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ABSTRACT

We estimate the extent of ecological impacts of the invasive Asian paper wasp across
different landscapes in New Zealand. We used: (i) a baseline distribution layer (mod-
elled via MaxEnt); (ii) Asian paper wasp nest density (from >460 field plots, related
to their preferences for specific land cover categories); and (iii) and their foraging
intensity (rates of foraging success, and the time available to forage on a seasonal
basis). Using geographic information systems this information is combined and
modelled across different landscapes in New Zealand in a step-wise selection process.
The highest densities of Asian paper wasps were in herbaceous saline vegetation,
followed closely by built-up areas, and then scrub and shrubland. Nest densities of
34 per ha, and occupancy rates of 0.27 were recorded for herbaceous saline vegetation
habitats. However, the extent of impacts of the Asian paper wasp remains relatively
restricted because of narrow climate tolerances and spatial restriction of preferred
habitats. A step-wise process based on geographic information systems and species
distribution models, in combination with factors such as distribution, density, and
predation, create a useful tool that allows the extent of impacts of invasive species to
be assessed across large spatial scales. These models will be useful for conservation
managers as they provide easy visual interpretation of results, and can help prioritise
where direct conservation action or control of the invader are required.

Subjects Biodiversity, Ecology, Entomology
Keywords Density, Foraging intensity, Polistes, Paper wasp, New Zealand, Distribution

INTRODUCTION

Species distribution model, which can be used to predict a species’ potential occurrence
across a landscape, have become a key part of ecological research and conservation
planning (Guisan & Thuiller, 2005; Thuiller et al., 2008; Elith ¢ Leathwick, 2009; Franklin,
2013). Such models can explore more than just distribution, and are increasingly being
used for a range of biodiversity applications such as modelling the distribution of
communities, ecological refuges, potential impacts under climate change, and biotic
interactions (Araiijo ¢ Luoto, 2007; Bradley, 2013; Porto, Carnaval ¢ da Rocha, 2013; Ross &
Howell, 2013).

One aspect of species distribution models that are less utilised is analyses of the impacts
of invasive species across large spatial scales. Yet species distribution models are ideal for
this type of study because they capture localised impacts (at sites) and can extend these
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impacts across larger spatial scales using geographic information systems. Predicting
impacts across landscapes is an extremely useful tool for invasive species, and may
highlight the need for direct conservation action or control of the invader.

Social insects form a large part of the invasive invertebrate literature because they
usually have a wide host range, feed at a range of trophic levels, can reach very high
densities, often have noticeable effects on prey, and are commonly associated with human
trade (Suarez, Holway & Ward, 2005; Snyder & Evans, 2006; Wilson, Mullen & Holway, 2009;
Ward et al., 2010; Roura-Pascual et al., 2011; Roy et al., 2011).

Paper wasps (Hymenoptera: Vespidae) are widely distributed around most of the globe
and are diverse and common in many landscapes (Beggs et al., 2011). Paper wasps are
likely to influence many other species in terrestrial ecosystems because they are voracious
predators of invertebrates (Ward ¢» Ramén-Laca, 2014). Four species of paper wasps are
invasive around the globe (Beggs et al., 2011): Polistes versicolor (Olivier) in the Galdpagos;
P. dominula in North America; and P. humilis (Fabricius) and P. chinensis antennalis Perez
in New Zealand.

In New Zealand, P. chinensis antennalis, commonly known as the Asian paper wasp, was
first recorded in 1979, and has subsequently spread rapidly across much of the North Island
and several locations in the South Island (Clapperton, Tilley ¢ Pierce, 1996). Although the
distribution and nesting biology of the Asian paper wasp is well known (Clapperton, Tilley
¢ Pierce, 1996; Yamane, 1996; Clapperton & Dymock, 1997; Clapperton & Lo, 2000), little
has been published on its ecological impacts. Densities of paper wasps can reach up to
210 nests/ha (Clapperton, 1999), and although densities of 20—40 nests/ha are more
common, this still translates into ~1,000-2,000 wasps/ha, who are responsible for many
10,000s of prey captured per season (Clapperton, 1999).

