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Simple Summary: Chromophobe renal cell carcinoma (ChRCC) is the 3rd most common subtype
of renal cell carcinoma (RCC), which is difficult to differentiate from benign renal oncocytoma (RO)
using conventional imaging techniques. The aim of this study was to differentiate chromophobe
renal cell carcinoma and renal oncocytoma non-invasively using radiomics features extracted from
pre-operative computed tomography (CT) scan images in combination with machine learning (ML)
techniques for classification. This would help in providing “virtual biopsy” and may prevent
unnecessary surgical resection for benign renal oncocytoma tumors.

Abstract: Background: ChRCC and RO are two types of rarely occurring renal tumors that are difficult
to distinguish from one another based on morphological features alone. They differ in prognosis, with
ChRCC capable of progressing and metastasizing, but RO is benign. This means discrimination of
the two tumors is of crucial importance. Objectives: The purpose of this research was to develop and
comprehensively evaluate predictive models that can discriminate between ChRCC and RO tumors
using Computed Tomography (CT) scans and ML-Radiomics texture analysis methods. Methods:
Data were obtained from 78 pathologically confirmed renal masses, scanned at two institutions. Data
from the two institutions were combined to form a third set resulting in three data cohorts, i.e., cohort
1, 2 and combined. Contrast-enhanced scans were used and the axial cross-sectional slices of each
tumor were extracted from the 3D data using a semi-automatic segmentation technique for both 2D
and 3D scans. Radiomics features were extracted before and after applying filters and the dimensions
of the radiomic features reduced using the least absolute shrinkage and selection operator (LASSO)
method. Synthetic minority oversampling technique (SMOTE) was applied to avoid class imbalance.
Five ML algorithms were used to train models for predictive classification and evaluated using 5-fold
cross-validation. Results: The number of selected features with good model performance was 20, 40
and 6 for cohorts 1, 2 and combined, respectively. The best model performance in cohorts 1, 2 and
combined had an excellent Area Under the Curve (AUC) of 1.00 ± 0.000, 1.00 ± 0.000 and 0.87 ± 0.073,
respectively. Conclusions: ML-based radiomics signatures are potentially useful for distinguishing
ChRCC and RO tumors, with a reliable level of performance for both 2D and 3D scanning.

Keywords: chromophobe; computed tomography; machine learning; oncocytoma; radiomics;
renal masses

1. Introduction

Renal Cell Carcinoma (RCC) has the highest mortality rates of all genitourinary
malignancies, and its prevalence has been gradually increasing [1–3]. In recent years, there
has been an upsurge in the number of cases of RCC all over the world [4–8]. RCC incidences
have continuously increased by 2–4% per year, and RCC is now the seventh most common
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cancer type in the United States [9]. According to Sung et al. [10], kidney cancer was mainly
accountable for 431,288 clinically diagnosed cases and 179,368 deaths in 2020 globally. In
the UK alone, kidney cancers accounted for 4% of all cancer occurrences between 2016
and 2018. Twelve deaths were reported daily in 2017 in the UK [11] and RCC contributed
immensely to these statistics, as it is responsible for more than 90% of kidney cancers [12].

Renal tumors are quite diverse, having at least 16 distinct subtypes [13], out of which
chromophobe renal cell carcinoma (ChRCC) and renal oncocytomas (RO) are very similar
to each other. ChRCC is responsible for at least 5% of the diagnosed malignant renal
tumors each year [14,15]. In contrast, RO accounts for 3–7% of all benign renal tumor
diagnoses [16]. RO was initially characterized by Zippel in 1942 [17,18], whereas ChRCCs
were first described by Theones et al. in 1985 [19,20]. Because ChRCCs were described
four decades later than ROs, many renal tumors that were suspected to be ChRCCs were
characterized as ROs throughout that period [13]. Nestled pattern, myxoid stroma, granular
cytoplasm, and round nuclei are all likely signs of RO, whereas varied nuclear size, raisinoid
nuclei, and reticular cytoplasm are more likely signs of ChRCC. Typically, RO cells have
round nuclei, but in an investigation of RO cells, a raisinoid nuclei was observed, which is a
key feature of ChRCCs [21]. Surprisingly, components of RCC can be seen in 10–30% of ROs;
hence, the presence of an RO in a sample does not confirm the absence of renal cancer [21].
So, there is a clinical challenge in identifying RO from ChRCCs in a given sample.

Various conventional methods have been used to diagnose and differentiate between
these two highly similar subtypes of renal masses such as biopsy, MRI and CT scans. Each
of these methods has limitations in diagnosing and differentiating the two. Currently, no
proposed CT scan markers can reliably distinguish ROs from RCCs. As a result, most ROs
are classified as suspicious of RCCs on the basis of imaging and are usually exposed to
surgical excision [22]. Similarly, research on the potential of MRI to identify ROs from
ChRCCs concluded that both groups had comparable characteristics, and no MRI clinical
features could help differentiate the two [23].

Unlike MRI and CT scans, a renal mass biopsy presents an opportunity for a pre-
operative diagnosis. However, this approach has various potential problems, making
surgical resection unavoidable. One of the significant disadvantages of using biopsy is that
it is difficult for a pathologist to diagnose renal tumor subtypes accurately from insufficient
tissue biopsy samples, as a whole range of cyto-architectural features are usually required
for analysis to come to a diagnosis [24]. Generally, a lesion is reported as ChRCC if it
looks exactly the same as a chromophobe in the needle biopsy. However, if the pathologist
identifies the lesion as RO in the needle biopsy, it is concluded that more tissue sampling
for diagnosis is needed because of tumor heterogeneity. This is because there are many
variants of ChRCC that are more similar to RO than to ChRCC. In addition to the difficulty in
clinically distinguishing ROs from ChRCCs, the characteristics of these pathological tumors
following renal biopsy sometimes coincide, making diagnosis particularly problematic for
pathologists [13].

Moreover, the available methods of tumor identification are not conclusive, as they
are subjective. Likewise, a biopsy, which is the method in use currently, although accurate,
is an invasive technique that has its own limitations [25]. On the other hand, according
to the literature [26–28], the prevalence of benign tumors ranges between 13 to 30% of
all surgically resected lesions as the possibility of benign renal histopathology in small
renal masses is determined by the size, with about 40% of the tumors being smaller than a
centimeter in diameter [27]. This, as a result, further leads patients to undergo expensive
and unnecessary surgery.

Recent studies show that ROs and ChRCCs have similar histological and cytologic
characteristics and immunohistochemistry (IHC) markers for S100A1 and CD117 KIT [29].
However, varied forms of renal tumors act differently and have different prognoses. They
may be difficult to distinguish due to some overlapping morphological traits and immuno-
histochemical staining patterns [29]. Similarly, non-diagnostic core-needle biopsy and
errors due to sampling, both quite typical with percutaneous biopsy, are limiting factors
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in correctly diagnosing these two RCC subtypes [30]. Therefore, it is essential to tell the
difference between ChRCCs and ROs before surgery to manage a patient’s condition better.

