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The immunotherapy agent pembrolizumab has been approved for gastric cancer (GC)

patients with recurrent or advanced disease who are PD-L1 positive. Mutations in the

primary lesion may drive the expression of immune targets thereby priming the tumor

to therapeutic sensitivity. In this study, we aimed to uncover mutations associated with

elevated PD-L1 expression in GC patients. Data from 410 GC patients were available,

including the mutational spectrum of 39,916 genes and expression values of 20,500

genes. PD-L1 gene expression was compared to the mutational status of each gene

separately by using a Mann-Whitney U-test and a Receiver Operating Characteristic test.

Only mutations with a prevalence over 5%were considered. Significancewas accepted in

cases of p< 1E-05 and a fold change over 1.44. Mutations in 209 genes were associated

with increased PD-L1 expression. These mutations were enriched in genes related to

microtubule-based movement (p = 3.4E-4), cell adhesion (p = 4.9E-4), response to

DNA-damage (p = 6.9E-4), and double-strand break-repair (p = 1.6E-3). Mutations in

TTK (p= 8.8E-10, AUC= 0.77), COL7A1 (p= 2.0E-9, AUC= 0.74), KIF15 (p= 2.5E-9,

AUC = 0.75), and BDP1 (p = 3.3E-9, AUC = 0.74) had the strongest link to elevated

PD-L1 expression. Finally, we established a decision tree based on mutations in PIK3CA,

MEF2C, SLC11A1, and KIF15 capable to separate patient sub-cohorts with elevated

PD-L1 expression. In summary, we identified mutations associated with elevated PD-L1

expression that facilitate the development of better prognostic biomarkers for GC, and

might offer insight into the underlying tumor biology.
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INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related
mortality in both sexes worldwide with the highest mortality being observed in Eastern Asia,
Central and Eastern Europe (Ferlay et al., 2015). Moreover, despite a steady decline in gastric cancer
related mortality in the Western hemisphere (Malvezzi et al., 2010), population aging, a distinctive
feature of developed countries, contributes once again to increasing trends (Menyhart et al.,
2018). Early diagnosis is difficult due to lack of symptoms, particularly in countries without active
screening programs, while detection in an advanced stage limits survival prospects (Seeruttun
et al., 2017). For advanced patients, standard treatment options based on combined chemotherapy
regimens provide limited benefits, and the median overall survival is <12 months (Cunningham
et al., 2010). In recent years, immune checkpoint inhibitors (ICI) have rapidly gainedmomentum in
the treatment of advanced GCs and gastroesophageal junction cancers (GEJC) (Taieb et al., 2018).

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.01522
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.01522&domain=pdf&date_stamp=2019-01-08
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gyorffy.balazs@ttk.mta.hu
https://doi.org/10.3389/fphar.2018.01522
https://www.frontiersin.org/articles/10.3389/fphar.2018.01522/full
http://loop.frontiersin.org/people/626926/overview
http://loop.frontiersin.org/people/649625/overview
http://loop.frontiersin.org/people/649750/overview


Menyhárt et al. PD-L1 Expression-Associated Mutations in GC

The immune checkpoint receptor programmed cell death-
1 (PD-1) is expressed on activated T cells and prevents
overstimulation of immune responses (Francisco et al., 2010),
while its ligand, PD-L1, is expressed on tumor infiltrating
immune cells and tumor cells. The PD-1/PD-L1 pathway
plays an active role in tumor immune evasion (Henick et al.,
2014). Blocking their interaction resurrects T-cell-mediated
anti-tumor immunity, providing a survival benefit in various
advanced, refractory malignancies (Alsaab et al., 2017). The
FDA granted accelerated approval to the anti-PD-1 monoclonal
antibody pembrolizumab in 2017 as third line treatment for
patients with recurrent, locally advanced or metastatic PD-
L1-positive GC/GEJC (Fuchs et al., 2018). The anti-PD-1
agent nivolumab demonstrated survival benefits in refractory
unresectable advanced or recurrent GC/GEJC, irrespective of
PD-L1 expression status, leading to regulatory approval in Japan
(Kang et al., 2017).

