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Allometric Scaling:
Comparison of
Interspecies Nutritional
Relationships and
Requirements
Dear Editor:

In a recent commentary, “Experimental Evidence That (-)-
Epicatechin and Anthocyanins Modulate Glucagon-like
Peptide-1 Metabolism: Relevant for Humans?,” Christian
Heiss and Ana Rodriguez-Mateos (1) respond to an article
by Cremonini et al. (2) that demonstrates that (-)-epicatechin
and anthocyanin metabolites modulate glucagon-like peptide-1
(GLP-1) metabolism in C57BL/6J mice and GLUTag cells.
In general, their comments are favorable to the findings of
Cremonini et al. (2). However, they are ambivalent regarding
the allometric scaling approach used to estimate dosages in mice
from published human studies. They suggest that the utility
of allometry for effective interspecies comparisons remains
an open question for studies of bioactive compounds. Their
argument stems from observations that interspecies differences
in absorption, microbiome modifications, and metabolism
may compromise anything gained from making an allometric
correction.

Understanding mechanisms and processes related to chem-
ical transformations of bioactive compounds is of obvious
importance in animal model studies intended to translate effec-
tive dosages to humans. However, in contrast to ambivalence
towards allometry, I suggest that, in the early stages of research
directed at bioactive compounds, its use as a tool is essential,
particularly when the goal includes defining doses related to
putative or potential health benefits (3–6).

For example, it has been known for decades that the
metabolic rate of animals exponentially scales with body mass
or volume. The exponent is almost always <1, >2/3, and
most often close to 3/4. A consistent feature is fractal-like
networks that facilitate the flow of nutrients and their cellular
influx, utilization, and efflux. All bioactive compounds utilize
such networks during transport, actions, and metabolism (5).
The 2/3–3/4 exponent emerges naturally from such networks,
albeit corrections are needed for assessing ectotherms (i.e.,
temperature regulation issues) or factors, such as ease of oxygen
saturation (7, 8). In this regard, the empirical evidence for
allometry is now overwhelming. In addition to metabolic energy
estimates, it is possible to scale related dietary factors to
body mass (e.g., vitamin and mineral relative needs) over 5–
6 orders of magnitude (9, 10). Moreover, mathematical proofs
for allometric scaling consistent with fractal-like networks have
been published and validated (5, 11).

The use of an allometric approach is particularly seminal
from a nutritional perspective. It requires thinking beyond
isometric dimensions and focusing on dynamic and metabolic
parameters rather than static and anthropometric parameters.

Further, ignoring allometric parameters results in conceptual
errors. For example, comparison or extrapolation based directly
on body mass suggests that the human dose may be 2800-fold
or greater than those of an experimental animal model, such as a
mouse (70 kghuman ÷ 0.025 kgmouse). In contrast, using metabolic
body size–based parameters, the estimated difference is 200–
400-fold and not 2800-fold. For example, if q0 represents the
animal’s metabolic rate, and M represents mass, then the ratio
is better stated as q0∼(Mhuman)3/4 ÷ q0∼(Mmouse)3/4 or 23.2human

÷ 0.063mouse over the same time—that is, ∼368. This estimate
relates directly to empirical estimates of basal metabolism or
resting energy expenditure (REE). For example, a small adult
mouse’s daily REE is ∼4–8 kcal (12). For a 70-kg human,
the value for REE (13) is ∼1400 kcal/d (women) to ∼1500–
1700 kcal/d (men) (i.e., a ratio of 200–400-fold, in keeping with
estimates based on metabolic body size).

If the focus is on bioactive compounds that influence energy
regulation, appetite, or energy expenditure (i.e., GLP-1, insulin,
glucagon), the relationships will seldom be isometrically mass-
related. Animals have evolved from similar evolutionary and
ecological time frames. Mice and humans have approximately
30,000 genes, yet only about 1 in a 100 is unique (14). It is
always best to use scaling approaches for heuristic assessments
that recognize similar evolutionary and ecological time frames.

What about situations wherein metabolic strategies essential
for the metabolism or turnover of a bioactive compound differ
between species? Regarding the putative health-related benefits
of the bioactive compounds, all are influenced to some degree
by the dynamic aspects of metabolic body size. For example,
as noted, one can predicate the human dietary requirements for
vitamins based on what is known about the requirements for
mice (9, 10).

Consider the need for ascorbic acid (mouse vs. human).
The mouse has no dietary requirement for ascorbic acid.
Nevertheless, the amount of ascorbic acid a mouse synthesizes
per unit of food energy consumed is about the same as the
human’s dietary need for ascorbic acid on an energy basis (8,
9). Moreover, the turnover for ascorbic acid [a function related
to qo∼ (mass in kg)1/4] in humans may be estimated using
data related to the turnover of ascorbic acid for the mouse
(9, 10).

As a final point, interspecies differences in microbiome-
related and secondary metabolism do have the potential of
compromising “translational estimates of dose” based on
allometry. Nevertheless, using an allometric protocol to scale a
dosage for a bioactive compound that is effective in humans to
the experimental model lets one know expeditiously whether
potential problems may be due to differences in metabolism
or related issues. Importantly, it opens the door to questions
as to whether the experiment model or the diet chosen for
the research question is appropriate. For example, phase I
and II biotransformation enzymes play significant roles in the
activation and turnover of many bioactive compounds. Rudolf
et al. (15) have reported that, in response to flavone exposure,
the levels of isoforms for cytochrome P450 monooxygenase
and glutathione-S-transferase activity and expression can vary
as much as 10–100-fold when a nutritionally complete
but otherwise chemically defined diet is contrasted with a
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conventional feed-pellet diet, or a diet fabricated to mimic the
compositions of human diets (16).

In summary, given the extent to which allometric scaling
applies to a broad range of phenomena, its application as a
research tool should never be understated. Indeed, there is
usually a good biological question to be answered when an
organism deviates markedly from what seems to be a reasonable
allometric-based prediction.
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