Due to the challenges in differentiating RO from ChRCC clinically and histopatho-
logically through biopsy [29], there is a need to develop a more accurate, reliable, and
clinically applicable method in differentiating RO from ChRCCs. Recently, there has been
technological advancement in medical imaging, enabling medical researchers to capture
tissue anatomy characteristics, physiological functions and quantitative features through
images that help in precision medicine [31]. The advantage of this is that non-invasive
methods of tumor identification have been investigated, hence assisting in solving the
shortcomings of biopsy and efficiently detecting tumor differences.

Quantitative imaging is now possible through advancements such as improved tech-
nology, imaging agents, and standardized protocols. Radiomics is the recent variety of
medical imaging signature breakthroughs, focusing on image analysis enhancements, em-
ploying automatic high-dimension extraction of large volumes of quantitative aspects of
medical image data [32,33]. Ten years ago, Lambin et al. [32] proposed the possibility of
extracting radiomics features based on the differences in solid renal tumors. By extracting
such features from high-dimensional image data, valuable meaningful information can be
extracted instead of visually observing the features [32]. Many studies have investigated the
potential of radiomics texture analysis as an alternative to the traditional imaging methods
of differentiating RO from ChRCC. However, these studies have focused on the theoretical
aspects rather than the practical application of radiomics texture analysis. Likewise, there
is limited research on the use of radiomic feature analysis on rare types of renal tumors.
Moreover, according to our knowledge, no paper has attempted to investigate the effect of
filter features as well as a hybrid study, i.e., the combination of both prospective and retro-
spective research in a single study on the accuracy of radiomic models. The use of all tumor
slices for the prediction of patient histopathology has also not been investigated before.
This is the first paper, according to our knowledge, that has used the highest number of
participants in the differentiation of ChRCC from RO using ML-based radiomic signature.

Therefore, in this research, the prospects of a hybrid study, effects of filter features and
all tumor slices analysis combined with ML techniques have been investigated in an effort
to differentiate RO from ChRCC in order to develop better non-invasive pre-operative
diagnostic models than the traditional methods.

2. Materials and Methods
2.1. Ethical Approval

The East of Scotland Research Ethical Service approved this study. Patients’ medical
health care data were accessed under the Caldicott Approval Number: IGTCAL9519.

2.2. Patients

The research conducted a multi-center study of two institutions. The first cohort was a
prospective protocol-driven analysis from an actively maintained database of 35 Patients
(10 ChRCC and 25 RO) from Ninewells Hospital between 2011 and 2021. In the second
cohort, a retrospective analysis was conducted on 43 patients (27 ChRCC and 16 RO) from
The University of Minnesota [34,35] (Kits-Challenge 2019) between 2010 and 2018, leading
to a total sample size of 78 (37 ChRCC and 41 RO). The cases from both cohorts had been
pathologically confirmed from their respective institutions. The participants in the study
had received pre-operative contrast-enhanced CT scan imaging. However, the first cohort
used the nephrographic phase, whereas the second cohort used the arterial phase. In
the first cohort, the age range was between 43–89 years with an average age of 66 years.
Gender wise, there were 24 males and 11 females. The data was provided through the
institutions’ Picture Archiving and Communication System (PACS) in DICOM format of
size 512 × 512 × 3 pixels. In the second cohort, the ages ranged between 21–83 years with
an average age of 52 years. There were 14 males and 29 females. The data was obtained
through their public repository [34] in NIFTI format.
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2.3. CT Scan

Images from cohort 1 were captured using a Helical CT scanner (GE Healthcare).
The parameters included a large body scan field of view (SFOV), 0.7 sec gantry rotation
time, 1.25 mm slice thickness, 1375:1 pitch, 40 mm detector coverage, Noise Index (NI)
30, Computed Tomography Dose Index Volume (CTDIvol) 9.59 mGy, X-ray tube-voltage
120 kVp, X-ray tube-current 100–560 mA (auto-modulated) depending on the patients’ size.
The contrast agent used is intravenous Omnipaque 300 (80–100 mls as standard per patient).
The contrast pressure injector used is by the manufacturer Bayer and the model is Centargo.
The flow rate of contrast injection for the renal scan is 3 mL/s. The crucial pre-operative CT
nephrographic stage [36–43] that arises 100 to 120 s after IV contrast injection was used for
this study; it provided the clearest identification of renal lesions. There was no standard
protocol for image capturing in cohort 2 [34,35].

2.4. Segmentation

De-identified DICOM image slices from cohort 1 were converted to 2D JPG format
resulting in 967 slices. In addition, the DICOM image slices were also converted to 3D NIFTI
format for each patient using Python software for 3D tumor segmentation. Segmentation of
the 2D slices was done manually by contracting the edges of the tumor by about 2 mm and
delineating the region of interest (ROI). This was done after image grey level conversion
and a Wiener filter with kernel size 2 × 2 had been applied using MATLAB software
version 9.10. A Wiener filter is a filtering technique used to reduce noise and for image
reconstruction to improve medical image quality. Khudayer Jadwa et al. [44] proposed a
Wiener filter-based noise reduction method as an effective approach to enhance the image
quality from CT and Magnetic Resonance Imaging (MRI) [45]. The 2D segmentation was
carried out as shown in Figure 1.

(a) (b) (c)

Figure 1. Manual 2D slice image segmentation using image segmentation toolbox in Matlab. (a) Orig-
inal image with ROI. (b) Segmented tumor from the kidney. (c) Resulting mask from the 2D tumor.

Finally, 3D volume of interest (VOI) segmentation was done semi-automatically using
the Slicer 3D software version 4.11, where the VOI was automatically generated after
segmenting the first few slices. The 3D segmentation was done as shown in Figure 2.
Both 2D and 3D segmentations were performed by a blinded experienced investigator
(A.A) delineating the ROI about the edges of the tumors without prior knowledge of the
patient’s condition. After that, the segmented masses were revised and confirmed by an
experienced urological surgical oncologist (G.N), who further took into consideration the
notes of histology and radiology reports. The study used the histopathological assessment
after biopsy or nephrectomy as the gold standard.
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(a) (b) (c)

(d) (e)

Figure 2. Semi-automatic 3D slice tumor segmentation using the volume editor of the slicer 3D
software. (a) Original axial plane of the 3D image with VOI. (b) Segmented axial tumor plane mask
from the kidney. (c) Segmented tumor mask of coronal plane. (d) Segmented tumor mask of sagittal
plane. (e) 3D segmentation volume mask.

For cohort 2, manual delineation of renal tumor boundary was done by students under
the supervision of a clinician using a web application in an HTML5 canvas developed
in-house by the University of Minnesota. Refinement and the final check of delineated
boundary was done by Nicholas Heller taking into consideration radiology and pathol-
ogy notes [46]. Our research then extracted 1431 2D JPG slices from their resulting 3D
segmentation using the Python programming language version 3.9.

2.5. Different Strategies Applied:

The cohort 1 and 2 data were put together to create a new cohort called the Combined
Cohort. Based on the segmentations, different scenarios were implemented in order to
assist in distinguishing ChRCC from RO in both 2D and 3D imaging. First, the mid cross-
sectional CT slice was extracted from each tumor volume in each of the cohorts to form the
Largest Tumor Slice category. Secondly, all the tumor axial slices in each cohort formed a
category called All Tumor Slices. The analysis of all tumor slices further gave rise to another
category called Per Patient Prediction. The 3D scans in each cohort also formed a different
category called Whole Tumor Volume. For each of these categories of data, original and
filtered features were to be extracted, as will be explained in the proceeding sections. The
diagrammatic visualization of the process is indicated in Figure 3.