Paper wasps do not naturally occur in New Zealand (along with many other groups
of social insects (Ward et al., 2006)), and consequently, there are concerns that the Asian
paper wasp could have a significant impact on native biodiversity, particularly on the
larvae of butterfly and moths, which are heavily preyed upon (Clapperton, 1999; Ward
& Ramon-Laca, 2014). In this paper we used a potential distribution layer (modelled via
MaxEnt), and added land-cover-specific densities, and foraging intensity in a step-wise
process, to develop a comprehensive model of the spatial extent of the impacts of Asian
paper wasps across New Zealand.

MATERIALS AND METHODS

Distribution

Occurrence data

In total, 253 geo-referenced occurrence records of the presence of Asian Paper wasps
were obtained from (a) published literature (Clapperton, 1999) (n = 71); (b) museum
collections (n = 112); (c) field surveys in 2012 (n = 22); and (d) through a publicity
campaign asking members of the public for sightings of the Asian paper wasp (1 = 48; only
records that were supported by photographic evidence were used, e.g., a worker wasp, or
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nest, both of which are very distinct). Specimens from museum collections are held in the
Auckland War Memorial Museum (Auckland), the New Zealand Arthropod Collection
(Auckland), Te Papa (Wellington), Entomology Research Museum (Lincoln University),
and Otago Museum (Dunedin).

Environmental variables

Environmental layers used were elevation (m), degree days (at a 10 °C base, where degree
days are calculated as the average daily temperature minus the temperature base of 10 °C,
and is accumulated over the course of a year), annual rainfall (mm), solar radiation
(MJm ™2 day_1 ), maximum annual temperature (°C), and minimum annual temperature
(°C). Environmental layers came from the National Institute of Water and Atmospheric
Research, except for elevation which is available from Landcare Research LRIS portal
(http://lris.scinfo.org.nz/). Each environmental layer was created at 500 m (25 ha) spatial
resolution. The nesting biology of paper wasps is known to be strongly influenced by such
abiotic variables (Yamane, 1996).

Model method

Distribution models were generated using MaxEnt (Version 3.3.3) to discriminate the
environments associated with the presence of Asian paper wasps from the rest of the
landscape (Phillips, Anderson & Schapire, 2006; Elith et al., 2011). MaxEnt software uses the
principle of maximum entropy to relate distribution records of a species to environmental
variables in order to estimate a species’ potential geographical distribution (Phillips,
Anderson ¢ Schapire, 2006). It is a well-studied method considered to produce robust
results with sparse or irregularly sampled data, which is often the case with poorly known
species (Elith et al., 2011). It is freely available at http://www.cs.princeton.edu/~schapire/
maxent/. MaxEnt models were trained with a random sample of 75% of the species
occurrence data, and the remaining 25% was used to test model performance (Guisan

& Zimmermann, 2000). We used 50 model runs on random subsamples of the occurrence
data to assess uncertainty of the species distribution models predictions. We used the ‘area
under the curve’ (AUC) as single measure of overall model accuracy that is not dependent
upon a particular model threshold (Fielding ¢ Bell, 1997). The MaxEnt output is a logistic
probability with values between 0 (low probability) and 1 (high probability).

As the occurrence dataset was not constructed using a systematic sampling approach, a
geographic sampling bias may occur (Phillips et al., 2009; Syfert, Smith & Coomes, 2013).
Therefore, we created a sampling bias grid in MaxEnt using a quartic kernel density layer
(Fig. 1) to correct for this bias as recommended (Phillips et al., 2009; Syfert, Smith ¢
Coomes, 2013). To provide a surface that highlights both suitable and unsuitable habitats,
we require a threshold value that outlines a minimum value that constitutes a suitable
habitat. After reviewing the continuous raster output and the nominal threshold values
from the MaxEnt models, we selected the average 10% minimum threshold for all 50
MaxEnt runs to define the minimum probability of a suitable habitat. This value was
selected as it provides flexibility to account for the variation in quality of the input data.
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Figure 1 Sampling bias grid in MaxEnt using a quartic kernel density to correct for geographic sam-
pling bias in occurrence data. The scale is a logistic probability with values between 0 (low probability;
blue) and 1 (high probability; orange-red). Inset boxes visually show the sampling density kernel for
different regions.

