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Introduction
Toll-like receptors (TLRs) are involved in the recognition 

and processing of a variety of signals delivered by viral and 

microbial products (Janeway and Medzhitov, 2002; Takeda et al., 

2003). TLRs sense the presence of molecules that are broadly 

conserved across microbial taxa. TLR activation initiates the in-

nate immune response by inducing the expression of antimicro-

bial genes and infl ammatory cytokines. Activation of TLRs also 

enhances adaptive immunity through activation of dendritic 

cells. TLR-mediated recognition of microbial components by 

dendritic cells induces the expression of costimulatory mole-

cules, such as CD80/CD86, and the secretion of infl ammatory 

cytokines, and it is responsible for the rearrangement of traf-

fi cking pathways of class II major histocompatability complex 

(MHC) products (Akira et al., 2001; Iwasaki and Medzhitov, 

2004). There are 10 and 12 TLR paralogues in humans and mice, 

respectively. Both species have TLR1–9. Mice lack TLR10, but 

have TLR11–13, which humans lack. Each TLR appears to 

sense the presence of distinct microbial components (Takeda 

et al., 2003; Kawai and Akira, 2006). For example, TLR4 

 recognizes lipopolysaccharides (LPSs), which are components 

of the Gram-negative bacterial outer membrane, whereas double-

stranded RNA, single-stranded RNA, and unmethylated bacte-

rial DNA (CpG) engage TLR3, 7, and 9, respectively (Poltorak 

et al., 1998; Hemmi et al., 2000; Alexopoulou et al., 2001; Bauer 

et al., 2001; Diebold et al., 2004; Heil et al., 2004).

Mutations affecting TLR-mediated cellular responses 

have been instrumental in delineating the components of the 

relevant signal transduction cascades (Beutler et al., 2006). 

These include spontaneous mutations, targeted gene disrup-

tions, and chemically induced mutations, the best characterized 

of which include the defi ciencies in MyD88 and TRIF adaptor 

molecules (Kawai et al., 1999; Hoebe et al., 2003) and in the 

 kinases that act downstream of them (Suzuki et al., 2002; Shim 

et al., 2005; Hoshino et al., 2006). In a forward genetic screen 

using mutagenesis with N-ethyl-N-nitrosourea, Tabeta et al. (2006) 

identifi ed “triple D” (3d) mice that showed defects in TLR3, 7, 

and 9 signaling, as well as in class I and II MHC-restricted 

 antigen presentation. The mutation was identifi ed as a single 

histidine-to-arginine substitution (H412R) in the polytopic 

membrane protein UNC93B. Mice carrying this mutation are 

highly susceptible to infection with mouse cytomegalovirus, 

Listeria monocytogenes, and Staphylococcus aureus. Notably, 

the histidine residue affected in the UNC93B mutation is invari-

ant for all vertebrate orthologues. UNC93B defi ciency has also 

been linked to the etiology of herpes simplex virus-1 encephali-

tis in human patients (Casrouge et al., 2006). Similar to what 
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was observed in 3d mice, cells from patients with a mutation in 

the Unc93b1 gene show impaired cytokine production upon 

stimulation of TLR3, 7, 8, and 9 and are highly susceptible to 

various viral infections.

The molecular mechanisms that underlie the immunologi-

cal defects in the UNC93B mutant mice and in human patients 

are not known. Moreover, no specifi c function has been as-

signed to UNC93B. In Caenorhabditis elegans, Unc93, which 

is the founding member and sole homologue of mammalian 

Unc93b, encodes a regulatory subunit of a two-pore potassium 

channel complex and plays a role in coordinated muscle con-

traction (Greenwald and Horvitz, 1980; Levin and Horvitz, 

1992; de la Cruz et al., 2003). Multiple paralogues of UNC93 

exist in mammals, two of which are UNC93A (32% amino acid 

identity to C. elegans UNC93) and UNC93B (20% amino acid 

identity to C. elegans UNC93). UNC93A and UNC93B are 

highly conserved between human and mouse (71% amino acid 

identity for UNC93A and 90% amino acid identity for 

UNC93B). Human UNC93A and UNC93B are predicted multi-

spanning transmembrane proteins and the GFP fusion protein 

of human UNC93A localizes to the plasma membrane (Kashuba 

et al., 2002; Liu et al., 2002). Mammalian UNC93B contains a 

domain of unknown function (DUF895) between residues 124 

and 189, and human UNC93B shows a weak homology to the 

bacterial ABC-2 type transporter signature between residues 

319 and 523 (Kashuba et al., 2002; Tabeta et al., 2006). How-

ever, no functional role has been established for such domains.

We analyzed the biosynthesis and maturation of murine 

UNC93B and discovered that wild-type, but not mutant, UNC93B 

physically interacts with TLR3, 7, 9, and 13, as assessed by mass 

spectrometry (MS) and biochemical approaches. Using genetic 

and immunochemical tools, we further confi rmed the interaction 

between endogenous UNC93B and TLRs in primary dendritic 

cells and splenocytes of wild-type mice, but not UNC93B mutant 

mice. The essential role for UNC93B in TLR signaling is thus 

explained by direct interactions with its client TLRs.

Results
Wild-type and mutant UNC93B proteins 
retain Endo H sensitivity and show 
similar stability
The murine Unc93b gene comprises 11 exons and gives rise to 

a protein of 598 amino acids. Topology prediction programs 

suggest that UNC93B spans the membrane 12 times, and the 3d 

mutation (H412R) is located within transmembrane domain 9 

(Fig. 1 A). UNC93B has two putative N-linked glycosylation 

sites (consensus NxS/T), N251HT and N272KT (Fig. 1 A). We 

raised polyclonal rabbit antibodies against several peptide se-

quences of the N- and C-terminal portions of UNC93B. The 

antibodies showed reactivity with both wild-type and mutant 

UNC93B, as assessed by immunoblotting and immunoprecipi-

tation on cell extracts prepared from a variety of sources (un-

published data).

Polar residues in transmembrane domains are involved in 

helix–helix interactions within a multitransmembrane domain–

containing protein to aid helix packing or participate in  protein–

protein interactions with a neighboring membrane protein (Curran 

and Engelman, 2003). Missense mutations involving the loss 

or gain of an arginine residue in a predicted transmembrane 

 domain are often associated with protein misfolding and mal-

function, as found in many human diseases (Partridge et al., 

2004). Therefore, we assessed the effects of the H412R muta-

tion on expression, maturation, and stability of the UNC93B 

protein. We generated an epitope-tagged version of UNC93B in 

which the Flag-Tobacco Etch virus (TEV)-HA tag was attached 

to the C terminus of either the wild-type (UNC93B-HA WT) or 

mutant (UNC93B-HA H412R) UNC93B protein (Fig. 1 A). We 

then introduced epitope-tagged wild-type and mutant UNC93B 

into the macrophage cell line RAW 264.7 and conducted pulse-

chase experiments. Wild-type and mutant UNC93B-HA showed 

similar half-lives (�4 h), but exhibited distinct migration patterns 

in SDS-PAGE (Fig. 1 B). Wild-type UNC93B migrates as het-

erodisperse material upon SDS-PAGE, whereas the UNC93B 

mutant form is dominated by a well-defi ned distinct polypep-

tide in addition to more diffuse material (Fig. 1 B).