Cancers 2022, 14, 3609 6 of 28

Figure 3. The diagrammatic representation of the strategies involved in the distinction of ChRCC
from RO.

2.6. Feature Extraction

After segmentation of the ROI from 2D JPG slices, quantitative data features based
on 6 classes of radiomic features were extracted automatically using the PyRadiomics
library [47] available within the Python foundation software version 3.6.1. To better un-
derstand the representation of the tumor; quantitative features were extracted from all the
slices for each patient using a fixed bin-width of 25. The classes of features were as follows:
The first-order statistic, Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run-Length
Matrix (GLRLM), Gray-Level Size-Zone Matrix (GLSZM), Neighbouring Gray-Tone Differ-
ence Matrix (NGTDM) and Gray-Level Dependence Matrix (GLDM). These feature classes
explain the spread of texture intensity in the CT slices. Refer to Table 1 for the description
of feature classes. Currently, no standard protocol exists on the kind of radiomics features
to be extracted for feature analysis, and this affects the repeatability and consistency of the
results. PyRadiomics, therefore, has attempted to come up with a standardized process for
medical images feature extraction [47].

Radiomic features were also extracted from the 3D VOI. In addition to the 6 classes
of features extracted for 2D, the shape class feature was also extracted to capture the
three-dimensional feature of the delineated regions.

Radiomic feature extraction using the PyRadiomics library was in two folds. First,
the study extracted original features without applying any filters and secondly, extracted
features after eight classes of filters had been applied. These filter classes included: Wavelet
filter, Laplacian of Gaussian filters (LoG), Square, Logarithm, Square-Root, Gradient Ex-
ponential and Local Binary Pattern 2D/3D (LBP). Refer to Table 2 for the description of
filter classes.
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Table 1. Description of PyRadiomics feature classes.

PyRadiomic Feature Classes *

Class Description

First-Order Extracts the voxel-intensities within the region of interest in an image.

GLCM Describes the quantitative view of texture in an image using image histograms.

GLRLM Describes the distribution of pixel-intensities in the image run-length features.

GLSZM Describes the number of related voxels which shares the similar gray-level intensities.

NGTDM Quantifies the difference between a gray-value and the average gray-value of
its neighbors.

GLDM Describes the gray-level dependencies in an image from its central voxel.

Shape Describes the dimension shape/size of a volume or region of interest.

* Source: PyRadiomics [47].

Table 2. Description of PyRadiomics filter classes.

PyRadiomic Filter Classes *

Class Description

Wavelet Breaks down an image into frequency component yielding 8 decompositions.

LoG Enhances areas of rapid intensity changes, i.e., the edges of an image.

Square Linearly scales the square of image intensity back to their original range.

Square-Root Linearly scales the square-root of image intensity back to their original range.

Logarithm Takes the logarithm of absolute-intensities +1 and re-scales them back to their
original range.

Exponential Applies the exponential, in which the filtered intensity is (absolute intensity).

Gradient Returns and calculates the magnitude of an image data.

LBP (2D and 3D) Calculates the local binary pattern in 2D and 3D image using either spherical
harmonics or by-slice operation.

* Source: PyRadiomics [47].

2.7. Feature Pre-Processing and Selection

The data was analyzed for null values and in-cases where nulls were found the sample
was removed from the data. The radiomics features were normalized using a standard
scaler so that the mean of each feature is zero with a standard deviation of one. The ground
truth labels were annotated as 1 and 0 for RO (negative class) and ChRCC (positive class),
respectively, in preparation for classification. The least absolute shrinkage and selection
operator (LASSO) model [48–51] was used in selecting the essential features. Alpha (α)
parameter value determined the coefficient of features, the higher the (α) value, the lower
the coefficient of features and vice versa. The coefficient for each feature was calculated
using 5-fold cross-validation. Features with coefficients greater than zero were retained
for modeling. The cost function of LASSO was calculated as in Equation (1) for feature
coefficients [52].

Cost(w) =
∞

∑
n=i

(yi −
∞

∑
n=i,j

Xi,jβ j)
2 + α

∞

∑
n=i
|β j| (1)

where,

• α denotes the amount of shrinkage;
• yi denotes the true label;
• Xij denotes the features;
• Bj denotes the slope of variable j;
• n is the sample size.
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2.8. Subsampling

The study data was highly imbalanced for both cohort 1 and 2 with the percentage
ratio of ChRCC: RO being 29:71 and 63:37, respectively. To mitigate the challenges of imbal-
anced datasets in the study, synthetic minority over-sampling technique (SMOTE) [53] was
applied to generate synthetic data, which reflects the structure of the original data from the
minority group.

2.9. Statistical Test

A statistical test on the data was conducted using the SciPy package in Python soft-
ware. Comparison between age, tumor size with maximal axial dimension, gender and
histopathology were investigated to determine any significance. Tests assumed a signif-
icance level of 0.05. The Chi-square test and the Student T-test were used to assess the
difference between groups. The confidence interval (CI) of accuracy, sensitivity, speci-
ficity and AUC were also computed using Z-test at 95% CI. The radiomic quality score
(RQS) [54–56] was also calculated to evaluate whether the research followed the scientific
guidelines of radiomic studies. This study followed the guidelines of transparent reporting
of a multi-variable prediction model for individual prognosis or diagnosis (TRIPOD) which
is available at https://www.tripod-statement.org (accessed on 8 April 2022) [55,57].

2.10. Model Training and Evaluation

The study used 3 cohorts, 2 feature types, 3 categories and 5 ML classifiers, namely:
RF with 200 trees, support vector machine (SVM) with a linear kernel, K-nearest neighbour
(KNN), logistic regression (LR) and naive bayes (NB), resulting in 3 × 2 × 3 × 5 = 90
distinct algorithms. Five-fold cross-validation was used for testing the efficiency of models
due to the low sample size. The evaluation metric used included accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC/ROC). Refer to
Figure 4 for the diagrammatic representation of the methodology.

Figure 4. Represents the project methodology process developed by the study.

The Per Patient Prediction analysis of all tumor slices was treated as a special case as
no machine learning algorithm was trained on it directly, but majority voting was done

https://www.tripod-statement.org
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on the All Tumor Slices predictions for each patient to determine the final classification.
Therefore, the final outcome of a patient was the tumor subtype in which most of the
patient’s slices were predicted by each respective model. In cases where majority voting
was not able to accurately distinguish the classes, i.e., when both classes have the same
number of predictions, it is concluded that the patient tumor subtype is wrongly predicted.

3. Results
3.1. Statistical Analysis

Statistical analysis was conducted on patients’ age, tumor size and gender. From
the analysis, it was found that there was no significant difference between tumor size
(p = 0.89), gender (p = 1) or age (p = 0.22) and histopathology in cohort 1 while,
in cohort 2 and combined cohort, age and tumor size were significant. The study con-
ducted a Pearson correlation coefficient test to determine whether the two significant
variables have any effect on the model performance. However, the correlation between
the prediction of the best performing model with age and tumor size was found to be
insignificant and, hence, did not affect model performance. Detailed results are shown
in Table 3. The RQS for the entire data set was found to be 69.7%, signifying that the
research followed scientific radiomic guidelines. The RQS rubric used can be found at
https://www.radiomics.world/rqs2 (accessed on 27 April 2022) [54,55].

