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Severe bacterial infections can lead to both acute and chronic inflammatory conditions.
Innate immunity is the first defense mechanism employed against invading bacterial
pathogens through the recognition of conserved molecular patterns on bacteria by
pattern recognition receptors (PRRs), especially the toll-like receptors (TLRs). TLRs
recognize distinct pathogen-associated molecular patterns (PAMPs) that play a critical
role in innate immune responses by inducing the expression of several inflammatory
genes. Thus, activation of immune cells is regulated by cytokines that use the
Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling
pathway and microbial recognition by TLRs. This system is tightly controlled by various
endogenous molecules to allow for an appropriately regulated and safe host immune
response to infections. Suppressor of cytokine signaling (SOCS) family of proteins is
one of the central regulators of microbial pathogen-induced signaling of cytokines,
principally through the inhibition of the activation of JAK/STAT signaling cascades. This
review provides recent knowledge regarding the role of SOCS proteins during bacterial
infections, with an emphasis on the mechanisms involved in their induction and regulation
of antibacterial immune responses. Furthermore, the implication of SOCS proteins in
diverse processes of bacteria to escape host defenses and in the outcome of bacterial
infections are discussed, as well as the possibilities offered by these proteins for future
targeted antimicrobial therapies.
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INTRODUCTION

Cytokines are signaling molecules secreted by cells to elicit a particular effect on the behavior
and communication of surrounding cells (Dinarello, 2000, 2007; Zhang and An, 2007). They are
known protagonists in the development and pathology of a variety of diseases, including but not
limited to, autoimmune (He et al., 2016), rheumatoid arthritis (Khondker and Khan, 2014), celiac
(Girard-Madoux et al., 2016), bacterial (Yilma et al., 2013), Crohn’s (Smith et al., 2009), and cystic
fibrosis (Dosunmu et al., 2016). Cytokines are either pro-inflammatory (e.g., IL-6, IFN-y, TNF-a,
IL-1B), anti-inflammatory (e.g., IL-10, IL-1RA, IL-4, IL-13) or chemokines (e.g., IL-8, CCL2, CCL5,
CXCL1, CXCL10). While pro-inflammatory cytokines help to exacerbate disease and are algesic
(Uceyler et al., 2009), anti-inflammatory cytokines are analgesic (Uceyler et al., 2009) and promote
healing, while reducing inflammation. Chemokines are immune migration factors that stimulate
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the recruitment of leukocytes to the sites of infection. Research
evidence has shown that some cytokines participate in both
the initiation and persistence of pathologic pain by directly
activating nociceptive sensory neurons, which respond to
potentially harmful stimuli such as sprains, bruises, burns,
and inflammation (Uceyler et al., 2009). Furthermore, pro-
inflammatory cytokines (e.g., IL-18, TNF-a) (Copray et al,
2001; Ozaktay et al, 2006) and chemokines (e.g., CCL2)
(Oh et al, 2001; White et al,, 2005) may directly modulate
neuronal activity in the peripheral and central nervous systems
(Zhang and An, 2007).

The breadth, persistence and robust nature of immune
responses are dictated by the integration of complex immune
signaling cascades mediated by TLRs along with B-cells, T-cells
and cytokine receptors (Elliott and Johnston, 2004; Dinarello,
2007). During an immune response, positive signals sent to
immune cells via signaling pathways get activated by effector
and regulatory T-cells using their negative feedback mechanisms
(Dinarello, 2007). This ability of cytokines to have both positive
and adverse effects on the immune system highlights the
complexity in solidifying the exact role of cytokine biology
to structure and function ratio. Innate immune responses
although necessary for host survival also may be associated
with adverse disease pathology. For example, IFN-y is essential
for defense against several intracellular bacteria such as Listeria
monocytogenes, Francisella tularensis, Mycobacteria tuberculosis,
and Chlamydia trachomatis but yet bolsters the pathogenesis
of several autoimmune diseases (Huang et al, 1993; Harty
and Bevan, 1995; Dinarello, 2007). Also, despite the fact
that IL-2 is crucial for the generation of cytotoxic T-cells
(CTLs) and forms the basis for several vaccines, it drives
graft vs. host disease and limits the success of bone marrow
transplantation (Dinarello, 2007). Understanding when and
how cytokines illicit their pleiotropic and redundant effects on
immune responses are essential for designing effective drug
therapies.