To rule out the possibility that the distinct polypeptide 

seen for mutant UNC93B represents a protein that associates 

with mutant UNC93B rather than the mutant protein itself, we 

performed immunoprecipitation experiments with the poly-

clonal antiserum directed against the C-terminal segment of 

UNC93B (anti–UNC-C), followed by reimmunoprecipitation 

experiments with an UNC93B antibody raised against the N ter-

minus (anti–UNC-N), anti-HA, or anti-Flag antibodies. We re-

covered epitope-tagged, as well as endogenous, UNC93B from 

RAW macrophages with the anti–UNC-C antiserum (Fig. 1c). 

Reimmunoprecipitation with anti–UNC-N antiserum after mild 

denaturation of the initial immunoprecipitation samples recov-

ered endogenous, as well as epitope-tagged, UNC93B, whereas 

anti-HA and -Flag monoclonal antibodies recovered only epitope-

tagged UNC93B proteins, as expected (Fig. 1 C). The distinctly 

migrating polypeptide of mutant UNC93B was also recovered 

by reimmunoprecipitation (Fig. 1 C), confi rming that it derives 

from the UNC93B protein and not from a separate UNC93B-

 associated polypeptide.

To examine the maturation of endogenous wild-type and 

mutant UNC93B proteins, we performed pulse-chase analysis 

of bone marrow–derived dendritic cells (BM-DCs) from wild-

type (C57BL/6) and UNC93B mutant (3d) mice. We confi rmed 

the 3d phenotype of the UNC93B mutant mice through measure-

ment of TNF production in BM-DCs after stimulation with TLR 

agonists. As reported, cells from 3d mice showed a complete 

lack of response to TLR7 and 9 agonists, whereas the response 

to the TLR4 agonist LPS was not affected (Fig. S1, avail able 

at http://www.jcb.org/cgi/content/full/jcb.200612056/DC1). 

The cells were first labeled with [35S]methionine/ cysteine 

for 30 min. After chase periods of 0, 1, and 4 h, endogenous 

UNC93B was recovered by immunoprecipitation with the anti–

UNC-C antiserum. The immunoprecipitates were subjected to 

glycosidase digestion. In agreement with the proposed intracel-

lular location of UNC93B as an ER-localized protein (Tabeta et al., 

2006), we found that both wild-type and mutant UNC93B proteins 

recovered during the entire chase period retained full sensitivity 

to Endoglycosidase H (Endo H; Fig. 1 D). Immunofl uorescence 
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analysis of wild-type and mutant UNC93B-HA with an anti- 

HA monoclonal antibody in paraformaldehyde-fi xed RAW cells 

resulted in a reticular membrane staining pattern that closely 

overlaps with staining pattern for the ER membrane protein cal-

nexin, confi rming ER localization of both wild-type and mutant 

UNC93B (unpublished data).

Notably, the endogenous UNC93B mutant protein recov-

ered from 3d mice showed the same discrete polypeptide, in ad-

dition to the presence of diffuse material, whereas wild-type 

UNC93B only showed the heterodispersed band (Fig. 1 D). As 

observed for epitope-tagged UNC93B, endogenous UNC93B is 

a stable protein, and wild-type and mutant UNC93B do not 

show any difference in stability. These results further show that 

tagging UNC93B at its C terminus does not necessarily infl u-

ence its maturation or stability.

From these experiments, we conclude that the phenotype 

observed in the UNC93B mutant mice neither results from the 

lack of UNC93B protein expression nor can it be attributed to 

a shortened half-life of the mutant UNC93B protein. Further, 

both wild-type and mutant UNC93B retain full Endo H sensi-

tivity, which is consistent with their localization to the ER.

Maturation of MHC products is normal 
in BM-DCs from 3d mice
The 3d mice not only show a defect in TLR signaling via TLR3, 

7, and 9 but are also compromised in their ability to engage in 

cross-presentation via class I MHC molecules and in class II 

MHC-restricted antigen presentation (Tabeta et al., 2006). Even 

though surface levels of MHC products at steady state may not 

be affected by the 3d mutation, this leaves open the possibility of 

alterations in their traffi cking. We performed pulse-chase analy-

sis for class I and II MHC products on BM- DCs obtained from 

wild-type and 3d mice. Maturation of class II MHC molecules was 

examined by assessing the levels of SDS-stable, peptide-loaded 

Figure 1. Characterization of wild-type and 
mutant UNC93B proteins. (A) Model of the 
UNC93B protein. The single point mutation of 
histidine residue 412 to arginine (H412R, 3d 
mutation) is located within transmembrane do-
main 9 (•). The two predicted N-linked glycosyl-
ation sites (N251HT and N272KT) are indicated 
(*). Wild-type and mutant (H412R) UNC93B 
were fused at the C terminus with a Flag tag, 
followed by the TEV protease cleavage site 
and an HA-tag (designated as UNC93B-HA). 
(B) RAW macrophages stably expressing 
epitope-tagged wild-type UNC93B-HA (WT, left) 
or mutant UNC93B-HA (H412R, right) were 
metabolically labeled with [35S]methionine/
cysteine for 30 min (pulse) and lysed in RIPA 
buffer after 0, 2, 4, 8, and 12 h of incuba-
tion in normal medium (chase). UNC93B pro-
teins were recovered by immunoprecipitation 
with an anti-HA antibody and resolved by 
SDS-PAGE. Wild-type and mutant UNC93B 
proteins show similar stability, but differ in 
their migration patterns; wild-type UNC93B 
migrates as heterodispersed material on SDS-
PAGE, whereas the UNC93B mutant form mi-
grates as a well-defi ned distinct polypeptide in 
addition to more diffuse material. (C) Endog-
enous and epitope-tagged UNC93B proteins 
were immunoprecipitated in 1% NP-40 lysis 
buffer from 35S-labeled RAW macrophages 
that are nontransduced (–) or transduced with 
UNC93B-HA (WT) or UNC93B-HA (H412R) 
using a polyclonal antibody directed against 
the C terminus of UNC93B (anti–UNC-C). Re-
immunoprecipitations were performed after 
mild denaturation of the initial immunoprecipi-
tation with a polyclonal antiserum against the 
N terminus of UNC93B (anti–UNC-N) or anti-
bodies to the HA or Flag epitopes. Recovered 
epitope-tagged and endogenous UNC93B 
proteins were resolved by SDS-PAGE. The dis-
tinct polypeptide observed in direct immuno-
precipitations of mutant UNC93B is also 
observed after reimmunoprecipitation of mu-
tant UNC93B, and is thus UNC93B itself. (D) 
BM-DCs from either wild-type C57BL/6 (B6) or 

UNC93B mutant (3d) mice were pulsed with [35S]methionine/cysteine for 40 min and lysed in 1% digitonin lysis buffer after 0, 1, or 4 h of incubation in 
normal medium (chase). Endogenous UNC93B proteins were immunoprecipitated with the affi nity purifi ed anti–UNC-C antibody, subjected to digestion 
with glycosidases Endo H (H) or PNGase F (F) or not digested (–), and resolved by SDS-PAGE. Both wild-type and mutant UNC93B proteins retain full sen-
sitivity to Endo H digestion. The polypeptides migrating at the range of 130–150 kD in nondigested samples and at �100 kD in Endo H/PNGase F-digested 
samples (arrowheads) are only present in wild-type samples, but not in the 3d samples (Fig. 3 A and Fig. 6 A).
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αβ dimers, as well as the kinetics of SDS-stable dimer  formation. 

The results from wild-type and 3d mice were indistinguishable 

(Fig. 2). We did not observe any difference in synthesis and 

 maturation of class I MHC molecules either (unpublished data). 

We conclude that, at least at this level of analysis, defects in 

MHC-restricted antigen presentation in 3d mice are unlikely to 

result from aberrant traffi cking of MHC products.

