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A B S T R A C T

Objectives:Monitoring of fetal growth and estimation of birth weight is of clinical importance. During pregnancy,
ultrasound fetal biometry values including femur length, head circumference, abdominal circumference,
biparietal diameter are measured and used to place fetuses on “growth charts”. There is no simple growth-model-
based, predictive formula in use for fetal biometry. Estimation of fetal weight at birth currently depends on
ultrasound data taken a short time before birth.
Study design: Our cohort (“Seethapathy cohort”) consists of ultrasound biometry measurements and other data for
774 pregnant women in Chennai, India, 2015–2017. We use the Gompertz model, a standard model for con-
strained growth, with just three intuitive parameters, to model the growth of fetal biometry, and a machine
learning (ML) model trained on these parameters to predict birth weight (BW).
Results: The Gompertz model convincingly fits the growth of fetal biometry values. Two Gompertz parameter-
s—t0 (inflection time) and c (rate of decrease of growth rate)—seem universal to all fetuses, while the third, A, is
an overall scale specific to each fetus, capturing individual variation. On the Seethapathy cohort we can infer A
for each fetus from ultrasound data available by the 24 or 35 weeks. Our ML model predicts birth weight with
< 8 % error, outperforming published methods that have access to late-term ultrasound data. The same model
gives an 8.4 % error in BW prediction on an independent validation cohort of 365 women.
Conclusions: The Gompertz model fits fetal biometry growth and enables birth weight estimation without need of
late-term ultrasounds. Aside from its clinical predictive value, we suggest its use for future growth standards,
with almost all variation described by a single scale parameter A.

1. Introduction

Assessment of fetal growth is an integral part of antenatal care. Ba-
bies that are born small or large for their gestational age are known to be
at an increased risk for adverse pregnancy outcomes. Accurate predic-
tion of fetal weight at birth is useful to clinicians.

The growth of a human embryo is monitored by ultrasound biometric
measurements, most commonly of femur length (FL), abdominal
circumference (AC), head circumference (HC) and biparietal diameter

(BPD). The growth curve of each of these has a sigmoidal shape, with the
rate of growth larger midway through gestation and smaller in early and
late pregnancy. Ideal growth is described in tabular and graphical form
in publications from WHO [1,2], NICHD [3,4] and INTERGROWTH [5].

Fetal weight cannot be directly measured during gestation. Several
formulas exist in the literature, reviewed in Discussion, but all assume
the availability of late-term ultrasound measurements (within a week
before delivery). Prediction of birth weight using routinely taken ul-
trasound measurements (usually three or four sets, prior to 35 weeks)
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remains a challenge.
Here we use our in-house cohort of 774 women (which we call the

“Seethapathy cohort”, described in Methods, Section 2.1) to model the
growth of FL, AC, HC, BPD.

The Gompertz growth formula is due to Gompertz [6] and Wosilait
et al. [7,8] used it to model fetal growth volume in aggregated data. It is
parametrized as f(t) = Aexp( − exp( − c(t − t0) ) ) (see Methods, Section
2.2 for an explanation of the parametrization), with three intuitive pa-
rameters: an “inflection time” t0 (when the growth shape shifts from
concave-up to concave-down); a “shape parameter” c; and an overall
scale parameter A.

We find that the Gompertz formula fits the growth of four ultrasound
biometry measurements FL, AC, HC and BPD on individual fetuses on
our in-house cohort, and also agrees with the published growth stan-
dards from INTERGROWTH andWHO. This enables its extrapolative use
from existing ultrasound. We estimate the value of A for each biometry
from available ultrasound data (up to 24 weeks or up to 35 weeks) and
use this estimated A to predict the ultrasound parameters at birth.
Finally, we incorporate these parameters A and the predicted final
biometry values in a regression formula to estimate the fetal weight at
birth and demonstrate performance superior to literature formulas that
require late-term ultrasound measurements.