Table 3. Statistical demographic characteristics of the patients’ data.

Patients Characteristics

Variable RO ChRCC p-Value Pearson (r)

Age (Mean ± SD) 69.20 ± 9.27 64.59 ± 10.37 0.22

Cohort 1 Tumor Size 3.46 ± 1.08 3.52 ± 1.13 0.89

n = 35 Gender 1

Male 17 (70.83%) 7 (29.17%)

Female 8 (72.73%) 3 (27.27%)

Age (Mean ± SD) 66.56 ± 7.56 53.96 ± 14.49 0.003 * 0.907

Cohort 2 Tumor Size 3.67 ± 1.92 6.09 ± 3.58 0.019 * 0.141

n = 43 Gender 0.39

Male 7 (50.00%) 7 (50.00%)

Female 9 (31.03%) 20 (68.97%)

Age (Mean ± SD) 68.17 ± 8.74 56.83 ± 14.30 0 * 0.308

Combined Tumor Size 3.54 ± 1.47 5.40 ± 3.32 0.002 * 0.107

n = 78 Gender 0.11

Male 24 (63.16%) 14 (36.84%)

Female 17 (42.5%) 23 (57.5%)

* Statistical significant difference is considered at 0.05 significance level.

3.1.1. Feature Pre-Processing, Extraction and Selection

Null values were found in cohort 2 data set reducing its sample size to 42 in all
categories except for Whole Tumor Volume. There were 95 and 109 features extracted from
the 2D and 3D original data, respectively. Likewise, for filtered radiomic features, the total
features extracted were 1304 and 1876 for 2D and 3D data, respectively. SMOTE was used
to increase the number of samples from 967 to 1312, 1431 to 2152 and 2398 to 2774 for
All Tumor Slices for cohorts 1, 2, and combined, respectively. LASSO model was used to
perform feature reduction on each of the data sets. After feature reduction, the total number
of features was reduced as listed in Tables 4–6. These features showed the highest ability to
discriminate between ChRCC and RO. The process by which LASSO estimated the best

https://www.radiomics.world/rqs2
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(α) parameter and selected the best features for both 2D and 3D (original and filtered) for
cohort 1 is displayed in Figures 5 and 6, respectively.

Table 4. Representation of robust features selected for Largest Tumor Slice.

Largest Tumor Slice

Feature Type Selected Feature
Classes n-Features

Cohort 1
Original 2 GLCM, 1 GLSZM, 1

GLDM 4

Filtered 7 GLCM, 3 GLSZM, 2
GLDM, 2 First-Order 14

Cohort 2

Original
18 First-Order, 24

GLCM, 32 GLSZM, 14
GLDM, 5 NGTDM

93

Filtered
12 First-Order, 12

GLCM, 7 GLSZM, 3
GLRLM, 6 NGTDM

40

Combined Original 1 GLCM, 1 GLRLM, 1
GLSZM 3

Filtered 1 GLRLM 1

Table 5. Representation of robust features selected for All Tumor Slices and Per Patient Prediction.

All Tumor Slices and Per Patient Prediction

Feature Type Feature Classes n-Features

Cohort 1

Original

7 First-Order, 5
GLCM, 1 GLRLM, 4
GLSZM, 1 GLDM, 2

NGTDM

20

Filtered

30 First-Order, 27
GLCM, 18 GLSZM, 14
NGTDM, 8 GLDM, 6

GLRLM

103

Cohort 2

Original

8 First-Order, 4
GLCM, 4 GLSZM, 2
GLDM, 1 NGTDM, 1

GLRLM

20

Filtered

36 First-Order, 24
GLCM, 18 GLSZM, 6
GLRLM, 5 GLDM, 8

NGTDM

97

Combined

Original
5 First-Order, 4

GLCM, 1 GLRLM, 3
GLSZM, 1 NGTDM

14

Filtered

25 First-Order, 18
GLCM, 14 GLSZM, 4
GLRLM, 2 GLDM, 7

NGTDM

70
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Table 6. Representation of robust features selected for Whole Tumor Volume.

Whole Tumor Volume

Feature Type Feature Classes n-Features

Cohort 1

Original 2 First-Order, 1
GLCM, 1 Shape 4

Filtered
2 First-Order, 2

GLCM, 2 GLDM, 4
GLSZM

10

Cohort 2

Original
4 First-Order, 2 shape,
4 GLCM, 3 GLSZM, 5

GLDM, 2 NGTDM
20

Filtered
3 First-Order, 1

GLCM, 2 GLDM, 1
NGTDM

7

Combined
Original 1 First-Order, 1 Shape,

1 GLDM 3

Filtered 2 First-Order, 1
GLRLM, 3 GLDM 6

(a) (b)

(c) (d)

Figure 5. Depiction of LASSO path for Largest Tumor Slice feature selection and best (α) parameter
estimation for cohort 1. The black line indicates the mean square error across the five folds. (a) Best
log (α) estimation for 2D original features. The best (α) estimation parameter was found to be 0.11
presented in vertical black dotted line. (b) 2D original feature selection LASSO coefficient path,
4 features were selected. (c) Best log (α) estimation parameter for 2D filtered features. The best (α)
estimation parameter was found to be 0.11. (d) Highlights the 2D filtered feature selection LASSO
coefficient path, 14 features were selected.
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(a) (b)

(c) (d)

Figure 6. Depiction of LASSO path for 3D Whole Tumor Volume feature selection and best (α)
parameter estimation in cohort 1. (a) Best log (α) estimation for 3D original features. The best (α)
parameter was found to be 0.11. (b) 3D original feature selection LASSO path, 4 features were selected.
(c) Best (α) estimation for 3D filtered features. The (α) parameter was found to be 0.11. (d) 3D filtered
feature selection LASSO coefficient path, 10 features were selected.

3.1.2. ML Model Diagnostic Performance

Several evaluation metrics were obtained from radiomics ML models using 5-fold
cross-validation. Tables 7–10 represent the different model performances in each category. A
summary of the best diagnostic performance is displayed in Table 11. The best performance
in cohort 1 was in the prediction per patient from the whole tumor slices original feature
with an AUC value of 1.00 ± 0.000. For cohort 2, the highest AUC was in largest tumor slice
with a value of 1.00 ± 0.000, whereas in the combined cohort, the whole tumor volume with
filters exhibited the best performance with an AUC of 0.87 ± 0.073. Refer to Appendix A
Figures A1–A4 for the best AUC plots from different cohorts and categories.
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• Largest Tumor Slice

Table 7. Representation of diagnostic performance using largest tumor slice for different models.