Immunoprecipitation of wild-type UNC93B 
recovers an �130-kD protein that retains 
Endo H sensitivity
Because wild-type and mutant UNC93B did not show any dif-

ference in localization, expression levels, maturation, and sta-

bility, the effect of the point mutation may lie in the loss or gain 

of interaction partners of the UNC93B proteins. Thus far, no in-

teracting proteins have been described for UNC93B.

To identify interacting proteins of UNC93B, we con-

ducted pulse-chase experiments in RAW macrophages stably 

expressing epitope-tagged wild-type or mutant UNC93B-HA 

(Fig. 1 A). Cells were lysed after 0, 90, or 180 min of chase in 

mild detergent (1% digitonin). We used digestion with either 

Endo H or Peptide:N-glycosidase F (PNGase F) to monitor the 

glycosylation status of UNC93B-HA. As observed for endoge-

nous UNC93B, both wild-type and mutant UNC93B-HA re-

tained Endo H and PNGase F sensitivity throughout the chase 

period (Fig. 3 A, middle and right).

We noted the presence of a polypeptide of lesser auto-

radiography intensity, and of a size (�130 kD) inconsistent 

with that predicted for UNC93B itself. This polypeptide, too, 

retained full Endo H sensitivity. The presence of this additional 

polypeptide was observed only for wild-type, but not for mu-

tant, UNC93B, even though the mutant protein was expressed at 

levels comparable to that of wild-type UNC93B, as assessed by 

both immunoblotting (not depicted) and immunoprecipitation 

on extracts of RAW macrophages stably expressing the relevant 

constructs (Fig. 1 B and Fig. 3 A). The ability to recruit the 

�130-kD polypeptide, thus correlates with the functional properties 

of UNC93B. We also observed that an �130-kD, Endo H–sensitive 

polypeptide was coimmunoprecipitated with wild-type, but not 

with mutant, UNC93B in A20 B cells (Fig. 6 D and not de-

picted). In A20 B cells, we detected an additional polypeptide 

of �150 kD that had characteristics similar to that of the �130-kD 

polypeptide, in that it was also Endo H–sensitive and was co-

immunoprecipitated only with wild-type UNC93B (Fig. 6 D 

and not depicted).

Large-scale immunoprecipitation 
of UNC93B identifi es TLR3, 7, 9, and 13 
as interacting proteins of wild-type, 
but not of mutant, UNC93B
To identify UNC93B-associated polypeptides, we prepared 

large-scale cell cultures of RAW macrophages stably expressing 

Figure 2. Maturation of MHC class II is not altered in 
UNC93B mutant mice. BM-DCs from either wild-type C57BL/6 
(B6) or UNC93B mutant (3d) mice were pulsed with 
[35S]methionine/cysteine for 40 min and lysed in 1% digito-
nin lysis buffer after 0, 1, 2, or 4 h of incubation in normal 
medium (chase). Endogenous MHC class II was immunopre-
cipitated with the anti-MHC class II antibody (N22). Immuno-
precipitates were loaded under denaturing (boiled) or mildly 
denaturing (nonboiled) conditions and resolved by SDS-PAGE. 
SDS-stable class II MHCs are composed of the α/β heterodimer 
and antigenic peptide (αβpeptide). Ii, invariant chain.

Figure 3. TLR3, 7, 9, and 13 bind to wild-
type, but not mutant, UNC93B. (A) RAW 
macrophages (left) or RAW cells stably trans-
duced with either mutant (middle) or wild-
type (right) UNC93B-HA were labeled with 
[35S]methionine/cysteine for 30 min. Cells 
were lysed in 1% digitonin lysis buffer after 
chase periods of 0, 90, or 180 min, and 
UNC93B-HA was immunoprecipitated with an 
anti-HA antibody. The samples were incubated 
with Endo H (H) or PNGase F (F) and resolved 
by SDS-PAGE. The polypeptide (�130 kD in its 
glycosylated form; �100 kD in its deglycosylated 
form) that coimmunoprecipitated with wild-type 
UNC93B is indicated with arrowheads. (B) 4 
billion RAW cells expressing wild-type (WT) or 
mutant (H412R) UNC93B-HA were lysed in 
1% digitonin buffer and UNC93B-HA proteins 
were immunoprecipitated with an anti-HA anti-
body. After immunoprecipitation, UNC93B and UNC93B-associated proteins were released by incubation with TEV protease, resolved by SDS-PAGE, and 
visualized by silver staining. Polypeptides were excised from the gel and analyzed by LC/MS/MS after trypsin digestion. Peptides for UNC93B (black) 
were recovered in both samples, whereas peptides corresponding to sequences of TLR3, 7, 9, and 13 (gray) were identifi ed only in the sample containing 
wild-type UNC93B. Peptide sequences identifi ed by MS for UNC93B and TLRs are given in Tables S1 and S2, respectively. Tables S1 and S2 are available 
at http://www.jcb.org/cgi/content/full/jcb.200612056/DC1.
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either wild-type or mutant UNC93B-HA and conducted a pre-

parative immunoprecipitation of the tagged UNC93B proteins 

by retrieval via the HA epitope tag (Fig. 1 A). Bound materi-

als were released by digestion with TEV protease. After reso-

lution of eluted polypeptides by SDS-PAGE and visualization 

by silver staining, we excised polypeptides unique to wild-type 

UNC93B-bound material, as well as polypeptides common to 

both wild-type and mutant UNC93B samples, and determined 

their identity by MS (Fig. 3 B and Tables S1 and S2, available at 

http://www.jcb.org/cgi/content/full/jcb.200612056/DC1).

As expected, peptides for UNC93B were identifi ed from 

both wild-type and mutant UNC93B samples with good se-

quence coverage, at 25.9% (12 peptides) and 11.7% (6 peptides), 

respectively (Fig. 3 B and Table S1). Among the polypeptides 

coimmunoprecipitated only with wild-type UNC93B, we iden-

tifi ed TLR3, 7, 9, and 13 with extensive sequence coverage over 

the entire length of the proteins (TLR3: 22.0%, 17 peptides; 

TLR7: 33.5%, 35 peptides; TLR9: 19.7%, 20 peptides; TLR13: 

24.9%, 26 peptides; Fig. 3 B and Table S2). The same experi-

mental approach was adapted to identify UNC93B-interacting 

proteins in A20 B cells. Again, we identifi ed multiple peptides 

corresponding to TLR7 and 9 from the sample for wild-type 

UNC93B, but none from the sample for mutant UNC93B (un-

published data). We did not recover any peptides of TLR3, 7, 9, 

or 13 with mutant UNC93B, or any peptide that corresponded to 

TLR4 or other TLRs with either wild-type or mutant UNC93B 

in RAW macrophages or A20 B cells. We also carefully ex-

amined the proteomics data for the presence of TLR adaptors 

or signaling molecules implicated in TLR signal transduction 

pathways. Peptides derived from MyD88, TRIF, or IRAK were 

not detected, even when MS datasets were interrogated specifi -

cally for their presence.

By coimmunoprecipitation and MS, we have thus identi-

fi ed TLR3, 7, 9, and 13 as interacting partners for wild-type 

UNC93B, and we did not retrieve these TLRs with mutant 

UNC93B. This suggests that the H412R mutation within the 

transmembrane domain of UNC93B disrupts interaction be-

tween UNC93B and TLRs, and thus abolishes TLR signaling.