2. Materials and methods

2.1. Study design and participants

We used a dataset of 3235 pregnant women from Chennai who were
registered and gave birth at Seethapathy Clinic and Hospital, Chennai,
between 2015 and 2017 and for whom ultrasound biometry measure-
ments were available. This is a general private hospital whose ob-gyn
department caters to all pregnancies; about 20 % may be considered
high-risk. Ultrasound is routinely done at 11–13 (first trimester
screening) and again at 18–22 weeks (to rule out any structural abnor-
malities). All women also get a third trimester scan, whose timing varies.
For low-risk women, a scan for growth would be done typically at 35–36
weeks. For high-risk women an additional scan at 28–30 weeks may be
performed. Four ultrasound fetal measurements—HC, AC, BPD, and
FL—were considered. Only women with singleton pregnancies who had
at least three sets of ultrasound measurements, with the first scan dated
15 weeks, were included in the analysis, yielding 933 eligible subjects.
We excluded cases of duplicate measurements or outliers; participants
whose second ultrasound was performed after 24 weeks (at least two
measurements are required for fitting parameters at 24 weeks); and
subjects whose final ultrasound measurements were prior to 27 weeks.
The final cohort comprised 774 women.

Table 1 shows cohort characteristics, which were optionally used in
birth weight predictions (supporting Fig. S1). Traditional risk factors
such as family history, PCOS, high BMI were used to label “at risk for
GDM”. Anemia was diagnosed as Hb< 11 gm/dl, and hypothyroidism is

overt hypothyroidism for which they were on thyroxine replacement. A
histogram of birth weight distributions and delivery date distributions in
supporting Fig. S6.

2.2. Gompertz growth model

The Gompertz equation for the growth of a parameter X as a function
of time t is:

X(t) = Ae− e− c(t− t0) (1)

Here, A is an overall scale factor, c is a shape parameter (it is the
retardation rate of the growth rate), and t0 is a time offset (it represents
the time at the inflection point of the curve). The formula is derived and
further discussed in supplementary material; see also ref [9]. While
previous researchers [7,8] applied this formula to fetal volumes or
weights, we apply it to each of the individual biometry values (that is, X
is HC, AC, BPD or FL).

For each ultrasound biometry measurement, we fit t0 and c over our
population of fetuses but fit A individually for each fetus. Our data, and
comparisons with published growth standards and tables, suggest that t0
and c can be treated as universal parameters, and almost all variation in
normal fetal growth is explained by the scale parameter A. Similar to
INTERGROWTH’s formulas for the mean and standard deviation of each
biometry measurement, we compute a population mean A and its
standard deviation.

2.3. Predicting birth weight of fetus

A predictive model was developed for the prediction of birth weight
from ultrasoundmeasurements taken at 24 weeks or earlier, or 35 weeks
or earlier, using linear regression. Linear regression fits a linear model
that makes a linear relationship between input features and target var-
iables. The parameter regression coefficient and intercept are estimated
by least squares (least sum of squared errors).

For each fetus, A was computed using measurements taken up until
24 weeks or up until 35 weeks. In X = Aexp( − exp( − c(t − t0) ) ) where c
and t0 are universal values,Awas chosen tominimize the sum of squared
errors between the predicted and observed biometry values X at the
measured times t. Biometry values at delivery were then predicted by
substituting the GA at delivery for t. These values, and their corre-
sponding A were used as input parameters for birth weight prediction.
Birth weight was predicted using the standard leave one out cross-
validation (LOOCV) technique, where all data except the fetus under
consideration are used for training the model and the left-out fetus’
weight is predicted using that model. Therefore, the predicted biometry
values and A for each fetus, and global t0 and c, were re-learned at each
LOOCV step. This ensures that there is no data leakage, i.e. at no point is
the data on which the model is tested ever used in training the model.
This is shown as a flowchart in Fig. 1. Models were implemented in
python with the scikit-learn package. We compared our results with the
INTERGROWTH (Eq. 2), the four Hadlock (Eq. 3) and Shepard (Eq. 4)
formulas for the estimated fetal weight (EFW) [10]. Hadlock 2 (using
AC, FL, BPD) is presented here, and the other three in supporting fig S3
and supporting table S1.

