
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Silvia V. Conde,
New University of Lisbon, Portugal

REVIEWED BY

Daniel Fernandes,
Federal University of Santa Catarina,
Brazil
Daniele Souza,
Federal University of Minas Gerais,
Brazil

*CORRESPONDENCE

Tao Ma
taoma@tmu.edu.cn

SPECIALTY SECTION

This article was submitted to
Cytokines and Soluble
Mediators in Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 05 May 2022
ACCEPTED 06 July 2022

PUBLISHED 25 July 2022

CITATION

Zhang T, Yu-Jing L and Ma T (2022)
The immunomodulatory function of
adenosine in sepsis.
Front. Immunol. 13:936547.
doi: 10.3389/fimmu.2022.936547

COPYRIGHT

© 2022 Zhang, Yu-Jing and Ma. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 25 July 2022

DOI 10.3389/fimmu.2022.936547
The immunomodulatory
function of adenosine in sepsis

Teng Zhang1, Li Yu-Jing2 and Tao Ma1*

1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
Sepsis is an unsolved clinical condition with a substantial mortality rate in the

hospital. Despite decades of research, no effective treatments for sepsis exists.

The role of adenosine in the pathogenesis of sepsis is discussed in this paper.

Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b,

and A3 adenosine receptors to regulate tissue function. These receptors are

found on a wide range of immune cells and bind adenosine, which helps to

control the immune response to inflammation. The adenosine receptors have

many regulatory activities that determine the onset and progression of the

disease, which have been discovered via the use of animal models. A greater

understanding of the role of adenosine in modulating the immune system has

sparked hope that an adenosine receptor-targeted treatment may be used one

day to treat sepsis.
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Introduction

Sepsis is an illness characterized by many potentially fatal organ failures induced by

an abnormal host response to infection (1). Early mortality from sepsis has decreased as

intensive care management and goal-directed therapies have improved (2). However, the

persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which

seems to be the leading cause of mortality in sepsis, remains unsolved (3). Increasing

evidence currently supports the central involvement of the immune system in sepsis (4).

Sepsis occurs when the immune response to invading pathogens fails to restore

equilibrium, resulting in a pathological condition marked by prolonged excessive

inflammation and immunosuppression (5). As a result, unraveling the complicated

process of immune dysregulation in sepsis and developing a tailored immunotherapy has

been a focus in the study of sepsis (6). Immune diseases, including immunosuppression

in sepsis, are caused by abnormal activation, extensive apoptosis, phenotypic, and

functional alterations of immune cells (7). Immunotherapies, such as the

administration of IL-7, IL-15, anti-programmed cell death receptor-1 and anti-B and
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T lymphocyte attenuator, have been demonstrated to reduce

mortality due to long-term sepsis (8, 9).

Adenosine is a naturally occurring purine nucleoside that

has a relatively short half-life in tissue and important signaling

functions (10). A substantial amount of data supports the

hypothesis that the capacity of adenosine to modulate the

immunological and inflammatory systems by binding to

adenosine receptors plays a critical part in health and illness

(11). Many novel therapeutic techniques are being developed to

regulate adenosine immune functions (12). Adenosine

degradation and synthesis inhibitors, and specific agonists or

antagonists of diverse adenosine receptor subtypes, are among

the pharmacological agents in this class (13–15). We provide a

broad overview of adenosine receptors in this review. Separate

sections discuss several roles that adenosine plays in determining

the function of various cell types thought to be fundamental

components of the innate and adaptive immune systems. Lastly,

we focus on immunomodulatory role of adenosine in sepsis.
Immunopathology of sepsis

Sepsis is an abnormal response by the body to an infection

(5). Most of the time, the immune system, antibiotics, and

control of the source of infection/drainage work together to

keep infections under control and eventually cure them,

restoring homeostasis (16). However, an infection can turn

into sepsis if the body keeps responding in an abnormal

fashion (17). Older hypotheses proposed that sepsis progressed

from a state of high inflammation to a state of low inflammation

to a state of long-lasting and significant immune suppression (1).