PD-1 and PD-L1 are expressed in up to 50% of GC/GEJC
tumors and are usually associated with the poorest prognosis
(Wu et al., 2015). PD-L1 expression is a potential predictive
biomarker for the effectiveness of anti-PD-1 therapy: the
objective response rate (ORR) to pembrolizumab monotherapy
was 16% in PD-L1-positive vs. 6% in PD-L1-negative GC/GEJC
patients. Responses were remarkably better when ICIs were
administered as a first-line treatment: the ORR reached
36% in PD-L1-positive patients treated with pembrolizumab
monotherapy (Fuchs et al., 2018).

PD-L1 status is typically detected by immunohistochemistry.
Scoring methods, antibodies and cut-off values are different
across clinical studies, making comparison difficult (Teng et al.,
2018). Thus, additional biomarkers capable of identifying a
subset of patients with elevated PD-L1 (CD274) expression as
potential candidates for anti-PD-1 therapy are highly in demand.

Genetic alterations within tumors may influence immune
system engagement eventually also impacting therapy response;
in non-small cell lung cancer (NSCLC) cell lines EGFRmutations
or EML4-ALK fusions activate the PD-1/PD-L1 pathway via PD-
L1 upregulation, inducing immune escape (Akbay et al., 2013;
Ota et al., 2015). Accordingly, anti-PD-L1 therapy induced higher
ORRs in PD-L1-positive EGFRmutant patients (31%) compared
to EGFR wild-type (22%) NSCLC patients (Peters et al., 2017).
KRAS mutant advanced NSCLC patients with simultaneous
KEAP1/NFE2L2mutations have reduced PD-L1 expression levels
(Skoulidis et al., 2015), which eventually lead to decreased overall
survival after the initiation of immune therapy (Arbour et al.,
2018). In this study, our aim was to identify genetic alterations
in GC that are associated with PD-L1 upregulation. These
genes might serve as positive biomarkers capable of identifying
responsive tumors. We also combined multiple genes with the
goal of creating a decision tree to assist the selection of potentially
eligible candidates for early anti-PD-1 therapy.

METHODS

Sequencing and Expression Database
Mutation and expression data were obtained from the TCGA
repository (https://portal.gdc.cancer.gov/). Mutations identified

with the mutect2 algorithm were downloaded in VCF format.
Variants were selected based on the mutect2 “PASS” status and
filtered for mutations with at least 50× overall coverage and a
minimum of 5 reads supporting the alteration. The remaining
mutations were annotated using the snpEff (Cingolani et al.,
2012) program using the GRCh38 human genome version.
Only the canonical isoforms were selected in the database
construction. The expression database was normalized using the
DESeq2 (Varet et al., 2016) algorithm.

Classification Algorithm
Gene expression for PD-L1 was compared to the mutational
status of each gene separately using a non-parametric Mann-
Whitney U-test and a Receiver Operating Characteristic analysis.
Only mutations with a prevalence over 5% were considered.
Because of the high number of genes evaluated, statistical
significance was only accepted in case of p < 1e-05 and a
fold change (FC) difference over 1.44. In addition, sensitivity,
specificity, and area under the curve (AUC) values were
computed for each gene.

Gene ontology analysis for the frequently mutated genes was
performed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) Bioinformatics Resource 6.8
to determine the biological meanings of functionally related
gene groups (Huang Da et al., 2009). Step-up multiple testing
correction was executed for multiple hypothesis testing (Gyorffy
et al., 2005).

Decision Tree
A decision tree was calculated using the conditional inference
tree method (Hothorn et al., 2006; Hothorn and Zeileis, 2015).
The algorithm uses statistics measuring the association between
responses and covariates. In the analysis, we used the univariate
distribution to determine the significance. We set the maximum
depth to 3 for the tree, and at least 5% of the samples were
needed to establish a terminal node during the tree generation.
The displayed tree includes the branched decision pipeline and
the expression range of PD-L1 in the designated patient cohorts.