Wild-type UNC93B interacts with TLR3 
and 9, but not with TLR4
To confi rm the interaction between wild-type UNC93B and 

TLRs, and the failure of mutant UNC93B to associate with 

TLRs, we generated myc-tagged TLR3, 4, and 9 fusion con-

structs and coexpressed them together with wild-type and mu-

tant UNC93B-HA in HEK 293-T cells. Cells were lysed under 

mild conditions and subjected to immunoprecipitation with an 

anti-myc antibody. The presence of UNC93B in the myc immuno-

precipitates was detected by immunoblot analysis with an 

anti-HA antibody (Fig. 4, top). Wild-type UNC93B interacts 

with TLR3 and 9, but not with TLR4, confi rming our observa-

tions made by large-scale coimmunoprecipitation and MS (Fig. 

3 B). Mutant UNC93B failed to interact with TLR3, 4, and 9, 

mirroring our earlier results. Total lysates were analyzed for 

 expression levels of wild-type and mutant UNC93B by immuno-

blotting with an anti-HA antibody to confi rm comparable ex-

pression levels (Fig. 4, bottom).

TLR3 and 9 interact with wild-type 
UNC93B via their transmembrane regions
All TLRs consist of an extracellular domain with a series of 

leucine-rich repeats, a transmembrane domain, and a cytosolic 

domain, which contains the conserved Toll-interleukin 1 re-

ceptor (TIR) domain. To address which region of the TLRs 

mediates binding to the UNC93B protein, we generated myc-

tagged versions of chimeric TLRs (schematically depicted in 

Fig. 5 A). Because TLR4 failed to bind to UNC93B, we ex-

changed the transmembrane regions of TLR3 and 9 with the 

transmembrane region of TLR4 (TLR3-4-3 and TLR9-4-9), 

and the transmembrane region of TLR4 was swapped for the 

transmembrane regions of TLR3 or 9 (TLR4-3-4 and TLR4–9-4). 

These myc-tagged TLR chimeras and myc-tagged wild-type 

TLR3, 4, and 9 were coexpressed with wild-type UNC93B-HA. 

Cells were then metabolically labeled with [35S]methionine/

cysteine and lysed under mild conditions. From these lysates, 

we performed immunoprecipitations with an antibody to either 

the myc or the HA epitope. The immunoprecipitation with the 

anti-myc antibody shows the expression levels of the wild-type 

and chimeric TLR proteins (Fig. 5 B, middle). By immuno-

precipitating UNC93B via the HA tag and subsequent reimmuno-

precipitation with TLR-specifi c antibodies, we recovered TLR3 

and 9, but not TLR4 (Fig. 5 B, top), confi rming our earlier 

observations (Fig. 3 B and Fig. 4). The chimeric TLRs con-

taining the transmembrane domain of TLR4 (TLR3-4-3 and 

TLR9-4-9) failed to bind to UNC93B, whereas the TLR4 

 chimeras containing either the transmembrane region of TLR3 

or 9 (TLR4-3-4 or TLR4-9-4) were readily recovered with 

UNC93B (Fig. 5 B, top). Recovery of UNC93B-HA is shown 

in Fig. 5 B (bottom). These results establish that TLR3 and 9 

interact with the wild-type UNC93B protein via their respec-

tive transmembrane regions.

Figure 4. Wild-type UNC93B associates with TLR3 and 9, but not with 
TLR4. HEK 293-T cells were cotransfected with empty vector or expres-
sion constructs for wild-type or mutant UNC93B-HA along with expres-
sion constructs for myc-tagged TLR3, 4, or 9 (Fig. 5 A). Cells were lysed 
with 1% digitonin lysis buffer and TLRs were immunoprecipitated with an 
anti-myc antibody. Samples were resolved by SDS-PAGE, and UNC93B 
proteins were detected by immunoblotting using an anti-HA antibody 
(top). Wild-type UNC93B was recovered by immunoprecipitation of TLR3 
and 9, whereas the mutant UNC93B (H412R) did not coimmunopre-
cipitate with any of TLRs. Input lysates were analyzed by SDS-PAGE for 
expression levels of wild-type and mutant UNC93B-HA with an anti-HA 
antibody (bottom).
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Endogenous wild-type UNC93B and TLR7 
associate in BM-DCs
To extend our observations from transduced cells to primary 

cells, we next analyzed the interactions of UNC93B with TLRs 

in BM-DCs obtained from wild-type (C57BL/6) and 3d mutant 

mice. Immunoprecipitation was performed with rabbit anti–

UNC-C serum. We recovered considerable quantities of endog-

enous UNC93B from both wild-type and mutant dendritic cells 

(Fig. 6 A), confi rming the earlier observation that the 3d muta-

tion does not compromise stability or steady-state levels of 

the UNC93B protein. As seen for RAW cells transfected with 

epitope-tagged UNC93B, we observed the presence of several 

coimmunoprecipitating polypeptides in the size range of TLRs 

in wild-type, but not in mutant, UNC93B immunoprecipitates 

(Fig. 6 A, left, and Fig. 1 D). The identity of one of the interacting 

proteins was revealed by denaturation of the primary anti–UNC-C 

immunoprecipitates, followed by reimmunoprecipitation with 

an anti-TLR7 antibody. In addition, we used dendritic cells 

obtained from TLR7-defi cient mice as further evidence for the 

specifi city of the anti-TLR7 antibody used. Wild-type UNC93B 

immunoprecipitates contain TLR7, as seen from the reimmuno-

precipitation experiment with the anti-TLR7 antibody (Fig. 

6 A, middle). As expected, no TLR7 is found in association with 

wild-type UNC93B obtained from TLR7-defi cient dendritic 

cells. In dendritic cells obtained from 3d mice, we did not ob-

serve coimmunoprecipitation of TLR7 and UNC93B. In addi-

tion, the additional polypeptides within the size range of TLRs 

that were coimmunoprecipitated with wild-type UNC93B are 

absent from the 3d samples, whereas they are still present in the 

sample from TLR7-defi cient mice. Similar results were obtained 

when we analyzed interactions between UNC93B and TLRs in 

splenocytes from wild-type, 3d, TLR7−/−, and TLR9−/− mice. 

Again, TLR7 and TLR9 were coimmunoprecipitated only with 

wild-type, but not with mutant, UNC93B (Fig. S2, available at 

http://www.jcb.org/cgi/content/full/jcb.200612056/DC1).

The inability of the mutant UNC93B protein to interact with 

TLRs might be caused by reduced expression of TLRs in cells 

from 3d mice. The inability of the 3d mice to signal via TLRs 

could therefore be the consequence of destabilization of TLRs, if 

UNC93B would serve a chaperone function. However, this is 

clearly not the case because we recovered equivalent amounts of 

TLR7 by direct immunoprecipitation from both wild-type and the 

3d dendritic cell lysates using the TLR7 antibody (Fig. 6 B).

In addition, we confi rmed the interaction between UNC93B 

and TLR7 by fi rst immunoprecipitating TLR7 and, subsequently, 

reimmunoprecipitating UNC93B from the denatured TLR7 

 immunoprecipitates. Wild-type, but not mutant, UNC93B was 

recovered by immunoprecipitation of TLR7 (Fig. 6 C).

In summary, we confi rmed the physical interaction of 

UNC93B with TLRs in primary cells and show that the mutant 

UNC93B protein no longer engages in such complex formation. 

Our earlier results obtained with the use of epitope-tagged 

 versions of UNC93B are thus valid for endogenous proteins in 

primary dendritic cells and splenocytes of the appropriate ge-

netic backgrounds.

