal of negative values, before the
SimpleBlobDetector function is run. The gray blobs, outlined by the red circles, are particles that will be
detected by the SimpleBlobDetector and will be compared to the list of previously detected particles.

In order to determine the outlet distribution, the coordinates of the detected particles
were compared to the row values of the outlet channel walls. Each of the particles was
assigned a channel and the coordinates were placed in a data storage matrix. Then, the
percentage of particles in each outlet out of the total was calculated. Figure 4c shows a
detailed summary including the coordinates of the center of each particle and the frame
number it was detected in, along with the particle distribution.



Micromachines 2022, 13, 661 9 of 14
Micromachines 2022, 13, 661 9 of 14 
 

 

 
Figure 6. The rules for determining the repeat particle detection in consecutive frames based on the 
coordinates of the particles detected. 

2.4. Machine Learning—DLD Mode Prediction 
The additional functionality of the automation tool is the DLD mode prediction for 

the inputs to the system. In DLD, particles are separated based on their size for a specific 
flow configuration. Consequently, 10, 15, and 20 µm particles were used to predict the 
different separation regimes. The largest cell will undergo bumped mode, the intermedi-
ate cell will undergo mixed mode, and the smallest cell will undergo zigzag mode (Figure 
1a). The experiments conducted utilized 10, 15, and 20 µm particles to obtain the separa-
tion characteristics for each type of cell at different conditions. The result of the experi-
ments was then used to train a machine learning model. The machine learning feature 
inputs for the DLD mode prediction included the flow rate, the particle size, and the par-
ticle distribution. The tool was created with three machine learning models for compari-
son, along with a method of testing saved machine learning models with newly acquired 
data. The default machine learning models built into the system were the complement 
naïve Bayes (CNB), K-nearest neighbors (KNN), and support vector machines radial basis 
function (SVM RBF) kernel. The three models were built in similar ways. All of them uti-
lized a stratified k-fold cross validation method for the training and testing the data, 
where the data splits conserve the proportionality of the data as much as possible. The 
data were split into five partitions, with one section preserved as the testing data while 
the other four were used as the training data. The five splits were rotated so that each split 
become the testing data. 

The data used to train the machine learning models consisted of 66 runs based on the 
results generated by the particle detection function. For a dataset to train machine learning 
models, this is rather small. Owing to the fact that there is a small number of features that 
control the flow physics of DLD and the separation of cells, a small dataset can be expected 
to give a generalized model. Conducting DLD experiments for data collection, manual 
analysis of the results, and preprocessing of the data to feed into the algorithms for train-
ing are currently the biggest hurdles in working with a larger sample. From the computer 
vision and the machine learning perspectives, the algorithms are scalable for practical ap-
plications in the field of particle/cell separation and do not possess any challenge while 
working with a larger sample size, although computation times are expected to increase. 

After splitting the data, the machine learning models were then trained on each of 
the training and testing data splits, with the highest accuracy data split being the model 

Figure 6. The rules for determining the repeat particle detection in consecutive frames based on the
coordinates of the particles detected.

2.4. Machine Learning—DLD Mode Prediction

The additional functionality of the automation tool is the DLD mode prediction for
the inputs to the system. In DLD, particles are separated based on their size for a specific
flow configuration. Consequently, 10, 15, and 20 µm particles were used to predict the
different separation regimes. The largest cell will undergo bumped mode, the intermediate
cell will undergo mixed mode, and the smallest cell will undergo zigzag mode (Figure 1a).
The experiments conducted utilized 10, 15, and 20 µm particles to obtain the separation
characteristics for each type of cell at different conditions. The result of the experiments was
then used to train a machine learning model. The machine learning feature inputs for the
DLD mode prediction included the flow rate, the particle size, and the particle distribution.
The tool was created with three machine learning models for comparison, along with a
method of testing saved machine learning models with newly acquired data. The default
machine learning models built into the system were the complement naïve Bayes (CNB),
K-nearest neighbors (KNN), and support vector machines radial basis function (SVM RBF)
kernel. The three models were built in similar ways. All of them utilized a stratified k-fold
cross validation method for the training and testing the data, where the data splits conserve
the proportionality of the data as much as possible. The data were split into five partitions,
with one section preserved as the testing data while the other four were used as the training
data. The five splits were rotated so that each split become the testing data.

The data used to train the machine learning models consisted of 66 runs based on the
results generated by the particle detection function. For a dataset to train machine learning
models, this is rather small. Owing to the fact that there is a small number of features that
control the flow physics of DLD and the separation of cells, a small dataset can be expected
to give a generalized model. Conducting DLD experiments for data collection, manual
analysis of the results, and preprocessing of the data to feed into the algorithms for training
are currently the biggest hurdles in working with a larger sample. From the computer
vision and the machine learning perspectives, the algorithms are scalable for practical
applications in the field of particle/cell separation and do not possess any challenge while
working with a larger sample size, although computation times are expected to increase.
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After splitting the data, the machine learning models were then trained on each of
the training and testing data splits, with the highest accuracy data split being the model
that was saved. The only difference is that the KNN model has the additional step of
testing a range of a minimum number of neighbors, from 2 to 55, for each of the data
splits. The smallest number of neighbors with the highest accuracy was saved for its
respective data split. The results for each of the data splits were compared, with the model
with the highest accuracy saved. The results of the highest accuracy machine learning
models were displayed through a classification report and a confusion matrix with the
Yellowbrick package.