Density

We used previous information on habitat preferences of the Asian paper wasp in
combination with land cover satellite imagery to undertake field surveys to generate
density estimates and occupancy rates of the Asian paper wasp. We then combined these
land cover-specific densities with the MaxEnt distribution model to generate density

estimates of Asian paper wasps across New Zealand.

Land cover

Asian paper wasps occur across a range of native ‘open-canopy-habitats’ such as grassland,
marshland and shrubland, where nests are typically found within short (<2 m high) plants
(Clapperton, 1999; Clapperton ¢ Lo, 2000). They are also common in urban areas, with
nests found in residential gardens and on wooden fences. Although the habitat preferences
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Table 1 Estimates of the total area occupied and total number of nests for the Asian Paper Wasp extrapolated across New Zealand from field
surveys of density and occupancy for specific land cover classes.

Land cover class Total potential Plots Nests Occupancy Total occupied Average Total nests
(ha) density

Herbaceous saline 114 39 0.27 3,523 34 119,799

vegetation

Built-up area 146,275 93 27 0.23 33,643 29 975,654

Scrub and shrubland 567,100 206 18 0.09 51,039 9 459,351

Orchard vineyard & 100,575 0 0.03" 3,017 3 9,051

other perennial crops

Herbaceous freshwater 0 0.03" 1,413 3" 4,241

vegetation

Tall tussock grassland 0 0.03" 7 3 22

Forest 53 0 0 0 0 0

Total 874,375 466 84 0.15 92,642 18 1,568,118
Notes.

* Nominal values (see methods).

of Asian paper wasps are well established, there is little information on their densities
within these habitats.

In order to select habitats for field surveys to generate density estimates, we used the
LCDB-3 database (LCDB NZ Land Cover Database, 2012) derived from the 2007-2008
LUCAS satellite imagery, which classifies land cover into 33 classes. Three land cover
classes are highly suitable for Asian paper wasps: (i) built-up area; (ii) herbaceous saline
vegetation; and (iii) scrub and shrubland.

Some land cover classes were not surveyed because they are not suitable for Asian
paper wasps (e.g., water bodies; bare or lightly vegetated surfaces; artificial surface (such
as roads)); are too disturbed to allow nests to develop (e.g., cropland; pasture); or are not
preferred (e.g., forest types, alpine vegetation) (Clapperton, 1999). We considered some
land cover classes (orchard vineyard & other perennial crops; herbaceous freshwater vege-
tation; tall tussock grassland) to be possibly suitable but of very low preference (due to high
disturbance and unsuitable vegetation to construct a nest), and did not survey these classes
but instead estimated a nominal value of three nests per ha and occupancy rate of 0.03.

Field surveys

During January to March 2012 we surveyed the three most suitable land cover classes:
built-up area; herbaceous saline vegetation; scrub and shrubland. We walked slowly
through plots (10 x 10 m) checking vegetation for nests of Asian paper wasps (Table 1).
We believe we achieved a high detection rate as nests are larger and more obvious from
January to March. However, as it is possible we failed to detect all nests, our densities are
conservative. All plots were in the Auckland region.
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Impacts on prey

Paper wasps are generalist predators of invertebrates, and we inferred their effects on
biodiversity through foraging intensity as measured by: (i) their foraging success of prey
capture, and (ii) the time available to forage.

Foraging success rate

The foraging of Asian paper wasps has been studied at three sites in northern New Zealand
(Clapperton, 1999). We used some of this published data to derive a foraging success rate
based on: (i) the return of foraging wasps (“traffic rate”; average 0.33 per minute; range
0.23-0.46); (ii) the proportion of wasps that carried material back to the nest (average
0.30; range 0.25-0.38), and (iii) the proportion of material that represented a prey item
(as opposed to liquid food or nesting material) (average 0.75; range 0.70-0.80, excluding
the value 0.12 as an outlier). Multiplying these data gives a foraging success rate of 4.5 prey
captured/nest/hour (range 2.4-8.4).

