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Abstract: N6-methyladenosine (m6A) RNA modification is the most abundant modification method
in mRNA, and it plays an important role in the occurrence and development of many cancers. This
paper mainly discusses the role of m6A RNA methylation regulators in lung adenocarcinoma (LUAD)
to identify novel prognostic biomarkers. The gene expression data of 19 m6A methylation regulators
in LUAD patients and its relevant clinical parameters were extracted from The Cancer Genome Atlas
(TCGA) database. We selected three significantly differentially expressed m6A regulators in LUAD
to construct the risk signature, and evaluated its prognostic prediction efficiency using the receiver
operating characteristic (ROC) curve. Kaplan–Meier survival analysis and Cox regression analysis
were used to identify the independent prognostic significance of the risk signature. The ROC curve
indicated that the area under the curve (AUC) was 0.659, which means that the risk signature had
a good prediction efficiency. The results of the Kaplan–Meier survival analysis and Cox regression
analysis showed that the risk score can be used as an independent prognostic factor for LUAD. In
addition, we explored the differential signaling pathways and cellular processes related to m6A
methylation regulators in LUAD.

Keywords: m6A methylation; lung adenocarcinoma; prognostic signature; survival analysis

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide [1]. There are
many risk factors for lung cancer, with smoking and environmental and occupational
exposure as the most common risk factors [2]. In the past few decades, medical technology
has made great progress, but the treatment effect for lung cancer patients is not ideal. The
five-year survival rate for lung cancer is reported to be 19%, one of the lowest five-year
survival rates, while adenocarcinoma, the most common histological subtype of lung
cancer, is more aggressive and has a poorer prognosis [3–5]. To relieve the current clinical
treatment pressure and to improve the prognosis of patients, it is necessary to find reliable
prognostic markers to optimize the treatment regimen for lung adenocarcinoma (LUAD).

N6-methyladenosine (m6A) is a methylated modification of RNA molecules that was
first discovered in 1974 [6]. As of the end of 2017, more than 150 post-transcriptional
modifications have been identified in all organisms, and m6A is the most common internal
mRNA modification found in eukaryotes and plays a key role in a variety of basic biolog-
ical processes such as cell differentiation, tissue development, and tumorigenesis [7–10].
In mammals, approximately 0.1–0.4% of adenosine in isolated RNA is m6A-modified,
accounting for approximately 50% of the total methylated ribonucleotide [11]. Dominissini
et al. [12] used a new method of antibi-mediated capture and massive parallel sequencing,
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m6A-seq, which found that m6A is clustered in the termination codon, the 3′ untranslated
region (3′ UTR), and the internal exon. m6A methylation is a dynamic reversible pro-
cess catalyzed by three types of proteases: Writers (methyltransferase complex, including
METTL3/14/16, WTAP, IC3H13, ZC3H13, RBM15/15B, and KIAA1429), erasers (demethy-
lases, including FTO and ALKBH5), and readers (including YTHDF1/2/3, IGF2BP1/2/3,
YTHDC1/2, HNRNPC, HNRNPG, and HNRNPA2B1) [11,13,14]. Writers mediate the
methylation modification process of RNA to “write” the methylation modification to RNA,
and readers are responsible for “reading” the information of RNA methylation modification
and participate in downstream RNA translation and degradation processes, and then rely
on erasers mediating the process of RNA demethylation modification, which can “erase”
the RNA methylation modification signal, thereby making the m6A modification process
dynamic and reversible [15].