Systemic inflammatory response syndrome (SIRS) and

compensatory anti-inflammatory response syndrome (CARS)

are two terms that jointly describe this paradigm (18). Recent

studies have shown that inflammation and reduced immunity

happen simultaneously, not sequentially (5, 18, 19). During the

early stages of an infection, both pro-inflammatory and anti-

inflammatory cytokine storms occur (5, 20). Analysis of the

expression of leukocyte genes in patients with severe sepsis has

shown that the inflammatory response and the expression of

genes related to immunosuppression occur, immediately after

the onset of sepsis (19). It is also thought that sepsis is

synonymous with PICS (21). However, an integrated

viewpoint holds that SIRS and its opposite, CARS, do not

occur separately but simultaneously, which is an interesting

idea (5).

Infections trigger excessive inflammatory responses, which may

result in abnormal complement and coagulation system activation, as

well as vascular endothelial dysfunction. Complements C3a and C5a

have significant pro-inflammatory features, including the ability to

recruit and activate leukocytes and platelets (22). Prolonged
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coagulation system activation may result in diffuse intravascular

coagulation (23). Additionally, prolonged inflammation causes

tissue damage and the production of damage-associated molecular

patterns, which results in greater activation of the immune system,

ultimately leading to organ damage and malfunction. Persistent,

severe inflammation induces widespread death of immune cells

(particularly lymphocytes and dendritic cells (DCs)), while

retarding neutrophil apoptosis (9). However, these neutrophils have

diminished bactericidal activity and produce fewer cytokines. CD4+

T cells undergo programmed cell death 1, and the fraction of

regulatory T (Treg) cells increases, impairing effector T cell activity

(9). In addition, monocytes and macrophages show a decreased

capacity to generate several pro-inflammatory cytokines in response

to lipopolysaccharide (LPS) activation, a phenomenon known as

“immuno-paralysis” (9). These factors all contribute to significant

immunosuppression in sepsis, particularly during the latter stages,

increasing the risk of secondary infection (16). In summary, immune

dysfunction is important for the development and progression of

sepsis. Thus, immunotherapy will become a critical component of

sepsis treatment.
Adenosine and adenosine receptors

Adenosine is released constitutively from a variety of cell

types under normal circumstances, and extracellular quantities

are in the nanomolar range (24). Inflammation and tissue

damage significantly increase adenosine release and synthesis,

and tissue levels may increase a hundred-fold (13). Adenosine is

not only a metabolic product of ATP but also a substrate for its

production. Intracellular adenosine is regulated via the soluble

intracellular 5’-nucleotidase CD73. CD73 also acts as an

ectoenzyme that works in conjunction with CD39 to degrade

ATP to adenosine in the extracellular environment. After it is

synthesized, adenosine would be swiftly decomposed into

inosine by adenosine deaminase or phosphorylated to AMP by

adenosine kinase, giving it a biological half-life of less than ten

seconds (25).

Adenosine elicits physiological responses by binding to one

or more of the four transmembrane adenosine receptors (A1,

A2a, A2b, and A3) (Table 1). A substantial amount of data

indicates that the adenosine receptors regulate cellular activity

via their association with the G proteins, although some effects

have been described in the absence of the G proteins (27, 40, 41).

Historically, it was believed that adenosine receptor signaling

occurred via the activation or inhibition of adenylyl cyclase,

accompanied by a change in the intracellular concentration of

cyclic AMP (cAMP). Adenosine receptors were first classed as

A1 or A2 based on their capacity to inhibit or stimulate cAMP

buildup (26). Subsequent investigations refined the

categorization of the adenosine receptors, and the cAMP-
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increasing A2 receptors were classified as high-affinity (A2a) or

low-affinity receptors (A2b) (33). Similar to the A1 receptors, the

A3 receptors have the ability to regulate mast cell degranulation

via reducing the intracellular cAMP concentration (34). In

addition to the adenylyl cyclase–cAMP system, adenosine
Frontiers in Immunology 03
receptors may be associated with a variety of different

pathways (Figure 1).