Activation of TLRs does not affect the 
interaction between UNC93B and TLRs
To determine whether activation of TLRs with their respective 

agonists regulates the interaction with UNC93B, we stimulated 

Figure 5. TLR3 and 9 interact with UNC93B via their 
transmembrane segments. (A) Schematic presentation of 
myc-tagged TLR expression constructs used in this study. 
The myc-tag was fused to the C terminus of the TLRs, and 
it is indicated as a white rectangle. The TLR chimeras were 
generated such that the transmembrane segments were 
exchanged between TLR3, 4, and 9 to yield TLR3 and 9 
with the transmembrane segment of TLR4 (TLR3-4-3 and 
TLR9-4-9), and TLR4 with the transmembrane segment of 
either TLR3 (TLR4-3-4) or TLR9 (TLR4-9-4). Binding capabil-
ities of wild-type UNC93B to TLRs as shown in this study 
are indicated (–, no binding; +, binding). (B) HEK 293-T 
cells were cotransfected with an empty vector (–) or an ex-
pression construct for wild-type UNC93B-HA together 
with myc-tagged TLR3, 4 or 9 or the myc-tagged TLR chi-
meras TLR4-9-4, 9-4-9, 4-3-4, 3-4-3. Cells were metaboli-
cally labeled for 4 h with [35S]methionine/cysteine and 
lysed in 1% digitonin lysis buffer. One fi fth of the lysate 
was subjected to immunoprecipitation with an anti-myc 
antibody to assess the expression of the TLR constructs 
(middle). The rest of the lysate was subjected to immuno-
precipitation with an anti-HA antibody and one tenth of 
the resulting UNC93B-HA immunoprecipitates was di-
rectly resolved by SDS-PAGE to show UNC93B-HA ex-
pression levels (bottom). The remaining UNC93B-HA 
immunoprecipitates were subjected to denaturation, and 
reimmunoprecipitations were performed with TLR-specifi c 
antibodies (anti-TLR3 for TLR3, TLR3-4-3, untransfected; 
anti-TLR4 for TLR4, TLR4-3-4, TLR4-9-4; anti-TLR9 for TLR9, 
TLR9-4-9) and resolved by SDS-PAGE (top). TLR3 and 9 
were recovered by reimmunoprecipitation from UNC93B-
HA immunoprecipitates, as well as the TLR chimeras TLR4-
3-4 and TLR4-9-4, but not TLR4 and chimeras TLR9-4-9 
and TLR3-4-3.
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A20 B cells that stably express wild-type or mutant UNC93B-

HA with TLR7 and 9 agonists; imiquimod or gardiquimod for 

TLR7 and CpG DNA for TLR9. After metabolically labeling 

cells with [35S]methionine/cysteine, cell lysates were subjected 

to immunoprecipitation with an anti-HA antibody to retrieve 

UNC93B. No substantial changes in the levels of coimmuno-

precipitated TLR polypeptides were observed after TLR activa-

tion when compared with unstimulated cells, nor did we see 

additional interacting proteins for agonist-exposed cells (Fig. 

6 D). Similarly, stimulation with the TLR agonists did not alter 

the interaction between endogenous UNC93B and TLRs in 

splenocytes and dendritic cells from wild-type mice (unpub-

lished data).

Discussion
TLRs are involved in the perception and processing of signals 

delivered by viral and microbial products and coordinate both 

innate and adaptive immunity. Mutations in UNC93B cause sig-

naling defects for multiple TLRs and raise the question of the 

mechanism of its involvement in TLR signaling.

By expression of epitope-tagged UNC93B and production 

of polyclonal antibodies that recognize endogenous UNC93B, 

we characterized UNC93B as a glycosylated ER-resident pro-

tein. The mutant UNC93B (H412R) protein exhibits distinct 

migration patterns in SDS-PAGE compared with wild-type 

UNC93B. Its behavior suggests a role for His412 in the intra-

molecular organization of UNC93B, as denaturation of poly-

topic membrane proteins using SDS without boiling is likely to 

preserve at least some features of secondary structure. Nonethe-

less, the 3d mutation (H412R) in UNC93B does not compro-

mise biosynthesis and maturation of the mutant protein, and 

both wild-type and mutant proteins are equally stable.

To study the role of UNC93B in TLR signaling, we identi-

fi ed UNC93B binding proteins using a large-scale preparative 

immunoprecipitation in conjunction with MS. We found that 

wild-type, but not mutant, UNC93B interacts with TLR3, 7, 9, 

and 13. We also found that TLR4 does not interact with either 

wild-type or mutant UNC93B. The number of peptides and the 

extent of sequence coverage of TLRs identifi ed by MS suggest 

that these TLRs are well-represented among proteins that bind 

to UNC93B. The interaction between wild-type UNC93B and 

Figure 6. Endogenous UNC93B and TLR7 associate in BM-DCs from wild-type, but not from UNC93B mutant mice. (A–C) Day 5 cultures of BM-DCs pre-
pared from wild-type (C57BL/6, B6), UNC93B mutant (3d) or TLR7−/− mice were metabolically labeled for 4 h with [35S]methionine/cysteine and lysed in 
1% digitonin lysis buffer. (A) The fi rst immunoprecipitation was performed with the purifi ed anti–UNC-C antibody (left). After mild denaturation of the initial 
immunoprecipitates, reimmunoprecipitations were performed with either an anti-TLR7 antibody (middle) or the anti–UNC-C antiserum (right). TLR7 was re-
covered with wild-type, but not with mutant UNC93B. Expression levels of wild-type and mutant UNC93B were comparable. (B) TLR7 expression levels in 
wild-type (B6), UNC93B mutant (3d), and TLR7 knockout (TLR7−/−) mice were analyzed by direct immunoprecipitation of TLR7 with the TLR7 antibody. En-
dogenous TLR7 is present at equal levels in both wild-type and UNC93B mutant 3d mice, but absent in TLR7 knockout mice. (C) TLR7 was immunoprecipi-
tated with the TLR7 antibody from digitonin lysates of BM-DCs from wild-type (B6) or UNC93B mutant (3d) mice. Immunoprecipitation with normal rabbit 
serum (NRS) served as a control for TLR7 immunoprecipitation. Reimmunoprecipitations with anti–UNC-C or anti-TLR7 antibodies were performed after mild 
denaturation of the initial TLR7 immunoprecipitates and resolved by SDS-PAGE. UNC93B was coimmunoprecipated with TLR7 in BM-DC lysates from wild-
type, but not from UNC93B mutant, mice. Recovery of TLR7 from BM-DCs of both wild-type and mutant mice by immunoprecipitation and reimmunoprecipi-
tation was equal. (D) Nontransduced A20 B cells (–) or A20 B cells stably transduced with wild-type (WT) or mutant UNC93B-HA (H412R) were 
metabolically labeled for 4 h with [35S]methionine/cysteine (pulse) and stimulated with TLR7 agonists imiquimod (10 μM) or gardiquimod (1 μM) or the 
TLR9 agonist CpG DNA (1 μM) for 1 h during the fi nal hour of the pulse. Cells were lysed in 1% digitonin lysis buffer, and immunoprecipitations were per-
formed with an anti-HA antibody. Samples were not treated (–) or digested with Endo H (+) and resolved by SDS-PAGE. The polypeptides that associate 
only with wild-type UNC93B and have characteristics of TLRs are indicated by arrowheads. Interaction of these polypeptides with wild-type UNC93B was 
not considerably changed in stimulated cells compared with nonstimulated cells.
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TLRs (TLR3, 7, and 9) was confi rmed by additional biochemi-

cal analyses in cell lines and primary cells. The interactions be-

tween wild-type UNC93B and TLRs (TLR3, 7, 9, and 13) and 

the absence of interaction between UNC93B and TLR4 corre-

late well with the phenotype of the 3d mice, which show spe-

cifi c defects in signaling via TLR3, 7, and 9, but not TLR4 

(Tabeta et al., 2006). In addition, we demonstrated the expres-

sion of TLR13 in a macrophage cell line. TLR13 was identifi ed 

by homology search of TIR domain-containing proteins in 

mouse ESTs, but no function has been assigned to it (Tabeta 

et al., 2004). It will be interesting to see whether signaling via 

this less well-characterized TLR is also affected in 3d mice, as 

we predict it will be.