INTERGROWTH (units: g, cm):

loge(EFW) = 5.084820 − 54.06633× (AC/100)3 − 95.80076

× (AC/100)3 × log(AC/100)+3.136370× (HC⁄100)
(2)

Hadlock 2 (units: g, cm):

log10(EFW) = 1.335 − 0.0034× AC× FL+ 0.0316× BPD+ 0.0457

× AC+ 0.1623× FL
(3)

Table 1
Data summary considered for the study. Parameters measured on first hospital
visit except as indicated.

Cohort characteristics (n = 774) Mean ± std or %

Age (years) 28.2± 3.8
Height (cm) 158.6± 5.9
Weight (kg) 64.5± 11.7

Body mass index (
kg
m2)

25.6± 4.3

Weight gain (kg, from first to last visit) 9.9± 4.2
Fasting blood sugar (mg/dL) 80.9± 5.9
At risk for GDM (gestational diabetes mellitus) 46.45 %
Diagnosed as anemic 15.2 %
Diagnosed with hypothyroidism 15.1%
Diagnosed with hypertensive disorders 1.2%
Diagnosed with gestational diabetes mellitus 22.1 %
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Shepard (units: kg, cm):

log10(EFW) = − 1.7492+ 0.166× BPD+ 0.046× AC − 0.002546× AC

× BPD
(4)

The model was evaluated by computing the mean absolute per-
centage error (MAPE) and root mean square error (RMSE) using pre-
dicted and actual birth weights, in all cases.

2.4. Validation cohort

The validation cohort was obtained from South Indian Pregnancy
Research Network (SIPNET), with data contributed from six hospitals in
Chennai, Pondicherry, Hyderabad, and Kochi, in India. As with the
Seethapathy cohort, the validation cohort was screened for subjects with
at least three available sets of ultrasound biometry measurements,
resulting in 365 subjects.

Birth weights were predicted with fetal biometry as input, using the
machine learning model constructed on the Seethapathy cohort. The
linear regression model was trained on the full Seethapathy cohort, and

Fig. 1. Flowchart for birth weight prediction using LOOCV.
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then predictions were made on the validation cohort.

3. Results

3.1. The Gompertz formula fits biometry measurements for the
Seethapathy cohort

Table 2 shows the values of globally fitted t0 and c, and the mean and
standard deviation of individually fitted A, on the Seethapathy cohort

The distribution of A over the individual fetuses is shown in Fig. 2A.
Each fetus’ root mean squared error (RMSE) was determined by
comparing the fitted function (with optimized A) with the original
measurement. Fig. 2B shows the distribution of the RMSE. Fig. 2C and D
show, respectively, the five best and worst-fitting fetuses to the

Gompertz curve.

3.2. We can accurately predict final biometry and individual birth weights
from available ultrasound

We predict birth weight using, as input, our predicted ultrasound
measurements at delivery and individual A values for each fetus (using
the Gompertz formula) as described in Methods, Section 2.3. Supporting
Fig. S2 shows that our estimates of biometry at delivery are correlated
with the actual birth weights.

Fig. 3 shows birth weight predictions when we use available ultra-
sound data up until 24 weeks (green) and 35 weeks (blue), using linear
regression, compared with the predictions of the INTERGROWTH,
Shepard, and Hadlock 2 formulas. As detailed in Methods, t0 and c are
global parameters, while A is calculated for each individual fetus by a
best fit of the Gompertz formula to all available ultrasound data, up until
24 weeks or up until 35 weeks. For fetuses that perfectly fit the Gom-
pertz curve, thus, there will be no change in the estimate of A, but in
general the 35 weeks data will provide better estimates. The four Had-
lock formulas are shown in supporting table S1 and their performance
shown in supporting fig S3. Hadlock 2 performs best. In all these for-
mulas we used our predicted fetal biometry values at term using the
Gompertz equation and INTERGROWTH mean formula. Our

Table 2
Gompertz parameters fitted to the Seethapathy cohort.