Traditionally, activation of the A1 receptor was associated

with Gi-mediated suppression of adenylyl cyclase (26). It is

currently recognized, however, that it is also associated with a
TABLE 1 Characteristics of adenosine receptors.

Name A1 A2a A2b A3

Human
chromosome
gene location

1q32.1 22g11.2 17p11.2–12 1p21-p13

G protein
coupling

Gi (26) Gs (27) Gs, Gq (28) Gi, Gq (29)

Adenosine
affinity

1–10nM 30nM 1,000nM 100nM

Effector system Inhibit: Adenylyl cyclase cAMP system
(26); Ca2+ channels (30)
Enhance: Phospholipase C (26); K+
channels (31); PI3 kinase; MAP kinase
(32)

Enhance: Adenylyl cyclase
cAMP system (26); MAP
kinase (27)

Enhance: Adenylyl cyclase cAMP system
(33); Phospholipase C; MAP kinase (28)

Inhibit: Adenylyl cyclase
cAMP system (34)
Enhance: Phospholipase C
(29); PI3 kinase; MAP kinase
(35)

Clinically
approved therapy

Agonist: Paroxysmal supraventricular
tachycardia (Adenosine) (36)
Antagonist: Asthma (Theophylline)
(37)

Agonist: Myocardial perfusion
imaging (Adenosine) (38)
Antagonist: Parkinson’s disease
(Istradefylline) (39)
FIGURE 1

Local amplification of adenosine signaling in sepsis. The levels of extracellular adenosine is influenced by several factors. Adenosine is
transferred by a transporter called equilibrate nucleoside transporter 1 (ENT1) and many additional transporters. Numerous mechanisms result in
the release of ATP. ATP is converted to adenosine by the combination of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1; also
known as CD39) and ecto5′-nucleotidase (NT5E; also known as CD73). After that, adenosine could be converted to inosine, adenosine
monophosphate (AMP), or S-adenosylhomocysteine (SAH). An increase in extracellular adenosine concentration from the baseline (20-300 nM)
to up to 30 mM dramatically enhances sepsis-related adenosine signaling. Additionally, there is a strong simultaneous increase of enzymes
involved in the metabolic process that degrade ATP into adenosine and inhibition of enzymes to degrade adenosine, for example, adenosine
kinase (AK). The following variables regulate adenosine signaling in diseased conditions: more ATP released into extracellular space as precursor
of adenosine; more ENTPD1 and NT5E expression; HIF2 induce more A2a receptor expression; HIF1 induce more A2b receptor expression; HIF1
inhibit AK, ENT1 and ENT2. ADA stands for adenosine deaminase; cAMP stands for cyclic AMP; ERK stands for extracellular signal-regulated
kinase; MAPK stands for mitogen-activated protein kinase; and PKA is for protein kinase A.
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variety of kinase pathways, such as mitogen-activated protein

(MAP) kinase, protein kinase C and phosphoinositide 3 (PI3)

kinase (32). Furthermore, ion channels can be influenced by the

A1 receptor. For example, the A1 receptor activates K+ channels

(31) and inhibits Ca2+ channels (30).

While the Gs-protein-coupled receptor A2a mainly signals

through the normal adenylate cyclase–cAMP/protein kinase A

(PKA) pathway, it may also signal directly via cAMP (27). The

signaling pathway downstream of PKA is activated when the

cAMP responsive element binding protein (CREB) is

phosphorylated (42). There are two ways in which activated

CREB might affect gene expression: directly by binding to a

promotor or indirectly by competing for a necessary cofactor,

such as with nuclear factor-kB (27). The A2b receptor may

activate adenylyl cyclase via Gs, simultaneously activating

phospholipase C through Gq (28). Some interaction between

these two systems seems to occur. Both are required for the

human mast cell activation-induced increase of IL-4

production (43).