Many studies demonstrate that TLR3, 7, and 9 are local-

ized intracellularly (Ahmad-Nejad et al., 2002; Matsumoto 

et al., 2003; Latz et al., 2004; Leifer et al., 2004; Nishiya and 

DeFranco, 2004). TLR9 resides in the ER before stimulation and 

reaches lysosomes only upon activation (Latz et al., 2004; Leifer 

et al., 2004). The ER localization of TLR9 is consistent with our 

data showing that ER-localized UNC93B physically interacts 

with TLR9. UNC93B retains full Endo H sensitivity, which is 

also consistent with previous observations that TLR9 remains 

sensitive to Endo H digestion even after activation (Latz et al., 

2004; Leifer et al., 2004). The transmembrane domains of TLR7 

and 9 and the cytosolic linker region between the transmem-

brane domain and TIR domain of TLR3 determine the intracel-

lular localization for these TLRs (Funami et al., 2004; Nishiya 

et al., 2005; Barton et al., 2006; Kajita et al., 2006). By using 

chimeric TLRs, we show that the transmembrane domains of 

TLR3 and 9 are responsible for binding to UNC93B. When the 

transmembrane domain of TLR4 is substituted for the trans-

membrane domain of either TLR3 or 9, the chimeric TLR4 pro-

teins acquire the ability to interact with UNC93B. In contrast, 

TLR3 and 9 chimeras equipped with the TLR4 transmembrane 

domain no longer bind to UNC93B.

The strength of interaction between UNC93B with its cli-

ent TLRs is robust, as judged from the quantities of TLRs de-

tected by direct immunoprecipitation and that were found in 

association with UNC93B. This result suggests that a consider-

able fraction, if not the majority of TLR3, 7, and 9, may be as-

sociated with UNC93B. The results of pulse-chase analyses are 

likewise consistent with stable association of UNC93B with 

TLRs. These observations raise the question as to the function 

of UNC93B. How does UNC93B participate in TLR signaling? 

One possibility is that UNC93B acts as an ER chaperone for 

TLR3, 7, 9, and 13. However, given the observation that the 

transmembrane segment of a TLR is suffi cient to dictate inter-

actions with UNC93B, and that interaction between UNC93B 

and TLRs is not transient, but is maintained for a prolonged 

 period of time, we consider a classical chaperone function for 

UNC93B as less likely. Chaperone–client interactions are usu-

ally transient, and for glycoproteins they involve mostly the 

 luminal/extracellular domains. Moreover, the expression level 

of TLR7 is not altered in BM-DCs from 3d mice compared with 

wild-type mice, arguing against the possibility that UNC93B 

would act by stabilization of its client TLRs. Instead, by anal-

ogy with the function of another ER-resident protein gp96, 

which is essential for TLR4/MD-2 complex assembly (Randow 

and Seed, 2001), UNC93B may be involved in the assembly of 

intracellular TLRs with thus far unidentifi ed proteins that are 

essential for either ligand recognition or signal transduction. 

Alternatively, UNC93B may play a role in retaining the client 

TLRs in the ER until they are ready to traffi c to endosomes. 

TLR9 resides in the ER until activated (Latz et al., 2004; Leifer 

et al., 2004). Although there is no consensus on exactly where 

TLR3 localizes, it seems that a large proportion of TLR3 co-

localizes with TLR9 at steady-state (Nishiya et al., 2005; Kajita 

et al., 2006). The previously demonstrated essential role of the 

transmembrane domain of TLR9 for ER localization and identi-

fi cation of the TLR9 transmembrane domain as the UNC93B-

binding determinant in this study supports the role of UNC93B 

in ER retention of TLRs. This suggestion is at variance with the 

report by Tabeta et al. (2006), which reports no discernible 

changes in TLR9 localization in 3d mice.

MD-2 directly interacts with TLR4 and plays an impor-

tant role in the recognition of LPS (Shimazu et al., 1999). In ad-

dition, MD-2 was suggested to contribute to the surface 

localization of TLR4 (Nagai et al., 2002). In MD-2–defi cient 

mouse embryonic fi broblasts, TLR4 is retained in the Golgi ap-

paratus. Although MD-2–bound TLR4 is directed to the cell 

surface constitutively, UNC93B may play a role in the transport 

of its client TLRs to endosomes in a stimulation-dependent 

manner. Traffi cking of TLR9 from ER to lysosomal compart-

ments after uptake of CpG in dendritic cells may, thus, depend 

on the interaction between UNC93B and TLR9. Because both 

UNC93B and TLRs retain full Endo H sensitivity; even after 

TLR stimulation they may travel to endosomes via an uncon-

ventional anterograde route that does not involve the Golgi ap-

paratus, should the UNC93B–TLR complex, indeed, traffi c 

together to endosomes. High-resolution microscopy studies on 

localization of TLRs after proper stimulation may provide new 

insights into the possible role of UNC93B in TLR traffi cking.

Upon activation, many receptors recruit adaptor molecules 

onto which various downstream signaling molecules assemble 

for effi cient and coordinated signal transduction. For some re-

ceptors, a scaffolding protein that constitutively binds the re-

ceptor provides a platform to which signaling molecules are 

recruited. UNC93B may serve as such a scaffold for TLR sig-

naling or be an integral part of a signaling unit. The exposed 

loops and N and C termini of UNC93B could serve to organize 

and orient the other components of the TLR signaling complex. 

The stably maintained interactions between UNC93B and 

TLRs, even after activation of TLRs, support this hypothesis. 

Our initial large-scale immunoprecipitation of UNC93B, and 

the subsequent MS analysis, did not identify any prominent sig-

naling molecules of the TLR signaling pathways. Furthermore, 

experiments designed to directly test the association of UNC93B 

with MyD88 did not yield any evidence for such interactions 

(unpublished data). However, it will still be interesting to see 

what additional proteins bind to UNC93B after stimulating cells 

with TLR agonists.

The TLR signaling defects in cells from 3d mice are mim-

icked by pretreating wild-type cells with chloroquine or bafi lo-

mycin, which are agents that inhibit endosome acidifi cation, but 
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the 3d mutation does not affect the pH of different intracellular 

organelles (Tabeta et al., 2006). Therefore, UNC93B does not 

seem to be directly involved in endosome acidifi cation. Human 

UNC93B protein contains a region of weak homology to the 

bacterial ABC-2–type transporters (Kashuba et al., 2002). In 

addition, homology searches of the conserved domains (rps-

blast; National Center for Biotechnology Information BLAST) 

identifi ed a second domain (residues 101 and 185 of UNC93B) 

with similarity to a bacterial transporter (MelB, E-value of 

0.03). Even though sequence homology is weak in both cases, 

these observations raise the possibility that UNC93B could 

have a yet to be identifi ed transporter function. The ectodomain 

of the microbial nucleotide-sensing TLRs (TLR3, 7, and 9) 

faces the lumen of the ER and endosomes. It is likely that viral 

DNAs and RNAs need to gain access to such an environment 

for signaling through their cognate TLRs. Therefore, UNC93B 

may participate in such processes and position the TLRs for 

 effi cient recognition of their agonists.