RESULTS

Database Setup
Data from 438 patients diagnosed with gastric cancer were
available from the TCGA repository (https://cancergenome.nih.
gov/). Most patients were diagnosed in clinical stage III and
with grade 3 disease. 64% of the patients were male and 69%
of patients were 60 years of age or older, with a median age
of 67 years. The average follow-up time was 9.86 months, and
20% of patients died during this period. Over 8% of the patients
were identified with residual disease, while pathological complete
response (pCR) following adjuvant therapy occurred in 32.4% of
the patients (for details see Supplemental Table 1).

Mutations Associated With PD-L1
Expression
On average, 873 mutation events were identified per patient in
our population based on the mutational profile of 39,916 genes.
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The most frequently mutated genes, PCDHA1-PCDHA4 and the
tumor suppressorTP53, weremutated on average in every second
patient.

The expression levels of 20,500 genes were investigated
in our patient population. Data consisting of both the
mutational spectrum and expression values for all genes
were available for 410 GC patients. Mutations in 209 genes
were associated with significantly increased PD-L1 expression
(Supplemental Table 2). Mutations in TTK (p = 8.83E-10, AUC
= 0.77), COL7A1 (p = 2E-9, AUC = 0.74), KIF15 (p = 2.49E-9,
AUC = 0.75), and BDP1 (p = 3.26E-9, AUC = 0.75) presented
the strongest link to elevated PD-L1 expression (Figure 1).

We performed gene enrichment analysis to determine the
biological functions of the most frequent mutations. According
to the GO analysis, the significantly mutated genes were
involved in microtubule-based movement (p = 3.4E-4), cell
adhesion (p = 4.9E-4), response to DNA-damage (p = 6.9E-
4), regulation of gene expression (p = 1.5E-4), and homologous
recombination-dependent double-strand break repair (p= 1.6E-
3) (Supplemental Table 3).

Mutation-Based Hierarchical Clustering
The mutational status of multiple critical genes may assist
in the selection of even stronger candidates for ICI therapy.
Based on hierarchical clustering of all significant genes with
mutational prevalence >5% (when considering the mutation
as a terminal node) and FC of at least 1.44, we constructed
a decision tree to stratify patients with differential PD-L1
expression (Figure 2). The mutational status of PIK3CA was
the best performing root node dividing patients into major
subclasses. Both PIK3CA wild-type and mutant populations
could be subdivided using additional mutations. Approximately
73% of all patients harbored wild-type alleles of both PIK3CA
and KIF15 that are associated with significantly lower overall
PD-L1 expression, while PIK3CA wild-type patients with KIF15
mutations (6%) showed significantly elevated PD-L1 expression
(p < 1e-03). Patients with PIK3CA mutations (21%) could be
stratified by two further genes. The presence of MEF2C (p =

0.002) or SLC11A1 (p < 0.001) mutations (4%) was linked
to PD-L1 upregulation, while PD-L1 expression was lower in
subjects with the wild-type alleles of SLC11A1 (17%). Altogether
10% of all patients harbored mutations associated with PD-L1
overexpression.

DISCUSSION

Genetic aberrations within tumors may alter PD-1/PD-L1
interactions by modulating the expression of immune markers
(Skoulidis et al., 2015) potentially affecting therapy response
(Arbour et al., 2018). We identified mutations of 209 genes
associated with PD-L1 upregulation in GC that are involved in
functions, such as microtubule-based movement, cell adhesion,
gene expression regulation, response to DNA damage and
double-strand break repair. Mutations in the TTK, COL7A1,
KIF15, and BDP1 genes present the strongest association with
elevated PD-L1 expression. TTK frameshift mutations appear
in microsatellite instability-high (MSI-H) subtypes of GC that

may alter cell cycle regulation (Ahn et al., 2009). Nonetheless,
understanding the exact role of these genes in PD-L1 regulation
requires further investigations.