Adenylyl cyclase inhibition through Gi and PLC activation

via Gq are the most common signaling pathways linked with A3

receptor activation (29). Additionally, the A3 receptors may

affect cellular activity through the MAP kinase, and PI3 kinase

pathways. Indeed, the disruption of the Gi proteins or the

inhibition of PI3 kinase inhibits the A3 receptor-dependent

increase of histamine release in mast cells (35).
Adenosine in sepsis

Adenosine is required for the suppression of an

immunological response. Adenosine levels in the extracellular

space quickly increase in response to systemic inflammation or

tissue damage (44). Plasma adenosine concentrations were

observed to rise tenfold in septic shock patients (45, 46). This

increase was explained by reduced adenosine deaminase and

adenosine kinase activity and an increase in the activity of CD73

(47). The immunosuppressive properties of adenosine are

mostly regulated by the A2a receptors. Endotoxin or

inflammatory mediators rapidly increase A2a and A2b

receptor expression (48). It has been shown that activating the

A2a receptor dramatically reduces tissue injury in systemic

inflammation (49). Although inhibiting extreme immune cell

activation through the A2a or A2b receptors would be

advantageous during the early stage of sepsis or endotoxemia,

the same receptors may also cause immunosuppression (50). In

a chronic model of polymicrobial sepsis, inhibiting A2a receptor

signaling boosted survival by enhancing bacterial clearance,

lowering IL-10 release, and maintaining lymphocyte function

(51). Conversely, activating the A1 or A3 receptor would be

advantageous in sepsis by decreasing mortality and renal and

hepatic injury (52, 53).
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Effects of adenosine on
immune cells

Adenosine, which is produced by both immune and non-

immune cells, is involved in the immune modulation of several

immune cells and may contribute to the pathophysiology of

sepsis by mediating immune suppression.
Adenosine and macrophages

The effects of adenosine on macrophage-derived cytokines

has garnered substantial interest, because macrophage-generated

cytokines are critical initiators of immunological responses (54).

An impressive amount of information has been amassed about

the decrease of tumor necrosis factor (TNF) production by

adenosine receptor activation subsequent to macrophage

activation because TNF was one of the first cytokines

discovered (55). A2a receptors are present on macrophages,

and their activation may inhibit the production of pro-

inflammatory cytokines (56). Activation of the A2a receptor

on macrophages inhibits the production of TNF, as shown in

studies using knock-out mice (57). Additionally, the use of

specific A2b receptor antagonists in Adora2a-/- mice revealed

that the A2b receptor plays a role in suppressing TNF release

(57). Because the deletion of Adora2b has no impact on TNF

production in the presence of intact A2a receptors, A2b

receptors are only effective when their activity is not masked

by A2a receptors (58).

A similar picture is developing about the way stimulation of

the adenosine receptor augments IL-10 production. As

established in research using the RAW264.7 macrophage cell

line, A2a receptors play a crucial role in increasing the

production of IL-10 from macrophages (59). Similarly,

investigations in knockout mice indicated that A2a receptors

are necessary for the stimulation of IL-10 secretion in

Escherichia coli exposed macrophages (60). Additionally, A2b

receptors have been involved in post-transcriptional pathways

that enhance the release of IL-10 from LPS-stimulated

macrophages (58). While A2a receptors also play a role in this

process, the activation of macrophage A2b receptors results in

the anti-inflammatory M2 phenotype (61).
Adenosine and DCs

Adenosine receptors are expressed on the surface of DCs,

and their activation may modulate the immunological response

during sepsis. A2a receptors are found on myeloid and

plasmacytoid DCs and their activation may result in a change

in the cytokine profile from pro- to anti-inflammatory, possibly
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characterized by increased IL-10 secretion and decreased IL-12,

IL-6, and IFN-g secretion (62). This alteration in the cytokine

profile results in the preferential development of naive CD4+ T

cells to T-helper 2 (Th2) cells rather than Th1 cells (63). In

animal tests, giving DCs that had been treated with an A2a

receptor agonist helped protect mice from damage caused by

ischemia and reperfusion by stopping IFN-g production (64).