Largest Tumor Slice

Feature Type Model Accuracy Sensitivity Specificity AUC

RF 0.78 ± 0.115 0.88 ± 0.120 0.68 ± 0.183 0.89 ± 0.087

SVM 0.66 ± 0.131 0.80 ± 0.157 0.52 ± 0.196 0.76 ± 0.118

Original KNN 0.88 ± 0.090 0.96 ± 0.040 0.80 ± 0.157 0.88 ± 0.090

LR 0.72 ± 0.124 0.76 ± 0.167 0.68 ± 0.183 0.72 ± 0.124

Cohort 1 NB 0.76 ± 0.118 0.76 ± 0.167 0.76 ± 0.167 0.87 ± 0.093

(n = 50) RF 0.92 ± 0.075 0.92 ± 0.080 0.92 ± 0.080 0.95 ± 0.050

SVM 0.96 ± 0.040 1.00 ± 0.000 0.92 ± 0.080 0.98 ± 0.020

Filtered KNN 0.92 ± 0.075 0.96 ± 0.040 0.88 ± 0.120 0.92 ± 0.075

LR 0.92 ± 0.075 0.96 ± 0.040 0.88 ± 0.120 0.92 ± 0.075

NB 0.86 ± 0.096 0.84 ± 0.144 0.88 ± 0.120 0.97 ± 0.030

RF 0.69 ± 0.119 0.63 ± 0.182 0.74 ± 0.166 0.79 ± 0.109

SVM 0.65 ± 0.126 0.52 ± 0.187 0.78 ± 0.155 0.36 ± 0.128

Original KNN 0.70 ± 0.125 0.70 ± 0.176 0.70 ± 0.176 0.73 ± 0.118

LR 0.63 ± 0.128 0.52 ± 0.187 0.74 ± 0.166 0.63 ± 0.129

Cohort 2 NB 0.56 ± 0.128 0.37 ± 0.183 0.74 ± 0.166 0.60 ± 0.306

(n = 54) RF 0.85 ± 0.097 0.81 ± 0.151 0.89 ± 0.110 0.93 ± 0.068

SVM 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000

Filtered KNN 0.89 ± 0.083 0.81 ± 0.151 0.96 ± 0.040 0.89 ± 0.083

LR 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000

NB 0.81 ± 0.108 0.78 ± 0.155 0.85 ± 0.136 0.85 ± 0.095

RF 0.61 ± 0.109 0.65 ± 0.148 0.57 ± 0.158 0.65 ± 0.105

SVM 0.70 ± 0.100 0.70 ± 0.142 0.70 ± 0.142 0.72 ± 0.098

Original KNN 0.70 ± 0.100 0.70 ± 0.100 0.70 ± 0.100 0.73 ± 0.097

LR 0.66 ± 0.106 0.63 ± 0.145 0.70 ± 0.142 0.66 ± 0.104

Combined NB 0.68 ± 0.098 0.45 ± 0.154 0.90 ± 0.093 0.73 ± 0.097

(n = 80) RF 0.66 ± 0.106 0.65 ± 0.148 0.68 ± 0.140 0.67 ± 0.103

SVM 0.68 ± 0.098 0.80 ± 0.124 0.55 ± 0.154 0.73 ± 0.097

Filtered KNN 0.70 ± 0.078 0.78 ± 0.144 0.63 ± 0.073 0.72 ± 0.107

LR 0.69 ± 0.099 0.75 ± 0.134 0.62 ± 0.155 0.69 ± 0.101

NB 0.66 ± 0.106 0.78 ± 0.124 0.55 ± 0.154 0.73 ± 0.097
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• All Tumor Slices

Table 8. Representation of diagnostic performance using all tumor slices for different models.

All Tumor Slices

Feature Type Model Accuracy Sensitivity Specificity AUC

RF 0.80 ± 0.023 0.82 ± 0.034 0.78 ± 0.031 0.88 ± 0.018

SVM 0.67 ± 0.028 0.67 ± 0.038 0.67 ± 0.04 0.73 ± 0.024

Original KNN 0.76 ± 0.023 0.88 ± 0.023 0.64 ± 0.038 0.76 ± 0.023

LR 0.67 ± 0.022 0.66 ± 0.032 0.68 ± 0.033 0.69 ± 0.025

Cohort 1 NB 0.64 ± 0.026 0.74 ± 0.033 0.54 ± 0.036 0.69 ± 0.025

(n = 1312) RF 0.90 ± 0.012 0.89 ± 0.023 0.90 ± 0.025 0.96 ± 0.011

SVM 0.84 ± 0.016 0.87 ± 0.026 0.80 ± 0.032 0.90 ± 0.016

Filtered KNN 0.84 ± 0.023 0.96 ± 0.019 0.72 ± 0.037 0.84 ± 0.020

LR 0.84 ± 0.016 0.85 ± 0.026 0.82 ± 0.032 0.84 ± 0.020

NB 0.69 ± 0.023 0.65 ± 0.039 0.72 ± 0.037 0.77 ± 0.023

RF 0.86 ± 0.014 0.80 ± 0.029 0.91 ± 0.021 0.95 ± 0.009

SVM 0.76 ± 0.023 0.69 ± 0.031 0.84 ± 0.019 0.83 ± 0.016

Original KNN 0.85 ± 0.019 0.79 ± 0.022 0.92 ± 0.016 0.85 ± 0.015

LR 0.76 ± 0.016 0.71 ± 0.027 0.81 ± 0.019 0.76 ± 0.018

Cohort 2 NB 0.70 ± 0.014 0.51 ± 0.027 0.88 ± 0.021 0.75 ± 0.018

(n = 2152) RF 0.91 ± 0.011 0.88 ± 0.015 0.94 ± 0.015 0.98 ± 0.006

SVM 0.85 ± 0.012 0.82 ± 0.020 0.88 ± 0.017 0.92 ± 0.011

Filtered KNN 0.90 ± 0.010 0.84 ± 0.025 0.95 ± 0.014 0.85 ± 0.015

LR 0.85 ± 0.018 0.83 ± 0.023 0.87 ± 0.024 0.85 ± 0.015

NB 0.74 ± 0.023 0.58 ± 0.032 0.91 ± 0.014 0.82 ± 0.016

RF 0.79 ± 0.019 0.75 ± 0.019 0.84 ± 0.020 0.88 ± 0.012

SVM 0.72 ± 0.016 0.74 ± 0.027 0.69 ± 0.028 0.80 ± 0.015

Original KNN 0.76 ± 0.023 0.74 ± 0.021 0.79 ± 0.022 0.84 ± 0.014

LR 0.71 ± 0.020 0.72 ± 0.024 0.71 ± 0.021 0.71 ± 0.017

Combined NB 0.72 ± 0.013 0.76 ± 0.023 0.67 ± 0.026 0.77 ± 0.016

(n = 2774) RF 0.84 ± 0.014 0.79 ± 0.022 0.89 ± 0.016 0.92 ± 0.010

SVM 0.78 ± 0.018 0.74 ± 0.022 0.83 ± 0.017 0.85 ± 0.013

Filtered KNN 0.81 ± 0.019 0.76 ± 0.022 0.87 ± 0.018 0.81 ± 0.015

LR 0.78 ± 0.018 0.75 ± 0.025 0.81 ± 0.012 0.78 ± 0.015

NB 0.72 ± 0.017 0.79 ± 0.018 0.65 ± 0.028 0.81 ± 0.015
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• Per Patient Prediction from All Tumor Slices

Table 9. Representation of diagnostic performance using per patient prediction from all tumor slices
using majority voting technique for different models.