Foraging time available
Available foraging time to AWP was estimated by examining “sunshine hours” across
New Zealand. Paper wasps do not forage at night or in periods of rain (Clapperton, 1999).
Sunshine hours accounts for periods of cloud cover and rain, which reduce foraging, but
are also topographically very accurate, and take into consideration the landscape effects of
slope and gullies, etc. We used hourly sunshine data (MJm™2, obtained from the National
Institute of Water and Atmospheric Research, 500 m spatial resolution), and summed these
across days, months, and the period February to April (when paper wasps are active).
Foraging success and the total time available to forage (for the period February to April,
when paper wasps are active) was multiplied together, and then combined with land cover
specific densities and the MaxEnt distribution model to develop a comprehensive model of
the spatial extent of the impacts of Asian paper wasps across New Zealand.

RESULTS

Distribution

The MaxEnt model predicted that coastal and lowland regions of the North Island are
highly suitable for the Asian paper wasp, with potential to extend inland and inhabit
considerable areas of the middle and lower North Island (Figs. 2 and 3). Suitable sites in the
South Island are largely restricted to northern regions and the eastern lowland. However,
coastal areas of the West Coast and Central Otago (where the Asian paper wasp has been
present in Alexandra for over a decade) are also predicted to be suitable (Figs. 2 and 3). The
average test AUC of the MaxEnt models was 0.846 (£0.013).

These distributions correspond very well to an intolerance of cooler mountainous
and wet regions. Jackknife tests of variable importance showed elevation contributed the
highest gain, and was the variable containing the most information by itself (possibly
because elevation is strongly correlated with temperature and rainfall). Solar radiation was
the variable that decreased the gain the most when it is omitted, and contains the most
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Figure 2 Potential distribution of the Asian Paper Wasp using MaxEnt. The scale is a logistic probabil-
ity with values between 0 (low probability; blue) and 1 (high probability; orange-red).

information that is not present in other variables. Contribution to the MaxEnt model gain
ranked solar radiation (43.5%) as the most important variable, followed by degree days
(26.1%) and elevation (21.5%).

Density

A total of 466 plots were surveyed, where average densities of AWP nests ranged from 0
to 34 nests per ha (Table 1). The highest densities were in herbaceous saline vegetation
(HSV), followed closely by built-up areas and then scrub and shrubland (Kruskal-Wallis,
H =21.53,d.f. =2, P < 0.001, Table 1). No nests were found in forest plots. A high
proportion of plots had no nests (Fig. 4), thus the occupancy rate of Asian paper wasps
in plots was generally low, with only 15% of plots occupied by at least one nest. However,
occupancy was higher in herbaceous saline vegetation (0.27) and built-up areas (0.23),
compared with scrub and shrubland (0.09). Three nests was the maximum found in a plot
(n=2plots).
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Figure 3 Potential distribution of the Asian Paper Wasp (based on a 10% threshold in MaxEnt). Un-
suitable (light), suitable (dark).

Extrapolation of suitable land cover across New Zealand shows over 874,000 ha is
estimated to be suitable for Asian paper wasps (Table 1). However, this is greatly reduced
(to 92,000 ha) when rates of occupancy are included. A combination of density and
occupancy data estimates the total number of Asian paper wasp nests in New Zealand
in the region of 1.5 million per year (Table 1).

Impacts on prey

Based on the estimated total number of nests across the entire country (1,568,118, Table 1),
and the estimates of foraging success and foraging time available (Table 2), the Asian
paper wasp is responsible for consuming an estimated 3—4 billion prey items during a
single season. Total sunshine hours from different locations throughout New Zealand
for the February—April period were very similar (Table 2). Consequently, there was little
difference in terms of the number of prey items consumed from different locations around
New Zealand (Fig. 5).
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Figure 4 The proportion of field survey plots with zero (white), one (light grey), two (dark grey), three
(black) nests. Land cover classes are: herbaceous saline vegetation (HSV), built-up areas (BUA), and
scrub and shrubland (SAS).

Table 2 Total sunshine hours for different locations throughout New Zealand.

Latitude (S) Location Annual Feb/Apr season Within potential
distribution

—36.85 Auckland 1949 519 Yes

—37.77 Hamilton 1954 529 Yes

—37.67 Tauranga 2169 576 Yes

—39.49 Napier 2161 550 Yes

—40.36 Palmerston North 1852 526 Yes

—41.30 Wellington 1986 553 Yes

—43.47 Christchurch 2040 528 Yes

—45.02 Queenstown 1927 545 Outside?