When A2b receptors are activated on hematopoietic progenitor

cells in mice, DCs differentiate into a distinct phenotype

characterized by the concurrent expression of monocyte and

DC surface markers (65). These cells exhibit the DC-specific

marker CD209, have little or no expression of the DC marker

CD1a, and fail to shed the monocytic marker CD14 (66). Unlike

normal myeloid DCs, adenosine-differentiated DCs have

impaired activity (66). Additionally, activation of the A2b

receptor on DCs boosted IL-6 production, resulting in greater

Th17 polarization of naive T cells (67). A1 receptor activation

reduces resting DCs vesicular MHC class I cross presentation,

suggesting that A1 receptors may be involved in DC maturation

(68). Similarly, A3 receptor activation was demonstrated to

decrease the production of IL-6 and TNF to exert anti-

inflammatory actions (62). Another study discovered that A3

receptors agonists protect endo-toxemic mice by reducing IL-12

and IFN-g levels (47). In summary, the existing evidence

suggests that adenosine has a dual role in regulating DCs

activity and, through the A1 or A3 receptors, increases the
Frontiers in Immunology 05
migration of immature DCs to sites of inflammation.

Adenosine induces an anti-inflammatory DCs phenotype

through A2a receptors, hence directing T-cell responses

toward a Th2 profile.
Adenosine and neutrophils

As a major modulator of neutrophil activity, adenosine controls

the production of reactive oxygen species by neutrophils as well as

their capacity for phagocytosis (69). Adenosine has a concentration-

and receptor-dependent effect on neutrophil phagocytosis. At pico-

to nanomolar doses of adenosine, activation of the A1 receptor

promotes FcR-mediated phagocytosis in human neutrophils (70,

71). On the other hand, micromolar dosages of adenosine or an

A2aR agonist impair phagocytosis (72, 73). Adenosine receptors

have not been widely studied in subsequent research on neutrophil

phagocytosis. It is likely that low amounts of adenosine stimulate

phagocytosis by binding to A1 receptors, but high quantities of

adenosine restrict phagocytosis by activating the A2a receptors

(69) (Figure 2).

Several chemokines, cytokines, and lipid mediators generated

from arachidonic acid are released by active neutrophils, each

having a unique effect on the ongoing inflammatory response.

Activation of the adenosine receptor inhibits pro-inflammatory

mediator release from active neutrophils while boosting anti-
FIGURE 2

Diagrammatic over view of adenosine regulation of neutrophils in sepsis. Adenosine and its precursors are released by activated neutrophils.
These precursors can be degraded to adenosine so that they may then operate autocrine to control neutrophil activity. Along with adenosine,
neutrophils release ATP in response to stimulation via connexin or pannexin hemichannels and this is promptly degraded to adenosine by the
neutrophil surface-expressed ectoenzymes CD39 and CD73. In sepsis, neutrophils and adenosine talk to each other by binding to G protein-
coupled receptors A1, A2a, A2b, and A3.
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inflammatory mediator release. Through the A2a receptors,

adenosine suppresses neutrophils production of TNF and several

macrophage inflammatory proteins (74). The A1 agonist 2-chloro-

N6-cyclopentyladenosine and the dual A2a/A2b agonist 5’-(N-

cyclopropyl)-carboxamido-adenosine both inhibit TNF

production from LPS activated neutrophils, with the A2 agonist

being 1000-fold more potent than the A1 agonist (75). Similarly,

CGS-21680 reduced the production of TNF by neutrophils

activated with LPS by activating the A2a receptor (76).