At present, many studies have shown that m6A methylation regulators are closely
related to the occurrence and development of tumors. For example, Taketo et al. [16]
indicated that METL3, as an m6A regulator, is up-regulated in patients with pancreatic
cancer and is an effective target in the treatment of such patients. Maetal et al. [17] found
that down-regulation of METTL14 expression is a poor prognostic factor for hepatocellular
carcinoma and is closely related to tumor metastasis. However, there is still insufficient
information about the role of m6A RNA methylation regulators in LUAD. Therefore, in this
study, RNA sequencing data were obtained from The Cancer Genome Atlas (TCGA), and
the expression data of 19 m6A methylation regulators in 535 LUAD tumor tissue samples
and 59 normal tissue samples were systematically analyzed, as well as their association
with clinicopathological characteristics. We used the least absolute shrinkage and selection
operator (LASSO) Cox regression algorithm to analyze 19 m6A methylation regulators, and
selected IGF2BP1, HNRNPC, and HNRNPA2B1 to construct the minimum standard risk
signature; meanwhile, Kaplan–Meier survival analysis and univariate and multivariate
Cox regression analyses were used to identify the predictive effect of the risk signature on
the prognosis of LUAD patients. Gene Set Enrichment Analysis (GSEA), Gene Ontology
(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for
further functional annotation.

2. Materials and Methods
2.1. Data Acquisition

All data in this study were downloaded from the TCGA (https://cancergenome.
nih.gov/, accessed on 30 December 2020) database, including gene expression data and
the corresponding clinical information of 535 LUAD tumor tissue samples and 59 nor-
mal tissue samples. If any parameter value was missing, the entire patient data were
excluded from the analysis. After screening, the clinical data of 479 samples were retained
(Supplementary Table S1). The clinical–demographic features of the patients with LUAD
are detailed in Table 1.

2.2. Selection of m6A Methylation Regulators and Analysis of Their Differential Expression

The TCGA database provides the expression data of 19 m6A methylation regula-
tors, i.e., YTHDF3, YTHDF2, YTHDF1, KIAA1429, HNRNPA2B1, RBM15, METTL3, HN-
RNPC, IGF2BP2, IGF2BP3, IGF2BP1, FTO, ZC3H13, WTAP, METTL14, ALKBH3, ALKBH5,
YTHDC1, and YTHDC2. In order to identify the expression of m6A RNA methylation
regulators in LUAD, the Limma package [18] was used to analyze the expression of 19 m6A
RNA methylation regulators in 479 LUAD tumor tissues and 59 normal tissues, and the ex-
pression levels of 19 m6A RNA methylation regulators in LUAD tumor tissue samples with
different clinical characteristics were compared, and the expression levels were evaluated
by t-tests. Utilizing the pheatmap package, the results were used to generate a heatmap
and a vioplot for visualization purposes.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Table 1. Clinical–demographic features of patients with LUAD.

Feature N (479) Rate %

Age (years)
>65 251 52.4%
≤65 228 47.6%

gender
Female 256 53.4%
Male 223 46.6%

T classification
T1 165 34.5%
T2 254 53.0%
T3 44 9.2%
T4 16 3.3%

N classification
N0 317 66.2%
N1 93 19.4%
N2 69 14.4%

TNM stage
I 260 54.2%
II 120 25.1%
III 78 16.3%
IV 21 4.4%

2.3. Correlation Analysis of m6A Methylation Regulators

In order to further study the correlation between m6A methylation regulators, co-
expression correlation analysis was carried out, and the results were visualized by the
“corrplot” package. We performed univariate Cox regression analysis on the expression of
19 m6A RNA methylation regulators in 479 LUAD tumor tissues, and genes with p < 0.05
were considered to be significantly associated with the survival of LUAD patients.

2.4. Construction and Verification of Risk Signature

To verify the prognostic effect of m6A RNA methylation regulators in LUAD pa-
tients, we performed LASSO Cox regression analysis [19,20] on 15 m6A RNA methylation
regulators significantly related to the survival of patients, and screened three m6A RNA
methylation regulators (IGF2BP1, HNRNPC, and HNRNPA2B1) to construct a minimum
standard risk signature (Supplementary Figure S1a,b) The obtained coefficients (IGF2BP1
coefficient = 0.0352, HNRNPC coefficient = 0.0046, and HNRNPA2B1 coefficient = 0.0006)
were used to calculate the risk score of the TCGA dataset. The risk score calculation for-
mula is as follows (Coefi means coefficient and Expi means the expression value of each
selected gene):