Per Patient Prediction

Feature Type Model Accuracy Sensitivity Specificity AUC

RF 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000 1.00 ± 0.000

SVM 0.71 ± 0.154 0.60 ± 0.304 0.76 ± 0.167 0.68 ± 0.155

Original KNN 0.91 ± 0.090 1.00 ± 0.000 0.88 ± 0.120 0.94 ± 0.060

LR 0.66 ± 0.154 0.60 ± 0.304 0.68 ± 0.183 0.64 ± 0.159

Cohort 1 NB 0.66 ± 0.154 0.90 ± 0.100 0.56 ± 0.195 0.73 ± 0.147

(n = 35) RF 0.97 ± 0.030 1.00 ± 0.000 0.96 ± 0.040 0.98 ± 0.020

SVM 0.97 ± 0.030 1.00 ± 0.000 0.96 ± 0.040 0.98 ± 0.020

Filtered KNN 0.91 ± 0.090 1.00 ± 0.000 0.88 ± 0.120 0.94 ± 0.060

LR 0.63 ± 0.159 0.60 ± 0.304 0.64 ± 0.188 0.62 ± 0.161

NB 0.74 ± 0.148 0.70 ± 0.284 0.76 ± 0.167 0.73 ± 0.147

RF 0.67 ± 0.139 0.59 ± 0.188 0.80 ± 0.200 0.70 ± 0.139

SVM 0.60 ± 0.144 0.48 ± 0.190 0.80 ± 0.200 0.64 ± 0.145

Original KNN 0.74 ± 0.188 0.70 ± 0.176 1.00 ± 0.000 0.85 ± 0.108

LR 0.60 ± 0.144 0.48 ± 0.190 0.80 ± 0.200 0.64 ± 0.145

Cohort 2 NB 0.55 ± 0.148 0.30 ± 0.169 1.00 ± 0.000 0.65 ± 0.144

(n = 42) RF 0.76 ± 0.131 0.70 ± 0.176 0.87 ± 0.130 0.79 ± 0.123

SVM 0.71 ± 0.141 0.63 ± 0.182 0.87 ± 0.130 0.75 ± 0.131

Filtered KNN 0.86 ± 0.103 0.78 ± 0.155 1.00 ± 0.000 0.89 ± 0.095

LR 0.67 ± 0.139 0.63 ± 0.182 0.73 ± 0.227 0.68 ± 0.141

NB 0.57 ± 0.151 0.37 ± 0.183 0.93 ± 0.070 0.65 ± 0.144

RF 0.73 ± 0.097 0.59 ± 0.163 0.85 ± 0.111 0.72 ± 0.100

SVM 0.68 ± 0.100 0.73 ± 0.143 0.63 ± 0.145 0.68 ± 0.104

Original KNN 0.69 ± 0.102 0.59 ± 0.163 0.78 ± 0.124 0.70 ± 0.102

LR 0.64 ± 0.104 0.59 ± 0.163 0.68 ± 0.140 0.63 ± 0.108

Combined NB 0.68 ± 0.100 0.73 ± 0.143 0.63 ± 0.145 0.65 ± 0.107

(n = 77) RF 0.75 ± 0.100 0.65 ± 0.152 0.85 ± 0.111 0.76 ± 0.095

SVM 0.69 ± 0.102 0.60 ± 0.153 0.78 ± 0.124 0.68 ± 0.104

Filtered KNN 0.82 ± 0.084 0.76 ± 0.135 0.88 ± 0.097 0.82 ± 0.086

LR 0.70 ± 0.104 0.59 ± 0.163 0.80 ± 0.124 0.70 ± 0.206

NB 0.68 ± 0.100 0.73 ± 0.143 0.63 ± 0.145 0.65 ± 0.107
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• Whole Tumor Volume

Table 10. Representation of diagnostic performance using whole tumor volume for different models.

Whole Tumor Volume

Feature Type Model Accuracy Sensitivity Specificity AUC

RF 0.84 ± 0.102 0.92 ± 0.080 0.76 ± 0.167 0.93 ± 0.070

SVM 0.88 ± 0.090 0.96 ± 0.040 0.80 ± 0.157 0.89 ± 0.087

Original KNN 0.88 ± 0.090 0.84 ± 0.144 0.92 ± 0.080 0.88 ± 0.090

LR 0.80 ± 0.111 0.76 ± 0.167 0.84 ± 0.144 0.80 ± 0.111

Cohort 1 NB 0.78 ± 0.115 0.72 ± 0.760 0.84 ± 0.144 0.85 ± 0.099

(n = 50) RF 0.96 ± 0.040 0.96 ± 0.040 0.96 ± 0.040 1.00 ± 0.000

SVM 0.86 ± 0.096 0.88 ± 0.120 0.84 ± 0.144 0.98 ± 0.020

Filtered KNN 0.94 ± 0.060 1.00 ± 0.000 0.88 ± 0.120 0.94 ± 0.060

LR 0.92 ± 0.075 1.00 ± 0.000 0.84 ± 0.144 0.92 ± 0.075

NB 0.92 ± 0.075 0.92 ± 0.080 0.92 ± 0.080 0.98 ± 0.020

RF 0.76 ± 0.113 0.70 ± 0.176 0.81 ± 0.151 0.88 ± 0.087

SVM 0.80 ± 0.104 0.78 ± 0.155 0.81 ± 0.151 0.88 ± 0.087

Original KNN 0.72 ± 0.122 0.74 ± 0.166 0.70 ± 0.176 0.76 ± 0.114

LR 0.83 ± 0.103 0.78 ± 0.155 0.89 ± 0.110 0.84 ± 0.098

Cohort 2 NB 0.67 ± 0.122 0.59 ± 0.188 0.74 ± 0.166 0.77 ± 0.112

(n = 54) RF 0.83 ± 0.103 0.78 ± 0.155 0.89 ± 0.110 0.93 ± 0.068

SVM 0.87 ± 0.090 0.82 ± 0.141 0.93 ± 0.070 0.94 ± 0.060

Filtered KNN 0.85 ± 0.097 0.85 ± 0.136 0.85 ± 0.136 0.89 ± 0.083

LR 0.81 ± 0.108 0.78 ± 0.155 0.85 ± 0.136 0.82 ± 0.102

NB 0.78 ± 0.109 0.81 ± 0.151 0.74 ± 0.166 0.90 ± 0.080

RF 0.66 ± 0.101 0.63 ± 0.152 0.68 ± 0.145 0.70 ± 0.099

SVM 0.68 ± 0.104 0.59 ± 0.146 0.78 ± 0.127 0.72 ± 0.097

Original KNN 0.70 ± 0.095 0.51 ± 0.155 0.88 ± 0.098 0.67 ± 0.102

LR 0.70 ± 0.095 0.63 ± 0.152 0.76 ± 0.128 0.70 ± 0.099

Combined NB 0.71 ± 0.096 0.46 ± 0.156 0.95 ± 0.050 0.74 ± 0.095

(n = 82) RF 0.71 ± 0.096 0.66 ± 0.144 0.76 ± 0.128 0.80 ± 0.087

SVM 0.77 ± 0.090 0.76 ± 0.128 0.78 ± 0.127 0.84 ± 0.079

Filtered KNN 0.80 ± 0.091 0.78 ± 0.127 0.83 ± 0.114 0.87 ± 0.073

LR 0.77 ± 0.090 0.76 ± 0.128 0.78 ± 0.127 0.77 ± 0.091

NB 0.78 ± 0.090 0.71 ± 0.137 0.85 ± 0.112 0.85 ± 0.077
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• Best Model Performance

Table 11. Summary of best diagnostic performance. The table displays the best AUCs from the
different categories and cohorts.