Ultrasound measurements Range (A) Mean (A) ± Std (A) t0 c

Head circumference [352, 424] 382.63± 10.41 17.65 0.088
Abdominal circumference [340, 456] 392.26± 15.36 20.03 0.081
Biparietal diameter [100, 123] 110.99± 3.49 18.21 0.084
Femur length [65, 83] 74.93± 2.55 18.92 0.122

Fig. 2. Distribution of A, root mean square error and quality of fit to Gompertz equation, A: Distribution of A for the four biometry parameters we study. B: Dis-
tribution of the root mean squared error for the fit to the Gompertz function. C: Five best-fitting fetuses to the Gompertz curve, for each biometry parameter. D: Five
worst-fitting fetuses to the Gompertz curve, for each parameter.
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individualized prediction, from early ultrasound parameters, clearly
outperforms population-average formulas in predicting birth weight for
individual fetuses. The MAPE for predictions made using all ultrasounds
up to 35 weeks is about 7.8% . This information can be useful to cli-
nicians making decisions on intervention. Fig. 3 shows the biometry
values obtained from INTERGROWTH mean formula saturates after
some time hence not able to predict the larger birth weight’s fetuses
whereas Gompertz predicted biometry values show a linear correlation
with birth weight (supporting Fig. S2).

Eq. 5, obtained using linear regression, can be used to estimate birth
weight for fetuses, given estimates of final biometry and of the Gompertz
scale parameters obtained from available ultrasound measurements.
(Units: EFW in kg, biometry in mm)

Marginal improvement was obtained using maternal parameters and
LASSO regression (supporting Fig. S1).

Fig. 4 shows, as a heatmap, the percentage of fetuses that fall within
various prediction accuracies. In particular, with ultrasound data up
until 35 weeks, our linear regression formula predicts 71.3 % of birth
weights within 10 % accuracy. Shepard with Gompertz parameters (35
weeks) is next best at 63.8 % cases predicted within 10 % accuracy.
Supporting Figs. S4 and S5 show the percentages under- and over-
predicted by each method; it appears that our LR method is balanced,
while INTERGROWTH and HADLOCK underpredict when using

Gompertz biometry predictions, and Shepard overpredicts when using
INTERGROWTH biometry estimates.

3.3. A model trained on the Seethapathy cohort performs well in birth
weight prediction on validation cohort

As described in Methods, Section 2.3, we trained a model on the
Seethapathy cohort and then predicted individual birth weights on the
validation cohort. Using ultrasound data up until 24 weeks and up until
35 weeks, MAPE and RMSE on the validation cohort (Fig. 4H) are
comparable with our predictions on the Seethapathy cohort, lending
confidence in our prediction model.

3.4. The Gompertz model improves SGA prediction across all models

We asked whether the predicted birth weights are indicators of
“small for gestational age” (SGA), defined here as the bottom 10 % of all
full-term births (≥ 38 weeks) in our cohort. There were 659 fetuses in
this cohort of which 64 were SGA by this definition. We used two
metrics: the area under the “receiver operator characteristic” curve (auc
or auROC), and the area under the “precision-recall curve” (auc or
auPRC). The ROC curve compares sensitivity (true positive rate, that is,
the fraction of truly positive cases that are called positive) with the false
positive rate (1 − specificity), while the PRC compares sensitivity (also
called precision) with recall (the fraction of positive predictions that are

Fig. 3. Birth weight prediction at delivery, using formulas from INTERGROWTH, Shepard, Hadlock, and linear regression. In these scatterplots, each dot represents
an individual fetus, its x-coordinate gives the actual birth weight, and the y-coordinate the predicted birth weight; dots closer to the dotted diagonal are better
predictions. The MAPE,“mean absolute percentage error” is the average of absolute values of all percentage errors, over all points, and the RMSE,“root mean squared
error”, is the square root of the average of the squared errors over all points. A–C: The final fetal biometry predicted by Gompertz formula, with A inferred from
ultrasound scans up until 24 weeks (green) or 35 weeks (red), were plugged in to the literature formulas to predict birth weight. D: Birth weight predicted by simple
linear regression using Gompertz-predicted biometry values. This was done in a leave-one-out manner to avoid data-leakage (Methods). E–G: Birth weight predicted
using literature formulas with the INTERGROWTH mean biometry values for the gestational age at delivery. H: Birth weight prediction of the model trained on the
full Seethapathy cohort, on an independent validation cohort, again with A calculated from 24 weeks (green) or 35 weeks (red) scans.