3. Results and Discussion
3.1. Machine Vision—Particle Detection

To test the accuracy of the particle detection function of the program, the results of
12 video files were compared between the program and manual analysis. Since the manual
analysis can take upwards of a few hours, it limited the number of files for manual analysis.
The results for the total particle count for the 12 runs compared to the manual analysis can
be seen in Figure 7. The percent error was averaged across the 12 runs, with an average
error of 2.14% and sample standard deviation of 2.42, or an overall total particle count
accuracy of 97.86%.
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Figure 7. The total particle count of the program versus the manual count for the 12 manually
analyzed videos (run number) with 10 µm diameter.

There was a weak inverse linear correlation of −0.122 between the total particle
count and the percent error compared to the manual count. This weak inverse correlation
indicated there was not a significant trend between a larger particle count causing larger
percent errors. The program also calculated the particle distribution, or the number of
particles per channel. Those results were compared to the manually determined particle
distribution. The results of the particle distribution of the program can be seen in Table 1.
Those outlets that were colored yellow, orange, or red indicate instances where the total
number of particles was outside of a five-particle window from the actual distribution
reported by the manual analysis. There were 4/12 runs that had each outlet within a
one-particle tolerance of the manual analysis. Otherwise, the other 8/12 had some amount
of error greater than two to five particles compared to the manual analysis. For a few of
the runs, the assignment of the outlet channel values was skewed upward by one row, or
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in other words, there was a visible shift in the values that were assigned to each outlet.
An example of this is in run 9.

Table 1. The particle distribution throughout the outlets across the twelve runs. The blank spaces
represent zeros. The absolute difference of the program versus manual count is color-coded by the
following rules: �≤±2%, �≤±5%, �≤±8%, �≤±10%, �>±10%.

Outlet #\Run 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1
2 14 3 6 4
3 6 1 2 14 7
4 4 9 6 2 53 36 6
5 23 14 9 10 9 41 10 8
6 13 5 3 4 1 14 10 7
7 3 11 11 6 10 2 30 8 6
8 3 17 13 1 6 1 3 3 24 12 5
9 4 16 4 1 1 5 14 6 5

10 5 17 10 1 8 16 4 3 1
11 7 7 2 1 7 1
12 9 2 1 3 3 1 1

Total 25 32 94 52 35 53 20 20 43 179 105 45

Additionally, the computational time without user interaction was recorded for each
of the 12 runs. The average time to complete the computation of the program was 25.274 s,
with a sample standard deviation of 0.724 s. The computational time will vary with
differences in the specifications of computer hardware.

In terms of meeting the goal set out of providing an accurate particle detection program,
the results show that for the total particle count, the system developed does this with high
accuracy. It is not even more accurate due to the nature of the SimpleBlob-Detector function,
which used some level of thresholding that could exclude some of the particles based on
the brightness in the field. A different system could be developed, but this was sufficient
for the current level of development. However, the particle distribution calculation needs
improvement. With some investigation it was observed that some of the issues stemmed
from the wall outlet determination, which was normally verified by the user, but was not
properly assigning some of the channels. In some cases, the top of the bottom of the frame
was cut off after the rotation, so it is not as robust as needed with determining the outlet
walls. This could also be from the automatic observation window determination, which
could incorrectly skew the observation window and remove the outermost features of the
DLD, depending upon the quality of the recording.

3.2. Machine Learning—DLD Mode Prediction

Due to the size of the dataset used to train all three of the machine learning models, the
results for predicting the three DLD modes were not drastically different across the three.
The results for one of the three models, since they were identical in their visual forms, can
be seen in Figure 8. The accuracy was at 100%, which meant that the precision, recall, and
f1-score were at their highest possible values of 1. The similarity in results shared across
the three models was also due to the nature of the classification with only three possible
outcomes. Although the accuracy for all three models was 100% based on the training with
the small dataset, a more extensive dataset needs to be implemented with more diverse
data across all available features to prevent potential over-fitting.

In addition, the trained machine learning models may struggle to predict the result
accurately if they are presented with a drastically different particle distribution with the
flow rate and particle size. Due to the nature of creating the dataset from the analysis
automation tool, there is room for growing the dataset size with more experimentation.
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were incorrect. (b) The classification report for the CNB machine learning training that displays the
precision, recall, and f1-score for each of the DLD modes.

4. Conclusions

DLD is a microfluidic method that has been widely implemented for various biopar-
ticle separations, such as circulating tumor cells from blood components. A properly
designed DLD for high-throughput flow offers rapid particle separation, but requires the
ability to effectively analyze a vast amount of data. In this work, we have developed a
software tool that automated the process of observing and characterizing the flow of parti-
cles through high-throughput experimental DLD devices to minimize the time required
for analysis.

The analysis automation tool can provide rapid results by reducing the analysis time of
DLD videos in an easy-to-use manner. For the basis of the tool, a reliable method of particle
detection was created with influence from works in automation of other microfluidic
processes. This was accomplished through Python and its available packages in machine
vision techniques such as probabilistic Hough transforms, Canny edge detection, and
template matching, and existing tools such as OpenCV’s SimpleBlobDetector. The analysis
automation tool was able to detect particles consistently and with a high accuracy. The
final version of the program had an overall particle detection accuracy of 97.86% while
completing the computation in an average time of 25.274 s.

Three machine learning techniques, CNB, KNN, and SVM RBF kernel, were imple-
mented and compared in the determination of the DLD mode. Since the dataset used was
rather small the accuracy for the three models was 100% for all of them. If the dataset were
larger, there would be less of a chance that the machine learning models would over-fit on
the data used to train them. More data need to be acquired, analyzed, and labeled to have
a larger dataset when re-training the machine learning models.

Additional functions can be added that enhance the capabilities of the analysis au-
tomation tool. An example is identifying circulating tumor cells in the flow to determine if
they were properly isolated by the device, which could be accomplished through machine
learning by training the algorithm on images of circulating tumor cells and other blood
components. The developed method could reduce human errors and save time for the
separation verification.
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