Arachidonic acid is converted to prostaglandin E2 (PGE2) or

thromboxane A2 (TXA2) by the induction of COX-2 activity

(77). PGE2 is an anti-inflammatory molecule that suppresses

neutrophil aggregation, chemotaxis, and the production of

superoxide (78). Differently, the pro-inflammatory mediator

TXA2 promotes platelet aggregation and coagulation (79). The

capacity of mice lacking the A2a receptor (Adora2a-/-) to activate

COX-2 in leukocytes is reduced (80). Additionally, the activation of

the A2a receptors on human neutrophils activated with fMLP

enhances COX-2 induction and boosts PGE2 synthesis without

decreasing TXA2 synthesis (81). Through the 5-lipoxygenase (5-

LO) route, arachidonic acid can also be transformed into

leukotriene B4 (LTB4), which is a powerful chemoattractant for

neutrophils, with the potential to trigger an oxidative burst and

degranulation. Previous investigation has shown that the

production of LTB4 in whole blood is inhibited by adenosine

analogs when fMLP is used (75). Further work separated active

neutrophils and revealed that eliminating endogenous adenosine or

inhibiting the A2a receptors increased LTB4 synthesis (82).

Similarly, until adenosine is withdrawn or an A2a antagonist is

administered, active neutrophils cannot convert arachidonic acid to

5-LO products (83). Taken together, these findings indicate that

activating the A2a receptors on neutrophils has the ability to affect

the release of inflammatory mediators.

The post-capillary venular endothelium attracts neutrophils to

inflammatory sites from the circulation bymodifying the expression

of sticky molecules on its surface. Adenosine inhibits neutrophil

attachment to the endothelium through the A2a receptors by

reducing the quantity and function of the adhesion molecules

(84). By contrast, the A1 receptors promote neutrophil adhesion

by enhancing a range of sticky molecules present on the

endothelium (85). Neutrophils migrate along chemoattractant

gradients within the tissue. Chemoattractants include activated

complement components (C5a), bacterial products, and

chemokines. Through the A1 and A3 receptors, adenosine has

been demonstrated to stimulate neutrophil migration (86).

Neutrophils may gather A3 receptors locally on the cell

membrane in the forward direction, enabling them to migrate in

a particular direction (87).

The ability of adenosine to control a neutrophil oxidative

burst is one of the most well-known effects of adenosine on cells.

Micromolar concentrations of adenosine inhibit nearly 50% of
Frontiers in Immunology 06
oxidative burst activity in fMLP-stimulated neutrophils (88).

The neutrophil oxidative burst has been connected to impact of

adenosine on neutrophils via the A2a receptor, which has been

shown to be inhibited by A2a agonists in response to stimuli

such as fMLP and TNF (69, 89). The A2b receptor agonist

reduced superoxide production by around 50% in fMLP-

stimulated neutrophils, a result not seen in A2b-deficient mice

(90). On the other hand, the A1 receptor agonist CPA caused

more superoxide to be made when human neutrophils were

activated by FcR. The adenosine antagonist 8-(p-Sulophenyl)

theophylline stopped this from happening (70, 91). A detailed

examination of A3 agonists and antagonists revealed that,

although A3 receptors may contribute to the suppression of

the oxidative burst, the inhibition is primarily mediated by A2a

activation (92, 93).

Cell death is necessary for neutrophil balance in the resting

state and infection. Neutrophils die through a variety of different

apoptosis subprocesses, necrosis and as a consequence of NET

formation (‘NETosis’) (94, 95). Numerous investigations have

indicated that adenosine prevents resting human neutrophils

from undergoing apoptosis via the adenosine 2a receptor (96).

In mice with systemic inflammatory response syndrome,

activating the adenosine 2a receptor stops neutrophils from

dying in a manner that depends on autophagy (97).