The exact identities of intracellular compartments where 

the nucleotide-sensing TLRs receive stimulating signals from 

microbial DNAs and RNAs are still an open question. Studies 

using chemical inhibitors that prevent endosome acidifi cation 

have proposed the endosomes as the location where intracellu-

lar TLR9 initiates signaling and potentially recognizes ligands 

(Ahmad-Nejad et al., 2002; Barton et al., 2006). However, upon 

addition of CpG DNA, even in MyD88-defi cient dendritic cells, 

TLR9 travels normally from the ER to endosomes, where inter-

nalized CpG accumulates (Latz et al., 2004). If translocation of 

TLR9 to endosomes is indeed a signal-mediated event, these 

data imply that either TLR9 receives a stimulatory signal of 

CpG DNA before reaching the endosomes, perhaps in the ER, 

or there is an additional molecule that senses CpG and triggers 

translocation of TLR9 in a MyD88-independent manner. The 

possibility that TLR9 may sense CpG in the ER or ER-derived 

structures deserves consideration. Pathways for retrograde 

transport of microbial products to the ER include delivery of the 

intact pathogen itself, as exemplifi ed by SV40 and polyoma vi-

rus (Spooner et al., 2006). Bacterial toxins, such as cholera 

toxin and shiga toxin, likewise travel from the cell surface to the 

ER, from which they are discharged into the cytoplasm to in-

toxicate the cells exposed to the toxin (Spooner et al., 2006). In 

addition, it has been claimed that exogenously added soluble 

proteins can access the ER lumen in dendritic cells (Ackerman 

et al., 2005). Therefore, the delivery of TLR ligands to the ER 

itself is certainly a possibility. Potentially, UNC93B could play 

a role in the perception of ER-delivered microbial nucleotides 

in concert with the intracellular TLRs.

The reported phenotype of 3d mice includes defects in 

cross-presentation and MHC class II–mediated antigen presen-

tation. Despite the defects in presentation of exogenous anti-

gens, the subcellular distribution of MHC class I and II proteins 

was not affected (Tabeta et al., 2006). Consistent with this ob-

servation, biosynthesis, maturation, and assembly of MHC class 

I and II molecules were identical in BM-DCs from wild-type 

and 3d mice. Although it remains unclear how UNC93B partici-

pates in antigen presentation, it is worth noting that a series of 

recent, controversial, observations suggests the involvement of 

the ER or ER-derived intracellular compartments in cross-

 presentation of exogenous antigens (Ackerman et al., 2005, 2006; 

Imai et al., 2005). The role of UNC93B in cross-presentation 

deserves to be further explored in this context.

In summary, we demonstrate that wild-type, but not mutant, 

UNC93B (H412R) physically interacts with TLR3, 7, 9, and 13. 

The established interaction between UNC93B and TLRs sheds 

new light on the 3d mutation and its TLR signaling-defective 

phenotype. The prominent ER localization of UNC93B, and of 

the TLRs to which it binds, raises the intriguing possibility that 

the ER itself may serve as a compartment from which TLR 

 signaling is initiated.

Materials and methods
Cell lines
Murine RAW 264.7 macrophages (TIB-71; American Type Culture Collec-
tion [ATCC]) and human embryonic kidney (HEK) cells 293-T (CRL-11268; 
ATCC) were maintained in DME containing 10% heat-inactivated fetal calf 
serum (HIFS) and penicillin/streptomycin. Murine A20 B cells (TIB-208; 
ATCC) were maintained in RPMI 1640 medium supplemented with 10% 
IFS and penicillin/streptomycin. 293-T cells were transfected with FuGene-6 
(Roche) according to the manufacturer’s instructions.

Animals
C57BL/6 wild-type mice were purchased from Taconic. The TLR7−/− 
(Hemmi et al., 2002) and TLR9−/− (Hemmi et al., 2002) mice were ob-
tained from A. Marshak-Rothstein (Boston University, Boston, MA). All 
animals were maintained under specifi c pathogen-free conditions, and 
experiments were performed in accordance with institutional, state, and 
federal guidelines.

Antibodies and reagents
Antibodies against mouse UNC93B were generated against the N- terminal 
(anti–UNC-N; aa 1–59) and the C-terminal (anti–UNC-C; aa 515–598) 
region. Three peptides were chosen for each region with an Antigen 
Profi ler (Open Biosystems) and synthesized with a cysteine residue added 
to the N terminus by the Massachussetts Institute of Technology Center for 
Cancer Research Biopolymers Laboratory. N-terminal UNC93B peptides 
were as follows: 1N, C-D R H G V P D G P E A P L D E ; 2N, C-P D G P E A P L D E L V G A Y ; 
and 3N, C-G A Y P N Y N E E E E E R R Y Y R R K . C-terminal UNC93B peptides were 
as follows: 1C, C-L Q Q G L V P R Q P R I P K P ; 2C, C-R Y L E E D N S D E S D M E G ; and 
3C, C P Y E Q A L G G D G P E E Q . Peptides were analyzed by HPLC and MS for 
purity and coupled individually to keyhole-limpet hemocyanin (Pierce 
Chemical Co.) via the cysteine residue using sulfosuccinimidyl 4-[N-
 maleimidomethyl]-cyclohexane-1-carboxylate (sulfo-SMCC; Pierce Chemical 
Co.) according to the manufacturer’s recommendations. After coupling, the 
three peptides (1–3N or 1–3C) were mixed, and antisera were raised in 
rabbits by an outside vendor (Covance). The anti–UNC-C polyclonal serum 
was affi nity purifi ed using the three peptides of the C-terminal region (1C, 
2C, and 3C) that are coupled to the resin using the Sulfo Link kit (Pierce 
Chemical Co.). The affi nity-purifi ed anti–UNC-C antibody was used for 
 immunoprecipitations and immunoblotting. The TLR7 antibody and the TLR4 
antibody (M16) were obtained from Imgenex and Santa Cruz Biotechnol-
ogy, respectively. Rabbit polyclonal TLR3 and 9 antibodies are raised 
against peptide sequences in the C-terminal domain of the respective pro-
tein. The Flag antibody (M2; mouse monoclonal) was purchased from 
Sigma-Aldrich. The anti-HA affi nity matrix (3F10, rat monoclonal) was pur-
chased from Roche. The anti-HA 12CA5 antibody (mouse monoclonal) 
was produced in our laboratory from hybridoma cells. The anti-myc (9E10, 
mouse monoclonal) antibody was purchased from Invitrogen. The MHC 
class II antibody is a hamster monoclonal antibody (clone N22). Imiqui-
mod (R837) and gardiquimod were purchased from Invivogen, CpG DNA 
(1826-CpG) was obtained from TIB Molbiol, and LPS (Escherichia coli 
026:B6) was purchased from Sigma-Aldrich.

DNA cloning
Murine UNC93B (BC018388) was C-terminally fused with the Flag tag, 
followed by the TEV protease cleavage site (ENLYFQG) and the HA tag 
(UNC93B-HA, WT; see scheme in Fig. 1 A). The point mutant UNC93B 
(H412R) was generated by sequential PCR with primers carrying the point 
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mutation CAC (His) to CGC (Arg) and C-terminally fused with the Flag tag, 
followed by the TEV protease cleavage site and the HA tag (UNC93B-HA, 
H412R). UNC93B-HA WT and H412R were cloned into the retroviral vec-
tor pMSCVneo (Clontech Laboratories, Inc.), and stable cell lines in RAW 
or A20 B cells were established by retroviral transduction and selection 
with geneticin (see the following section).