EFW = 0.0461× BPD − 0.0358× ABPD + 0.0242× FL+ 0.0195× HC+ 0.0155× AAC
− 0.0133× AHC − 0.00778× AFL − 0.00462× AC − 4.28 (5)
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truly positive). These are shown in Fig. 5. For unbalanced datasets such
as this, the auPRC is preferred as a metric, and our method performs best
on this.

However, the main conclusion here is that our prediction of biometry
values at birth improves the performance of all methods. This is also the
case in Fig. 3 where the other birth weight formulas (INTERGROWTH,
Hadlock, Shepard) perform much better if we use full-term biometry

values predicted by the Gompertz formula.

4. Discussion

In this work, we have demonstrated that the Gompertz growth for-
mula is an excellent fit to ultrasound biometry (HC, AC, FL, BPD) during
gestation, both on the Seethapathy cohort and on published growth

Fig. 4. The percentage of fetuses whose birthweight is predicted within a given error rate, according to 11 methods. Here, LR=our linear regression formula,
IG=INTERGROWTH, HD=Hadlock, SHD=Shepard, Gomp24 =Gompertz prediction of final biometry using ultrasound data up until 24 weeks, Gomp35 =Gompertz
prediction of final biometry using ultrasound data up until 35 weeks. So, for LR_Gomp35 and IG_Gomp35, the Gompertz-predicted final biometry were used in our
linear regression model and in the INTERGROWTH formula respectively. For IG_IG, HD_IG, SHD_IG, the INTERGROWTH optimal fetal biometry at birth were used
for prediction.

Fig. 5. The performance of the various algorithms in Fig. 3 for SGA prediction, where we took the bottom 10 % of full-term fetuses by birth weight as SGA. On the
left, the “receiver operator characteristic” that plots true positive rate (also called sensitivity) versus false positive rate (which is 1 − specificity). On the right, a plot of
precision (fraction of predicted positive values that are truly positive) against recall (another name of sensitivity). This dataset is unbalanced (only 10 % of cases are
truly positive for SGA by our definition), and the auPRC is regarded as a better metric in such cases. We find that while our algorithm for predicting the fetal weight
best predicts SGA, the use of predicted Gompertz biometry values at birth improves the performance of all algorithms (also suggested in Fig. 3), obviating the need for
a late-term ultrasound.
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standards; that in each biometry individual variation among fetuses is
described by a single scale parameter; that we can estimate final
biometry values with high accuracy using routinely-taken ultrasound
data (prior to 35 weeks), enabling the use of birth weight formulas that
otherwise require an ultrasound scan shortly before delivery. Finally, we
supply our own formula for the birth weight, whose accuracy (MAPE
7.8 %) is superior to the reported errors of previously published for-
mulas (Hadlock [17], Shepard [16], INTERGROWTH [18]; see also
[10]) that depend on late-term ultrasound data (within 7 days before
delivery). If we lack such late-term ultrasound data and use estimates of
final biometry values from the INTERGROWTH formula instead of the
Gompertz model, weight predictions of the literature formulas are
significantly poorer. In real life it is logistically difficult to obtain a scan
within 7 days before birth. Thus, our prediction of biometry values at
birth has real-world value.

Originally introduced by Gompertz [6] in the context of modeling
population size as a function of age, this formula has since been used in
many biological systems including tumor growth [11] and cell popula-
tion growth [12]. (see Tjørve and Tjørve [9] for a detailed review).
Wosilait et al. [7,8] previously used the Gompertz model to describe the
growth of fetal volume, modelled as an ellipsoid, using pooled fetal data
(single data point per aborted or stillborn fetus) from sources dating
back to 1909. We use it for linear fetal biometries: we note that if each of
length, breadth, height, of an ellipsoid, satisfies the Gompertz formula,
then so does the volume of the ellipsoid.