Largest Tumor Slice

Cohorts Feature Type Model Feature
Selected AUC

1 Filter SVM 14 0.98 ± 0.02
2 Filter SVM 40 1.00 ± 0.000

Combined Original KNN 3 0.73 ± 0.097

All Tumor Slices

1 Filter RF 103 0.96 ± 0.011
2 Filter RF 97 0.98 ± 0.006

Combined Filter RF 70 0.92 ± 0.010

Per Patient Prediction from All Tumor Slices

1 Original RF 20 1.00 ± 0.000
2 Filter KNN 97 0.89 ± 0.095

Combined Filter KNN 70 0.82 ± 0.086

Whole Tumor Volume

1 Filter RF 10 1.00 ± 0.000
2 Filter SVM 7 0.94 ± 0.060

Combined Filter KNN 6 0.87 ± 0.073

4. Discussion

ChRCC was formally categorized as a type of renal tumor in 1998 by the World
Health Organization (WHO) [20]. ChRCC is the third most common type of RCC, which
has a high tendency to metastasize. RO is the most frequent type of benign tumor and
was discovered in 1942 [58]. RO accounts for between 3% to 7% of all diagnosed renal
tumors. RO characteristics mimic those of RCC; hence in most cases, they are diagnosed
incidentally, as they are mistaken for ChRCC [59]. Moch and Ohashi [20] assert that RO
has a morphological heterogeneity similar to that of ChRCC. Baghdadi et al. [26] stated
that both ChRCC and RO have CD117 (+) protein biomarkers, unavailable in other RCC
tumors; hence, it is difficult to distinguish between the two tumors, as their morphological
characteristics overlap.

Currently, the most effective treatment method for renal tumors is surgical resection.
However, both radical and partial nephrectomy have complications. For instance, radical
nephrectomy increases the chances of chronic renal diseases, which leads to cardiovascular
diseases and mortality [16]. Research shows that up to 30% of surgically resected renal
masses are ultimately benign [26], leading many patients to undergo unnecessary surgery.
Biopsy is the most popular pre-operative examination technique, with almost 97% accuracy
for differentiating malignant from benign renal masses in general [16]. However, renal
biopsy has specifically reported difficulties in differentiating ChRCC from RO [20]. There-
fore, this present research focused on ML-based radiomic analysis to distinguish between
ChRCC and RO.

Radiomic analyses refers to the calculation of high dimension texture features using
complex image processing technologies to obtain quantitative texture representations [32].
Using radiomics analysis, very important but small differences that are not detectable
visually can be extracted and analyzed [31]. Radiomics, sometimes also referred to as a
“virtual biopsy“, is advantageous in several ways, as it can capture both intra-tumoral
(within-tumor) and inter-tumor (between-tumors) heterogeneity, and can be performed
multiple times as opposed to biopsy. Therefore, this advanced image processing technique
is potentially a more objective method for tumor analysis.
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Experimental results from this study indicated that for cohort 1, the per patient
prediction with original features had the best predictive performance with an AUC of
1.00 ± 0.000. In cohort 2, largest tumor slice with filter features had the best performance
with an AUC of 1.00 ± 0.000. Finally, in cohort 3, whole tumor volume with filters exhibited
the best performance with AUC of 0.87 ± 0.073. Filtered features were better than the
original features for most models in their ability to distinguish ChRCC from RO. Overall,
whole tumor volume was the best category to represent the heterogeneity of the tumor.
SVM, KNN and RF models all offered promising results in radiomic feature analysis.

The combined cohort had the lowest diagnostic performance in all the categories. This
is likely due to the fact that the cohort is a combination of two different data sets captured
using different scanners and protocols. This led to poor generalization compared to the
other cohorts. However, it is worth noting that the least performance was in the largest
tumor slice with an AUC of 0.73, while the best performance was in whole tumor volume
with AUC 0.87. Therefore, we concluded that in general the model generalized well in the
multi-center study.

There exist limited studies on the differentiation of ChRCC from RO. This is largely
because ChRCC and RO are rarely occurring renal tumors compared to other renal tumor
subtypes. Therefore, most studies focus on the analysis of clear cell RCC (ccRCC) and
papillary RCC (PRCC), which are more common. Sun et al. [60] implemented an SVM
recursive feature elimination (SVM-RFE) classifier with 100 samples (64 malignant and 36
benign) to differentiate between malignant and benign renal tumor subtypes consisting
of one group of PRCC and ChRCC versus another of angiomyolipoma without visible fat
(AMLwvf) and RO. The model yielded a sensitivity of 83.3% and a specificity of 91.7%.
In the paper by Sun et al. [60], 11 features were extracted from the CECT scan, which
was then applied to the ML algorithm. Erdim et al. [61], just like Sun et al. [60] did not
focus on a single malignant and benign renal cell subtype. However, the paper compared
the performance of several ML radiomic feature analysis models between unenhanced
and contrast-enhanced CT phases. The paper conducted a study using a total sample
size of 84 renal tumors consisting of 63 malignant (ccRCC, PRCC and ChRCC) and 21
benign (AMLwvf and RO) [61]. These two studies are general in nature and cannot be
used as diagnostic predictors in the differentiation of ChRCC from RO; as such, our study
has limited the scope of tumor subtypes to only the rarely occurring tumors with similar
morphological characteristics, i.e., ChRCC and RO.

Li et al. [16] explored how enhanced CT quantitative feature analysis can be used for
the differentiation of RO from ChRCC. The paper’s authors conducted a retrospective study
using 61 (17 RO, 44 ChRCC) pathologically confirmed cases of renal tumors. The paper
implemented five ML algorithms for corticomidulary-phase (CMP), nephrographic-phase
(NP), excretory-phase (EP) and combined CMP with NP, out of which the SVM classifier
had the highest accuracy of 0.945. This was done after applying the LASSO technique
for feature selection [16]. Whereas our paper focused on the differentiation of RO from
ChRCC, the central point of departure from the paper by Li et al. [16] was that our research
was based on the comparison between radiomic analysis for original and filtered radiomic
features. Nonetheless, our study went further and did a 2D maximal axial tumor slice
radiomic feature analysis in addition to the 3D analysis. All tumor slices were also analyzed
and a majority voting technique was used to perform the per patient prediction. Through
such analysis, we were able to determine the best criteria for radiomic feature analysis.
Feng et al. [62] indicated that the use of a small data set, especially due to class imbalance,
increased over-fitting and recommended using SMOTE to mitigate such challenges. Li
et al. [16] did not describe how they mitigated the class imbalance in the data; this was
addressed in our paper by implementing SMOTE. Moreover, the paper never looked at
the prospect of a prospective and multi-center study as an alternative and even a better
discriminant compared to a retrospective and single center study. In our research, this was
adequately tackled by conducting both retrospective and prospective research as well as a
single center and multi-center study.
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Baghdadi et al.[26] investigated the possibility of using Artificial Intelligence (AI)
in combination with an image processing signature in a semi-automatic design, using
the tumor to cortex peak early phase enhanced ratio (PEER) to distinguish ChRCC from
RO using convolutional neural network (CNN) segmentation in CT images. The authors
had 192 participants for the training cohort and 20 for the testing cohort. As opposed to
Baghdadi et al. [26], our paper analyzed both 2D and 3D images. Baghdadi et al. [26] did
not investigate the possible importance of radiomics texture analysis for the purpose of
differentiating renal tumors.