Neutrophil extracellular traps (NET) were found to be

extracellular strands of decondensed DNA bound to histones

and granule proteins, which were released from dying

neutrophils to catch and kill microorganisms. Signaling

through the A2a receptor subtype, adenosine has a strong

effect on neutrophils from a large number of healthy human

donors to strongly stop NET. The adenosine 2a receptor agonist

CSG21680 had the same effect on NETs as adenosine, while the

adenosine 2a receptor antagonist ZM241385 blocked the effects

of adenosine on NETs (98).
Adenosine and lymphocyte

Adenosine may directly change lymphocyte responses by

binding to and activating adenosine receptors on lymphocytes.

This is different from the manner in which it affects lymphocyte

function indirectly by activating adenosine receptors on innate

immune cells such as DCs (99). Numerous studies have

examined the influence of adenosine receptor activation on

many lymphocyte activities utilizing adenosine receptor

knockout mice (100–103). Several studies, including those

mentioned above, have shown that A2a receptors are crucial

in modulating lymphocyte responses (104–106) (Figure 3).

Through the A2a receptors, adenosine inhibits IL-2

production of naive CD4+ T cells, hence inhibiting

T lymphocyte proliferation in response to T-cell receptor
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activation (105). A2a receptor activation can also cause an

increased expression of negative co-stimulatory molecules (107)

such as PD-1 and cytotoxic T lymphocyte antigen 4 (CTLA-4),

decrease the expression of CD40L, and stop the release of IFN-g
and IL-4 (108). When the A2a receptor on T cells is turned on,

both differentiation into Th1 and Th2 cells and cell death caused

by activation simultaneously cease (106).

As with CD4+ cells, adenosine suppresses the generation of

IL-2 by both type 1 cytotoxic T (TC1) and type 2 cytotoxic

T (TC2) CD8+ cells with the action being believed to be

mediated via the A2a receptor (109). However, activation of

the A2a receptor did not affect the generation of TC1 (IFN-g) or
TC2 (IL-4 and IL-5) cytokines in one study; additionally, the

pharmacological stimulation of the A2a receptor had no impact

on the cytolysis activity of TC1 or TC2 cells (110).

Recent research has demonstrated that adenosine plays a

critical role in modulating the immunological suppressive

features of Treg cells, which may play a crucial role in

maintaining immune balance and avoiding excessive tissue

damage. Treg cells, characterized as CD4+/CD25+/Foxp3+

T lymphocyte and their capacity to inhibit CD4+/CD25-

lymphocyte proliferation, were discovered to display high

amounts of CD39 and CD73 (111). Recent findings

demonstrating that Foxp3+ really induces CD39 expression
Frontiers in Immunology 07
revealed a molecular relationship between the transcription

factor Foxp3+ and CD39 (112). It was shown that Treg cells

may hydrolyze exogenous ATP effectively to create adenosine

through CD39 and CD73. In another study, the ability of Treg

cells to synthesize adenosine was important for their regulatory

function. Treg cells from CD39-deficient mice lost their ability to

inhibit the growth of CD4+/CD25- lymphocyte, but this could

be mitigated by adding soluble exogenous CD39 (112). When

A2a-receptor-deficient target cells (CD4+/CD25-) were mixed

with wild-type Treg cells, they grew faster than wild-type cells.