—45.86 Dunedin 1594 407 Outside

—46.41 Invercargill 1649 421 Outside
DISCUSSION

Site-based studies provide important details about the impacts of an invasive species;
however, these are often very limited in spatial scale. Because of this limitation it remains
unknown whether the stated impacts also occur at other sites (or habitats, etc.). This is
particularly true in areas that have different abiotic conditions that could directly affect the
biology of an invasive species.

Creating a step-wise approach based on key features of an invasive species (distribution,
density, foraging intensity) and that incorporates species distribution modelling and
geographic information systems allows the extent of impacts to be examined across
large spatial scales. The ability to “scale-up” impacts across large spatial scales could be
extremely useful for pest management, particularly to provide a greater assessment of the
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Figure 5 The extent of the impacts of the Asian Paper wasp across New Zealand based on a com-
bination of potential distribution, land-cover density, and foraging intensity. The colours represent
a relative scale of impacts (based on the number of prey items consumed) from grey (no impact) to
blue-purple (lower impacts) to pink-red (highest impacts). Inset boxes visually show the extent of impacts
for different regions.

possible impacts of an invasive species in the early stages of its invasion, before it reaches
equilibrium.

Despite forming a large part of the exotic fauna worldwide, the impacts of invasive
invertebrates have received disproportionately less attention compared with the impacts
of plants and vertebrates, especially for impacts associated with natural ecosystems (Kenis
et al., 2009; Roy et al., 2011). Although the threat posed by invasive invertebrates towards
natural ecosystems is well recognised, evidence is scarce and limited to a few well-known
examples (Kenis et al., 2009; Brockerhoff et al., 2010). However, New Zealand is well known
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for understanding the impacts of invasive invertebrates, particularly ants and social wasps
in natural ecosystems (Ward, 2007; Beggs et al., 2011). The impacts of paper wasps are
also of concern, especially because the native invertebrate fauna did not evolve alongside a
diverse and abundant social insect fauna, and thus could be particularly susceptible to such
predators. The potential impacts of such highly predacious and generalist arthropods have
recently been highlighted (Snyder ¢ Evans, 2006).

This paper provides an overall assessment of where the impacts of paper wasps will be,
and their relative impacts between different habitats and regions. This information could
ultimately direct where pest management actions should be taken. Although consuming
an estimated 3—4 billion prey per year, the overwhelming impression of Asian paper wasps
across New Zealand is that the extent of their impacts is very restricted (e.g., Fig. 5). Alarge
proportion of the country is climatically unsuitable for their establishment, and because
of their strong habitat preferences they are then further restricted. However, localised, or
habitat-specific impacts, may be considerable. Recent research shows the Asian paper wasp
prey on a large diversity of endemic caterpillars in the herbaceous saline vegetation habitat
(Ward & Ramoén-Laca, 2014). Further assessment of the impacts of Asian paper wasps
should be directed towards herbaceous saline vegetation habitat because it had the highest
nest density and occupancy rates.

Several aspects could be further examined to improve modelling. In particular,
there is some uncertainty with the potential distribution in the Central Otago region
(e.g., Queenstown), where their presence has been recorded for over a decade (Harris,
2002). More locality records from Central Otago would help reduce this uncertainty.
Determining density and occupancy rates from other regions around New Zealand would
also be valuable. The current values are based on field plots around Auckland (upper North
Island). It is possible that density and occupancy rates may be less in other regions because
Asian paper wasps have (and are) spreading southward and these regions are less likely
to be at equilibrium for density and occupancy. Additionally, improved estimates of how
abiotic factors interact with nest and foraging activity are also important to understand the
rates of predation by the Asian paper wasp.

CONCLUSION

A step-wise approach based on geographic information systems and species distribution
models, in combination with factors such as distribution, density, and specific impacts on
biodiversity (in this case predation) create a useful tool that allows the extent of impacts
of an invasive species across large spatial scales to be assessed. These models will be useful
for conservation managers as they provide easy visual interpretation of results, and can
help prioritise where direct conservation action or control of the invader are needed,
but can also highlight gaps in models where better information is needed. Furthermore,
this method could be used to compare the impacts of different pest species and prioritise
control approaches given limited resources.
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