Risk score =
n

∑
i =1

Coefi × Expi (1)

Additionally, the patients were classified into low- and high-risk groups according to
the median of the risk scores. Principal component analysis (PCA) was performed on the
grouping results by the Limma package, and the results were visualized by the ggplot2
package. The survival package [21] was used to compare the overall survival (OS) rate
of the high- and low-risk groups by the Kaplan–Meier method. Then, we constructed a
receiver operating characteristic (ROC) curve [22] to evaluate the prediction efficiency of
the risk signature.

2.5. Analysis of the Prognostic Ability of the Three-Gene Signature

The “pheatmap” package was used to generate heatmaps to visually analyze the
expression differences of the three genes in the high- and low-risk groups, as well as
the expression differences of the three genes in LUAD patients with different clinico-
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pathological characteristics. Univariate and multivariate independent prognostic analyses
of the risk scores were performed to identify the prognostic value of the risk signature.
GSEA was used to annotate the differential signaling pathways and cellular processes
between the two groups. GO [23] enrichment and KEGG [24] pathway analysis were
used to analyze the differentially expressed genes (DEGs) between the high- and low-risk
groups. When the p-value was less than 0.05, the enrichment pathway was considered to
be statistically significant.

2.6. Statistical Analysis

One-way analysis of variance was used to compare the expression of m6A RNA
methylation regulators in the tumor tissues of TCGA LUAD patients. The relationship
between m6A RNA methylation regulators and the clinicopathological characteristics of
LUAD patients was analyzed by t-tests. OS was defined as the time interval from the date
of diagnosis to the date of death. The Kaplan–Meier method was used for OS analysis to
conduct a bilateral log-rank test. All statistical analyses were performed using R software
(version 3.6.2), and p < 0.05 was considered statistically significant.

3. Results

3.1. Expression of m6A RNA Methylation Regulators in LUAD

We compared the expression levels of 19 m6A RNA methylation regulators in 535
LUAD tumor tissue samples and 59 normal tissue samples extracted from the TCGA
database. As shown in Figure 1A,B, we found that there was a significant difference in
the expression levels of YTHDF3, YTHDF2, YTHDF1, KIAA1429, HNRNPA2B1, RBM15,
METTL3, HNRNPC, IGF2BP2, IGF2BP3, IGF2BP1, FTO, ZC3H13, WTAP, and METTL14
between LUAD tumor tissues and normal tissues. Among these regulators, the expres-
sion levels of YTHDF3, YTHDF2, KIAA1429, HNRNPA2B1, RBM15, METTL3, HNRNPC,
YTHDF1, IGF2BP2, IGF2BP3, and IGF2BP1 in LUAD tumor tissues were significantly
higher than those in normal tissues, while FTO, ZC3H13, WTAP, and METTL14 were lower
than in normal tissues.

3.2. Correlation among the 19 m6A RNA Methylation Regulators in LUAD

To further understand the correlation among the 19 m6A RNA methylation regulators
in LUAD, we analyzed the correlation of 19 m6A RNA methylation regulators. The
results are shown in Figure 2A, highlighting obvious correlations among the 19 m6A
RNA methylation regulators, most of which were positive correlations. Among them,
YTHDC2 and RBM15, YTHDC1 and METTL14, and YTHDC2, and METL14 demonstrated
the strongest positive correlations.