This showed that the A2a receptor has a key role. Additionally,

CD4+/CD25- lymphocyte showed an increase in A2a receptor

expression by day 4, which is the peak time for Treg-cell-

mediated target cell proliferation inhibition. This shows once

again that adenosine production is a critical component of the

Treg-cell armory (113). Similar to target cells Treg cells contain

A2a receptors, and stimulation of these receptors induces the

production of Foxp3+ in the Treg cells (114). The A2a receptors

on Treg cells were proven to have functional importance in a

mouse model of colitis and allergy (115). In this setting, it was

discovered that adoptively transplanted Treg cells deficient in

A2a receptors were unable to suppress colitis (116). Thus,

ectoenzymes in Treg cells create adenosine, and A2a receptors

in Treg cells are essential for their immunosuppressive function.
FIGURE 3

Mechanisms of adenosine regulation of T lymphocyte. Adenosine is produced by regulatory T (Treg) cells when ATP is degraded sequentially by
CD39 and CD73. Adenosine stimulates T-effector cells via A2a receptors, therefore inhibiting T cell receptor (TCR) signal by inhibiting ZAP70
phosphorylation and activating the transcription factor activator protein 1(AP-1). Reduced TCR signal results in lower synthesis of IL-2 and
expression of CD25, leading to inhibited T cell proliferation. Activating A2a receptors changes the development of T helper 1 (TH1), TH2 and
TH17 lymphocytes. The A2a receptor activation of T cells results in an increase CTLA-4, PD-1 and Foxp3 expression.
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Overall effect of adenosine
receptors in sepsis

Numerous investigations have shown the relevance of multiple

adenosine receptors in sepsis utilizing both genetic and

pharmacological approaches (51, 117, 118). Both A2a receptor

deletion mice and ZM241385 pharmacological antagonists

reduced cecal ligation and puncture (CLP) induced mortality

through a mechanism related to a reduced bacterial burden (51,

118). Intriguingly, when paired with antibiotics, activation of the

A2a receptor protected against sepsis created by E. coli injection,

probably by inhibiting an excessive inflammatory reaction caused

by the rapid drug-mediated death of vast numbers of bacteria (60).

Additionally, it was shown that antagonistic A2a receptors provided

protection against sepsis-induced lymphopenia (119). In

polymicrobial sepsis produced by CLP, blockade of the A2b

receptor has been found to increase survival by enhancing

bacterial phagocytosis by macrophage (120). An increase in

mortality in the CLP model was related to an increase in hepatic

and renal damage generated by inflammation when the A1

receptors were blocked in a separate study (52). Additionally, it

was also shown that the A1 receptor antagonist L-97-1 protects

against renal impairment and improves survival after sepsis (121).

Experimental investigations have indicated that A3 receptor

activation may reduce renal and hepatic damage in mice caused

by CLP sepsis, resulting in a decrease in mortality (53). Adenosine

receptors are found on a wide range of cells and exert several

physiological functions in the human body. While activation of the

A1 receptor may have deleterious cardiovascular and pulmonary

consequences, stimulation of the A3 receptor seems to be harmless

(122). In summary, A2a receptor blockage and A3 receptor

stimulation in animal models of sepsis show that selective A2a

receptor antagonists and selective A3 receptor agonists have great

potential for application in sepsis treatment.
Conclusions and perspectives

The adenosine receptor system developed as a rapid sensor of

tissue damage as well as the primary ‘first-aid’ mechanism for

tissues and organs. Thus, activation of adenosine receptors retain

tissue function and protects it from additional harm after an acute

injurious shock. The ability of the adenosine receptor system to

guard against acute shocks may be eclipsed by its impaired ability

to protect against chronic assaults. Additionally, some chronic

disease conditions such as asthma may worsen tissue dysfunction

through the adenosine receptor system.

Recent advances in our understanding of the different

adenosine receptors and the complex manner in which cells

respond to adenosine have helped us find novel pharmacological
Frontiers in Immunology 08
targets for reestablishing tissue function in a variety of diseases.

Preclinical research using both deletion and pharmacological

techniques has shown that the many adenosine receptors are

important in how the body reacts to sepsis.

While adenosine receptor agonists have potent

immunomodulatory properties, their widespread tissue

distribution may restrict their use when treating inflammatory

disorders. Adenosine receptor antagonists are more selective.

Adenosine tends to accumulate at the location of the damage. As

a result, adenosine antagonists have a better chance for clinical

application. In a similar fashion, inhibiting the enzymes and

transporters involved in the buildup of extracellular adenosine

enables local targeting of adenosine receptors. It is obvious that a

greater knowledge of adenosine receptor activity is necessary

before the immense promise of adenosine-based therapeutics to

alleviate human suffering can be fulfilled.
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