Other sigmoidal functions have been proposed for fetal growth.
Todros et al. [13] evaluated three sigmoidal formulas: a cubic poly-
nomial function a + bt + ct3, a logistic-logarithmic function
a/(1+bt − c), and an exponential-power function at2e− bt (where t is the
menstrual or the corrected age, and a, b, c are parameters). Rossavik and
Deter [14] proposed the formula ctk+st to describe the growth of a
parameter. We note that with 3 or 4 routinely taken sets of ultrasound
measurements, fitting a 2- or 3-parameter formula is prone to over-
fitting. Deter et al. [15] apply the Rossavik formula to a cohort of 18
patients, taking ultrasound data at 2–3-week intervals, which enables
fitting all coefficients. They can then predict fetal growth after 24 weeks
based on data before 24 weeks. In contrast, we find we can treat two
Gompertz parameters (shape c and inflection time t0) as universal and
we fit only A, the scale, to individual fetuses, but predict future growth
with good success based on this limited data.

Several formulas exist to predict fetal weight at term, and estimate
fetal weight during gestation, based on ultrasound measurements: for
example, Shepard et al. [16], Hadlock et al. [17] (who supplied four
formulas using different combinations of biometry measurements),
INTERGROWTH [18]. Kong et al. [10] compared the INTERGROWTH
formula, fourth Hadlock formula (using HC, AC, FL, and BPD) and
Shepard formula on a cohort of 423 singleton pregnancies where ul-
trasound measurements were taken within a week before delivery (in
63% of cases, within 3 days before delivery). They report mean absolute
percentage errors (MAPE) of 7.34 (Hadlock), 9.00 (Shepard) and 9.07
(INTERGROWTH). Milner and Arezina (2018) [19], in a systematic re-
view, assessed 11 different EFW formulas and find the third Hadlock
formula (using HC, AC and FL) most accurate. They again consider only
studies where women had their last scans within seven days before de-
livery. They report a mean percentage error (MPE) of − 1.5% but a
random error (standard deviation of MPE) of 9.2%. MPE can be
misleadingly small, because large positive and negative errors cancel;
therefore we (like Kong et al.) have used mean absolute percentage error
(MAPE) in this work.

Using the Gompertz formula predictively with routinely taken ul-
trasound measurements up until 24 or 35 weeks, we thus outperform
Shepard and INTERGROWTH formulas as reported by Kong et al. and
come close to Hadlock, even though we lack the final-week ultrasound
data that they require. Our MAPE is also less than the SD of best MPE
reported in Milner et al. Using our estimated final biometry values, we

outperform Hadlock, Shepard and INTERGROWTH on our own cohorts.
In case a late-term ultrasound is in fact available, those measurements
can be directly plugged into our formula.

As discussed in supporting text, we also find that the Gompertz for-
mula is a very good fit for the INTERGROWTH andWHO standards, with
relative errors of less than 2% and 1%, respectively, except for FL, which
has a relative error of less than 3% for both. Moreover, the values of t0
and c are close to the values obtained on the Seethapathy cohort, sug-
gesting that these can indeed be treated as almost universal parameters
and most fetal growth variability can be explained by the single
parameter A.

Growth standards from WHO [1] and INTERGROWTH [5] are not
specific to race or country and assume healthy, well-nourished, mid-
dle-to-high-income populations. However, WHO [2] and NICHD [4] find
significant variation by race and country despite no known environ-
mental or socioeconomic factors. The Seethapathy cohort too was
largely of middle-to-high-income healthy urban women. It would be of
future interest to apply the Gompertz formula to study variations among
populations and ethnicities, as well as in populations with non-ideal
nutritional or health status, and particularly to see if c (the rate of
retardation of fetal growth) and t0 (the inflection time of growth) varies
in such populations.
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