We performed univariate Cox regression analysis on 19 m6A methylation regulators to
identify the regulators in the LUAD dataset associated with the survival of LUAD patients.
As shown in Figure 2B, the expression of IGF2BP1 (HR = 1.054, 95%CI = 1.028–1.081),
IGF2BP2 (HR = 1.025, 95%CI = 1.007–1.043), IGF2BP3 (HR = 1.065, 95%CI = 1.024–1.107),
HNRNPC (HR = 1.015, 95%CI = 1.005–1.025), RBM15 (HR = 1.125, 95%CI = 1.014–1.249), HN-
RNPA2B1 (HR = 1.007, 95%CI = 1.002–1.012), and KIAA1429 (HR = 1.064, 95%CI = 1.008–1.124)
was significantly associated with the survival of LUAD patients, while IGF2BP1 (p < 0.001)
was the most related to the survival of LUAD patients.
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Figure 1. Bioinformatics analysis of the expression of m6A RNA methylation regulators in LUAD. (A) Heatmap of the
expression of m6A RNA methylation regulator in normal tissues (N, blue) and LUAD tumor tissues (T, pink). Red
represents up-regulation and green represents down-regulation. (B) Vioplot visualizing the differentially expressed m6A
RNA methylation regulators in LUAD. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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methylation regulators calculated by univariate COX regression analysis.



Life 2021, 11, 619 6 of 13

3.3. Evaluation of the m6A-Related Risk Signature

To explore the prognostic value of the three-gene risk signature, we divided the LUAD
patients obtained from TCGA into a low- and a high-risk group based on the median risk
score. As shown in Figure 3A, as the risk score increased, the number of deaths in the
high-risk group became significantly higher than in the low-risk group. We also performed
PCA on the risk signature to compare the differences between the two groups. The results
showed that the distribution directions of the two groups were different and there was
a clear boundary, suggesting that the risk signature could divide LUAD patients into
two groups (Figure 3B). Then, we constructed a Kaplan–Meier survival curve to analyze
the OS rate of the two groups. The results are shown in Figure 3C; there was a significant
difference in the OS rate between the high- and low-risk groups (p = 1.257 × 10−4). The OS
rate of the LUAD patients in the low-risk group was significantly higher than that of the
LUAD patients in the high-risk group. In the follow-up, an ROC curve was established
to evaluate the efficiency of the risk signature for predicting the five-year survival rate
of LUAD patients. As shown in Figure 3D, the AUC was 0.659, indicating that the risk
signature had a good predictive efficiency on the five-year survival rate of LUAD patients.
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signature for the survival rate of LUAD patients, AUC = 0.659.

3.4. Prognostic Analysis of the m6A-Related Risk Signature

After dividing the patients in a high- and a low-risk group according to the median
risk score, we further compared the clinicopathological characteristics and the expression
of three genes between the two groups. The heatmap in Figure 4A shows that there were
significant differences at T, stage, and status between the high- and low-risk groups, and
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the expressions of IGF2BP1, HNRNPC, and HNRNPA2B1 in the high-risk group were
up-regulated, while those in the low-risk group were down-regulated.
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module represents the confidence interval of each factor.

To verify whether the risk signature could be used as an independent prognostic indi-
cator of LUAD, we conducted univariate and multivariate independent prognostic analyses
on the risk score. As shown in Figure 4B,C, the results of the univariate Cox independent
prognostic analysis showed that risk score (p < 0.001), stage (p < 0.001), T (p < 0.001), and
N (p < 0.001) were significantly related to OS in LUAD patients. The results of the multi-
variate Cox independent prognosis analysis showed risk score (p < 0.001), stage (p = 0.002),
and N (p = 0.031), which means that the risk signature could be used as an independent
prognostic factor for LUAD.
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3.5. Functional Enrichment Analysis

We used GSEA to analyze the active signal pathways in the high- and the low-risk
groups. There were dramatic differences in the expression of genes involved in the active
pathways of the two groups. For example, the genes involved in the cell cycle, genetic
material (purine and pyrimidine) metabolism, DNA replication, and translation process
(RNA polymerase and RNA degradation) were significantly up-regulated in the high-risk
group (Figure 5). Ayelet Erez et al. found that in many cancerous tumors, nitrogen is
used to synthesize pyrimidines, which in turn supports the synthesis of RNA and DNA in
cancer cells, disrupts the balance of the cell cycle, and promotes cancer progression.
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pathways in the figure were significantly up-regulated in the LUAD high-risk group.