The TLR9 cDNA in pcDNA3.1 was provided by S. Bauer (Institut für 
Medizinische Mikrobiologie, München, Germany; Bauer et al., 2001). 
C-terminally myc-tagged murine TLR3 (BC099937), TLR4 (BC029856), and 
TLR9 (AF348140) were generated by PCR and cloned into the pMSCVpuro 
(Clontech Laboratories, Inc.) or pcDNA3.1 vector (Invitrogen). The TLR chi-
meras were constructed by PCR “sewing” with cDNA corresponding to the 
following amino acids of the TLRs: TLR4-3-4, 1–625 of TLR4, 698–726 of 
TLR3, and 660–835 of TLR4; TLR3-4-3, 1–697 of TLR3, 626–659 of TLR4, 
and 727–905 of TLR3; TLR4-9-4, 1–625 of TLR4, 811–839 of TLR9, and 
660–835 TLR4; and TLR9-4-9, 1–810 of TLR9, 626–659 of TLR4, 840–
1032 of TLR9. All TLR chimeric constructs were C-terminally myc-tagged 
and cloned into the pMSCVpuro vector. The sequence of all constructs gen-
erated by PCR was verifi ed.

Retroviral transduction
HEK 293-T cells were transfected with plasmids encoding VSV-G or Env, 
Gag-Pol, and pMSCV-UNC93B-HA (WT) or pMSCV-UNC93B-HA (H412R). 
24 h after transfection, medium containing viral particles was collected, fi l-
tered through a 0.45-μm membrane, and added to RAW macrophages 
(VSV-G) or A20 B cells (Env) cells. Cells were spun for 2 h at 2,000 rpm, 
medium was changed, and cells were selected with 750 μg/ml geneticin 
(Invitrogen) 2 d after transduction.

Preparation of BM-DCs
BM-DCs were prepared from C57BL/6, UNC93B mutant (3d), TLR7-defi cient 
(TLR7−/−), or TLR9-defi cient (TLR9−/−) mice, as previously described (Maehr 
et al., 2005).

TNF ELISA assay
BM-DCs derived from wild-type (C57BL/6), UNC93B mutant (3d), TLR7, or 
TLR9 knockout mice were stimulated for 4 h with increasing concentrations 
of the TLR agonists LPS (TLR4), imiquimod (TLR7), or CpG DNA (TLR9). 
The conditioned medium was collected and analyzed by ELISA using the 
hamster anti–mouse/rat TNF antibody (BD Biosciences) as a capture 
antibody and a rabbit anti–mouse biotin-labeled secondary antibody 
(BD Biosciences).

Stimulation with TLR agonists
A20 B cells either not transduced or stably transduced with UNC93B-HA 
WT or H412R were metabolically labeled with [35S]methionine/cysteine for 
4 h (pulse). TLR agonists were added to the cells for the fi nal hour of the 
pulse at the following concentrations: 10 μM imiquimod, 1 μM gardiquimod, 
and 1 μM CpG DNA. Cells were lysed in 1% digitonin lysis buffer and 
 immunoprecipitation was performed as indicated in the fi gure legend.

Pulse-chase, immunoprecipitation, and Endo H/F assay
In brief, cells were starved for methionine and cysteine in Met/Cys-free 
DME (starvation medium) for 30 min, pulsed for different time periods, 
as indicated in the fi gure legends, with [35S]methionine/cysteine (Perkin 
Elmer) in starvation medium supplemented with dialyzed HIFS, and chased 
with an excess of nonradioactive amino acids in regular DME for various 
time periods, as indicated in the fi gure legends. Cells were lysed in either 
of the following lysis buffers supplemented with the complete protease in-
hibitors (Roche), as indicated in the fi gure legends: RIPA (20 mM Tris-HCl, 
pH 7.4, 1 mM EDTA, 100 mM NaCl, 1% Triton X-100, 0.5% sodium de-
oxycholate, and 0.1% SDS) or buffer containing 50 mM Tris-HCl, pH 7.4, 
150 mM NaCl, and 5 mM EDTA with either 1% NP-40 or 1% digitonin as 
detergent. Lysates were equalized for incorporation of radioactive material 
with 35S counts in the trichloroacetic acid precipitate and immunoprecipi-
tated with the indicated antibodies. Washes were performed with the same 
buffers used for lysis, except for digitonin lysates/immunoprecipitations, 
which were washed with 0.1–0.2% digitonin-containing buffer. Reimmuno-
precipitations were performed as follows: protein–antibody complexes 
were dissolved by mild denaturation with 1% SDS and 1% β-mercaptoethanol 
for 1 h at 37°C. Subsequently, SDS and β-mercaptoethanol were diluted 
to 0.1% by addition of 1% NP-40 lysis buffer and reimmunoprecipitations 
were performed with the indicated antibodies. Immunoprecipitates were 
subjected to 10% SDS–PAGE without heating the samples, and polypeptides 
were visualized by fl uorography. Digestions with Endo H and PNGase F 

were performed where indicated, in accordance with the manufacturer’s 
instructions (New England BioLabs).

Immunoprecipitations and immunoblotting
In brief, cells were lysed in 1% NP-40, 1% digitonin, or RIPA buffer, and 
immunoprecipitation was performed with antibodies, as indicated in fi gure 
legends. The samples were subjected to 10% SDS–PAGE, transferred to a 
nitrocellulose membrane, and immunoblotted with the antibodies indicated.

Large-scale affi nity purifi cation and MS
The procedure was adapted from Lilley and Ploegh (2004). In brief, 4 bil-
lion RAW cells stably expressing UNC93B-HA (WT), UNC93B-HA 
(H412R), or no exogenous UNC93B protein (control cells) were lysed in 
30 ml of ice-cold lysis buffer (1% digitonin, 50 mM Tris-HCl, pH 7.4, 150 
mM NaCl, 5 mM EDTA, and complete protease inhibitors [Roche]), with 
rocking at 4°C for 1 h. The lysate was cleared of cell debris and nuclei by 
centrifugation at 20,000 g for 15 min. UNC93B-HA and associated pro-
teins were retrieved from 150 mg of cleared lysate by immunoprecipitation 
with 330 μl of compact anti-HA antibody beads. After incubation for 3 h, 
beads were extensively washed in wash buffer (the same composition as 
lysis buffer, except with 0.1% digitonin and without protease inhibitors). 
Bound material was eluted by incubation with 100 U TEV protease (Invitro-
gen) at 4°C overnight in 200 μl wash buffer. The eluate was exchanged 
into 20 mM NH4CO3, pH 8.0, with 0.1% SDS with the use of Sephadex 
G-25 resin (GE Healthcare) and concentrated in a Speed Vac (Savant). Re-
ducing SDS loading buffer was added to the sample, and polypeptides 
were separated by 10% SDS–PAGE and revealed by silver staining. The 
bands of interest were excised, subjected to trypsinolysis, separated by liq-
uid chromatography, analyzed by MS/MS, and database searched, as 
previously described (Lilley and Ploegh, 2004).

Online supplemental material
Fig. S1 shows TNF secretion in response to TLR agonists in BM-DCs 
from wild-type versus UNC93B mutant mice. Fig. S2 shows that TLR7 
and 9 coimmunoprecipitate with wild-type UNC93B in splenocytes 
from wild-type, but not UNC93B mutant, mice. Table S1 shows peptide 
sequences of UNC93B as identifi ed by LC/MS/MS. Table S2 shows 
peptide sequences of TLR3, 7, 9, and 13 as identifi ed by LC/MS/
MS. The online version of this article is available at http://www.jcb
.org/cgi/content/full/jcb.200612056/DC1.
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