Uchida et al. [63] developed a diffusion coefficient map to assist in the distinction
of RO from ChRCC using MRI texture features. The research focused on the analysis
of important texture features in 3D MRI volume. The sample size of the study was 49
(ChRCC:41, RO:8); despite the small sample size and class imbalance in the data, the
authors did not attempt to mitigate or solve the problem, this could have possibly affected
the model performance leading to over-fitting.

Li et al. [16] suggested the use of contrast-enhanced CT images to increase the ac-
curacy of classification models. Kocak, Ates et al. [64] analyzed the importance of edge
segmentation on the performance of a model. The authors concluded that contracting the
tumor edges of segmentation by about 2mm leads to better reproducibility and model per-
formance [64]. In our paper, both manual and semi-automatic methods were explored for
the purpose of segmentation. Lee et al. [65] developed a RF algorithm with an automated
deep learning CNN feature extraction model to differentiate angiomyolipoma without
visible fat (AMLwvf) from ccRCC in CECT images. The model achieved an accuracy of
76.6% for data of 80 samples [65]. Erdim et al. [61] reported that CECT images yielded
comparatively superior predictive performance in comparison to unenhanced CT in texture
analysis. In the paper, the authors compared results from both unenhanced and contrast-
enhanced using different ML algorithms. RF model had the highest accuracy with 88.1%
and 90.5% for unenhanced and contrast-enhanced, respectively [61]. For this reason, our
paper performed an analysis on the CECT scan.

The present study comprehensively explores the possibility of “virtual biopsy” of
renal masses in distinguishing chromophobe renal cell carcinomas from oncocytomas using
radiomics and machine learning techniques. The cohorts used were from two different
institutions, therefore, they provided some assurance of its external validity, however
further research is needed to consolidate this. Our study addressed a specific challenge
of distinguishing oncocytic renal masses. Our observations in combination with other re-
ported studies of more common clear cell carcinoma may make it possible to spare patients
from more biopsies and move us closer to having a more precise diagnosis. Radiomics
based tumor maps, with the ability to capture the patchwork of different types of cancer
cells (heterogeneity), may allow clinicians to obtain a more precise tissue sample during
biopsies as well. The research in virtual biopsy is growing, and since 2015, publications in
this area have doubled [66], as this appeals to two desired end goals in clinical diagnosis of
cancers; improved precision and less invasiveness.

There are a few potential limitations in this study that might have had an effect on
the results. First, the sample-size was small, primarily because we differentiated rarely
occurring tumors so limited data was available. Second, investigation of unenhanced CT
images may lead to an analysis of critical internal masses. We did not use unenhanced plain
CT to minimize errors in segmentation of the tumors. Due to the rarity of studies in this
area, we were unable to validate our results using an independent external data set. Erdim
et al. [61] and Lee et al. [67] recommended using deep learning to overcome the problem of
false-negative errors in the existing ML classification algorithms, thereby improving the
predictive performance in clinical practice. However, this was not implemented in our
radiomic engineered-hand-crafted study, as the deep learning model requires a great deal
of data to train.

In future research, we propose to explore the use of deep learning models. Like-
wise, in addition to radiomic signature, other radiomic clusters such as radio-genomics,
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radio-proteomics and radio-metabolomics need to be studied and compared with the
conventional radiomics.

5. Summary and Conclusions

This research was to conduct a comparative analysis for the discrimination of ChRCC
and RO by the use of ML-based radiomic analysis. The study found that filtered features
offer better predictive power compared to original features. Likewise, whole tumor volume
data contain more discriminative features compared to 2D slices.

In conclusion, our study established that ML-based radiomic analysis concepts can
offer considerable potential for distinguishing ChRCC from RO with a good level of
performance. Moreover, filter features, whole tumor volume and prospective study have a
competitive edge over original features, 2D and retrospective study, respectively, for the
purpose of radiomic analysis. This approach is expected to assist physicians to come up
with better diagnoses and improved strategies to tackle the challenges of differentiating
RO from ChRCC, and thus help improve oncological precision medicine.
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SMOTE Synthetic Minority Oversampling Technique
RF Random Forest
SVM Support Vector Machine
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KNN K-Nearest Neighbour
LR Logistic Regression
NB Naive Bayes
MRI Magnetic Resonance Imaging
UP Unenhanced Phase
NP Nephrographic Phase
EP Excretory Phase
CMP Corticomidulary Phase
AUC Area Under the Curve
IHC Immunohistochemistry
PACS Picture Archiving and Communication System
SFOV Scan Field Of View
NI Noise Index
CTDIvol Computed Tomography Dose Index Volume
kVp Kilovoltage peak
mA Milliampere
mGy Milligray
mls Milliliters
ml/sec Milliliters per second
IV Intravenous
2D Two-Dimensional
3D Tree-Dimensional
DICOME Digital Imaging and Communications in Medicine
JPEG Joint Photographic Experts Group
NIFTI Neuroimaging Informatics Technology Initiative
ROI Region Of Interest
VOI Volume Of Interest
GLCM Gray Level Cooccurrence Matrix
GLRLM Gray Level Run Length Matrix
GLSZM Gray Level Size Zone Matrix
NGTDM Neighbouring Gray Tone Difference Matrix
GLDM Gray Level Dependence Matrix
LoG Laplacian of Gaussian filters
LBP Local Binary Pattern
SD Standard Deviation
WHO World Health Organization
SVM-RFE SVM-Recursive Feature Elimination
PEER Peak Early Phase Enhanced Ratio
CNN Convolutional Neural Network
AI Artificial Intelligence
RQS Radiomics Quality Score
TRIPOD Multi-variable prediction model for Individual Prognosis Or Diagnosis
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Appendix A

(a) (b)

(c)

Figure A1. (a) ROC SVM Largest Tumor Slice Filtered Cohort 1. (b) ROC SVM Largest Tumor Slice
Filtered Cohort 2. (c) ROC KNN Largest Tumor Slice Original Combined Cohort.
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(a) (b)

(c)

Figure A2. (a) ROC RF All Tumor Slices Filtered Cohort 1. (b) ROC RF All Tumor Slices Filtered
Cohort 2. (c) ROC RF All Tumor Slices Filtered Combined Cohort.
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(a) (b)

(c)

Figure A3. (a) ROC RF Per Patient Prediction Original Cohort 1. (b) ROC KNN Per Patient Prediction
Filtered Cohort 2. (c) ROC KNN Per Patient Prediction Filtered Combined Cohort.
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(a) (b)

(c)

Figure A4. (a) ROC RF Whole Tumor Volume Filtered Cohort 1. (b) ROC SVM Whole Tumor Volume
Filtered Cohort 2. (c) ROC KNN Whole Tumor Volume Filtered Combined Cohort.
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