After GESA analysis, we screened out a total of 378 DEGs (Log FC > 1, p < 0.05)
between the high- and low-risk groups. To future explore the biological functions and
pathways that had certain correlation with risk score, we performed GO enrichment and
KEGG pathway analysis on the screened DEGs. The GO analysis results showed that the
DEGs were mainly enriched in the biological processes associated with cell proliferation,
including organelle fission, nuclear division, and chromosome segregation. Simultaneously,
DEGs were enriched in cell components associated with mitosis, such as spindle and
condensed chromosomes. There was also a significant enrichment in DEGs in the molecular
functions associated with mitosis, covering tubulin binding, microtubule binding, and
ATPase activity, while the KEGG analysis results showed that DEGs are mainly enriched in
the cell cycle, which are likely to be associated with proliferation and metastasis during
tumor progression (Figure 6A,B).
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4. Discussion

LUAD is the most common subtype of non-small cell lung cancer, and its incidence
is increasing year on year, accounting for almost 50% of all lung cancers. LUAD has a
lower OS than most cancers due to its rapid development and invasiveness [5]. Traditional
treatment methods include surgery, radiotherapy, and chemotherapy [25], and the choice
of treatment method depends on the type of cancer (small cell or non-small cell), stage of
development, and genetic characteristics [26]. If it can be detected at an early stage, surgical
removal of non-small cell lung cancer can provide a good prognosis. However, more than
70% of patients with non-small cell lung cancer are diagnosed with advanced or metastatic
disease, which leads to a poor prognosis and low five-year survival rate [27]. Therefore,
there is an urgent need to explore potential prognostic biomarkers and promising targets,
such as the prognostic value and prediction prospects of cellular and molecular immune
markers in lung cancer [28], which can be used to develop an appropriate treatment plan
for patients to prolong their survival time.

As the most common modification in human mRNA, m6A methylation modification is
involved in regulating mRNA processing, translation, and stability [29]. Abnormal regula-
tion of m6A modification plays an important role in many types of tumors by affecting the
expression of tumor-related genes. Many studies have confirmed that m6A modification
is related to tumor proliferation, differentiation, tumorigenesis, invasion, and metasta-
sis [17,30,31]. The levels of METTL3 and METTL14 in AML show significant changes,
which affects the proliferation of AML cells and the process of tumor progression [32,33].
Studies have shown that METL3 and YTHDF1 levels are higher in liver cancer and are
associated with a poor OS rate [34]. METTL3 can promote the expression of multiple
oncogenes such as BRD4, EGFR, TAZ, MAPKAPK2, and DNMT3A in human lung cancer
cells [35]. However, the influence of m6A methylation regulators on the prognosis of
patients with LUAD needs to be further clarified. Therefore, in this study, we explored the
value of m6A RNA methylation regulators in the prognosis of patients with LUAD.
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Different m6A RNA methylation regulators have different effects on the same cancer,
and they can play a role in promoting and inhibiting, the occurrence and development of
tumors. On the one hand, the target gene modified by m6A can be either an oncogene or a
tumor suppressor gene; on the other hand, the modified m6A can affect its target mRNA
by recruiting different “readers” to play different roles in tumorigenesis and development.
The same m6A methylation regulator is expressed differently in different cancers; for
example, as an “eraser” in the process of m6A RNA methylation, FTO is highly expressed
in breast, liver, and gastric cancer tissues compared to normal tissues, which is associated
with poor prognosis, while FTO expression in bladder cancer tissues is lower than that
in normal tissues [35–38]. Interestingly, in this study, we analyzed the data of 479 LUAD
patients extracted from the TCGA database and showed that the 19 m6A RNA methylation
regulators we studied had abnormal expression in LUAD patients. Among them, the
expression of FTO in the tumor tissues of LUAD patients is significantly lower than that in
normal tissues, which further validates the above viewpoint.

Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; IGF2BP1/2/3), as a
newly discovered m6A regulator in recent years, promotes the stability and storage of
its target mRNA (such as MYC) in an m6A-dependent manner, and has a carcinogenic
effect in cancer [39,40]. More and more studies have found that IGF2BP1 is abnormally
expressed in liver cancer, lung cancer, colon cancer, ovarian cancer, breast cancer, and other
tumors [41–44]. IGF2BP1 is not only related to the proliferation, migration, and invasion of
tumor cells, but also closely related to the poor prognosis of patients [45]. Interestingly, we
performed univariate Cox regression analysis on 19 m6A regulatory factors and found that
IGF2BPs were significantly related to the survival of LUAD patients, and were significantly
highly expressed in the tumor tissues of LUAD patients. Therefore, we believe that the high
expression of IGF2BPs may be one of the factors leading to the occurrence and development
of LUAD in patients, and further study of the mechanism of IGF2BP1 in malignant tumors
may be expected to provide a new method for tumor-targeted therapy. Xu et al. found
that the YTHDC2–IGF2BP2–HNRNPC risk prognosis model has important application
value in the prognosis assessment of oral cancer, which may be related to remodeling of the
tumor-related immune microenvironment. Yang et al. found that hnRNPA2/B1’s, a new
COX-2 modulator, up-regulated expression predicts poor prognosis for NSCLC patients,
indicating that hnRNPA2/B1 promotes tumors [46].

Next, based on the abovementioned research and our findings, we selected three
m6A RNA methylation regulators (IGF2BP1, HNRNPC, and HNRNPA2B1) to construct a
minimum standard risk signature, which had a good predictive effect on the prognosis of
LUAD patients. The higher the signature-based risk score, the worse the prognosis. At the
same time, we divided 479 LUAD patients into high- and low-risk groups based on the
median risk score and verified the results with PCA, showing that the results of grouping
according to the median risk score have a clear boundary. The Kaplan–Meier survival
analysis results showed that the signature can significantly distinguish LUAD patients
with different OS, and also has a good predictive efficiency on the prognosis of LUAD
patients (AUC = 0.659). Moreover, we also performed univariate and multivariate Cox
independent prognostic analyses of the risk score, and the results showed that the risk score
is an independent prognostic factor of LUAD. The results of the GESA analysis showed
that the poor prognosis of the high-risk group may be related to the active cell cycle, genetic
material metabolism, gene replication, and translation process, which may promote tumor
progression. The results of the GO and KEGG analysis of the DEGs between the two groups
suggested that DEGs were also mainly enriched in the cell cycle process, especially mitosis,
and may affect the progress of LUAD through the regulation of mitosis. Since the grouping
of patients relied on three m6A methylation regulators, this implies that they may directly
or indirectly regulate the mRNA expression of DEGs between the two groups, thereby
affecting the prognosis of patients through the regulation of cell cycle and mitosis These
results may provide a theoretical basis for further research on the pathogenesis of LUAD
and the establishment of new risk classification and prognostic models.
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5. Conclusions

In summary, our research established a novel prognostic risk signature on the ba-
sis of three m6A RNA methylation regulators (IGF2BP1, HNRNPC, and HNRNPA2B1).
Additionally, the risk signature was verified to be an independent prognostic factor of
LUAD, which provides a new direction for the prognosis prediction of LUAD. However,
our study still has some limitations. First, the risk signature was developed using the
TCGA cohort, and the predictive effectiveness of the signature needs to be validated in
other prospective cohorts. Second, the underlying mechanisms between the DEGs in the
high- and low-risk groups and cell cycle, especially mitosis, have to be studied in the future.
Otherwise, the specific role of IGF2BP1, HNRNPC, and HNRNPA2B1 in LUAD needs
further experimental exploration.
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