To promote patient stratification, we created a decision tree
capable of hypothetically prioritizing candidates for ICI therapy.
The root node is set up by PIK3CA, while mutations involving
MEF2C, SLC11A1, and KIF15 provide additional sorting, all
known to modulate various aspects of the immune system.
MEF2C plays a role in immunity and leukemia development
(Schuler et al., 2008), and was implicated as an oncogene in
various hematological and solid cancers (Pon and Marra, 2016).
SLC11A1 encodes a transmembrane proton/divalent cation
symporter, and participates in innate defense against pathogens
by influencingmacrophage activation (Archer et al., 2015).KIF15
is involved in the maintenance of the mitotic spindle, and
is upregulated in multiple solid malignancies (Scanlan et al.,
2001; Wang et al., 2017). KIF15 also inhibits the endocytic
trafficking of α2 integrin, implicated in various immune
diseases (De Fougerolles et al., 2000). Except for PIK3CA, the
functional relationship between the described mutations, PD-L1
upregulation and GC outcome is yet unexplored.

Our findings are in keeping with previous reports showing
that gastric tumors with high PD-L1 expression levels frequently
harbor PIK3CA mutations (Cancer Genome Atlas Research
Network, 2014). In fact, PIK3CA is among the most frequently
mutated genes in GC, present in∼32% of hypermutated and 12%
of non-hypermutated tumors (Cancer Genome Atlas Research
Network, 2014; Cristescu et al., 2015). PIK3CA mutations are
associated with more aggressive features, such as advanced T
stage, poor differentiation and vascular invasion, especially in
locoregional disease (Kim et al., 2017), and higher CD8+ T cell
infiltration (Siemers et al., 2017). At the same time, PIK3CA
mutations have not been directly linked to patient prognosis
(Harada et al., 2016; Kim et al., 2017). In this study, we found
diversity within the PIK3CA mutant population, as additional
genes were required to stratify patients based on differential
PD-L1 expression.

The PI3K/Akt-pathway is involved in the immune response
against malignant cells (Dituri et al., 2011), and increases the
expression of immune markers. Inhibiting PI3K in melanoma
cells reduced (Jiang et al., 2013), and knockdown of PTEN
in colorectal cancer cell lines increased the expression of PD-
L1 (Song et al., 2013). The PI3K/Akt-pathway regulates PD-L1
expression on a cell- and tissue-dependent manner by either
transcriptional or post-transcriptional mechanisms (Song et al.,
2013).

PIK3CA mutations appear with high frequency in Epstein-
Barr virus positive and MSI-high subtypes of GC (Cancer
Genome Atlas Research Network, 2014; Cristescu et al., 2015),
and TTK frameshift mutations are also relatively frequent in
the latter (Ahn et al., 2009). These particular GC subtypes
have been suggested to be the most promising candidates for
immunotherapy (Cancer Genome Atlas Research Network, 2014;
Cristescu et al., 2015). In a recent clinical trial, MSI-high patients
treated with ICI reached higher ORRs compared to patients with
non-MSI-high tumors. However, the prevalence of MSI-high
cases reached only 4% in the study population (Fuchs et al., 2018).
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FIGURE 1 | Gene mutations defining higher PD-L1 expression. mRNA levels of PD-L1 (CD274) are significantly higher in TTK (p = 8.8E-10) and PIK3CA (p =

1.7E-08) mutant patients. The plots show Q1/Q2/Q3 within min–max range.

FIGURE 2 | Mutations in the PIK3CA, MEF2C, SLC11A1, and KIF15 genes help to stratify patients into subcohorts with dissimilar PD-L1 (CD274) expression. The

decision tree was generated by analyzing the mutational status of all genes simultaneously with a minimal threshold of having at least 5% of the patients in each node.

The plots show Q1/Q2/Q3 within min–max range.

Future trials will be required to clarify the subgroup specific
responses to anti-PD-1 therapy.

In summary, we present an approach to narrow the list of
potentially eligible patients for early anti-PD-1 therapy, and
provide a foundation for future studies to reveal functional
implications of keymutations on PD-L1 regulation. Nevertheless,
the observed associations do not infer functional relationships.

Our results facilitate the development of prognostic biomarkers
for GC, and offer insight into the underlying tumor biology.
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