Suppressor of cytokine signaling (SOCS) family of proteins
apparently are modulators of a variety of diseases including those
with autoimmune etiologies, inflammation, allergies, bacteria,
and cancer. SOCS regulate signaling pathways on an intracellular
level to potently and specifically inhibit cytokine and growth
factor signaling (Yoshimura et al., 2005; Linossi et al., 2013;
Ushiki et al, 2016). There are eight related SOCS family of
proteins [SOCS 1-7 and CIS (cytokine-inducible SH2-containing
protein)] (Masuhara et al., 1997; Trengove and Ward, 2013; Hao
and Sun, 2016) that regulate cytokine signaling by inhibiting JAK
activity or targeting signaling components for ubiquitination.
Studies have revealed that SOCS protein expression induced by
cytokine stimulation can negatively impede cytokine signaling
by blocking the JAK/STAT pathway (Cooney, 2002; Elliott
and Johnston, 2004; Croker et al., 2008; Tamiya et al., 2011).
Other stimuli, including lipopolysaccharide (LPS), bacterial
products, and chemokines can also induce SOCS expression
(Rakesh and Agrawal, 2005). Since cytokines primarily regulate
host immune responses to infection, the tight modulation of
cytokines release may hinder disease progression. This review
will delve into the regulation of several key cytokines or cytokine

cascades by the central action of the intracellular SOCS proteins
during a bacterial-induced inflammatory response. Emphasis
will be placed on the mechanisms involved in SOCS proteins
induction and regulation of antibacterial immune responses.
Furthermore, the implication of SOCS proteins in diverse
processes of bacteria to escape host defenses and in the outcome
of bacterial infections are discussed, as well as the possibilities
offered by these proteins for future targeted antimicrobial
therapies.

SOCS FAMILY OF PROTEINS AND
REGULATION OF IMMUNE RESPONSE

Structure of the SOCS Box as Related to

Function

The SOCS protein structure consists of an N-terminal domain,
a central SH2 domain and a C-terminal SOCS box (Bullock
et al, 2007; Hao and Sun, 2016). They all share sequence
homology, but especially these pairs, CIS/SOCS1/SOCS2,
SOCS3/SOCS4/SOCS5, and SOCS6/SOCS7 have unquestionable
marked pair-wise homology. Specifically, the SOCS box
is a small, 40- to 60-amino acid (aa) residue domain
structurally similar to the domain of the von Hippel-
Lindau protein and lesser to the F-box from Skp2 (Kile
et al, 2002). The SOCS box interacts with Elongins (B
and C) to recruit E2 ubiquitin-transferase, necessary for
negative regulation of cytokine signaling (Kamizono et al,
2001). The interaction between SOCS and Elongin BC
complex and Cullin 2, facilitates the ubiquitination of
JAKs and their cytokine receptors, which targets them for
proteasomal degradation (Rawlings et al., 2004; Kershaw et al,,
2013).

Structurally, SOCS family of proteins can be subdivided based
on aa residues, with the shortest N-terminal region being CIS,
SOCS1-3, or longest being SOCS4-7. CIS and SOCSI-3 act
in a negative feedback loop through the JAK/STAT pathway
in response to cytokine signaling; whereas, SOCS4-7 mainly
regulate growth factor receptor signaling (Krebs et al., 2002;
Kario et al., 2005; Trengove and Ward, 2013) (Table 1). Notably,
SOCS1 and SOCS3 share a similar kinase inhibitory region
(KIR) at the N-terminus that is essential for JAK inhibition
(Sasaki et al., 1999; Yasukawa et al., 1999; Alexander, 2002;
Ushiki et al., 2016). The SH2 domain/KIR ability to inhibit
the signaling cascades independently by either blocking STAT
docking or directly inhibiting JAK kinase activity confers
substrate specificity. Depending on the size and structure of the
SOCS protein, each domain interacts directly or indirectly with
JAKs or their specific cytokine receptors to inhibit signaling
proteins (Hilton, 1999; Nicholson et al., 1999; Sasaki et al., 1999,
2000; Yasukawa et al., 1999; Lehmann et al., 2003). Supposedly,
the SOCS box mediates signaling suppression differently by
promoting the degradation of bound signaling intermediates via
an interaction with the cellular ubiquitination machinery (Zhang
et al., 1999, 2001; Kamizono et al.,, 2001; Kile et al., 2002; Rui
et al., 2002; van de Geijn et al,, 2004). Revealing how SOCS
proteins associate and interact with other proteins or external
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TABLE 1 | The functions of SOCS 1-7 and CIS proteins.

SOCS Proteins Functions

SOCS 1 ® Regulates M1-macrophage activation by inhibiting the interferon gamma-induced JAK2/STAT1 pathway and TLR/NF-«B signaling (Frobose et al.,
2006; Zhou et al., 2010).
® Regulates M2 macrophage polarization (Frobose et al., 2006).
e Tumor suppressor (Met receptor inhibition and enhancement of p53 tumor suppressor activity) (Gingras et al., 2004).
SOCS 2 ® M2 polarization and limits M1 polarization (Frobose et al., 2006).
e Feedback inhibitor of TLR-induced activation in dendritic cells (Frobose et al., 2006).
SOCS 3 ¢ Negative regulation of cytokines that signal through the JAK/STAT pathway (Lehmann et al., 2003; Carow et al., 2013).
¢ |nhibits cytokine signal transduction by binding to tyrosine kinase receptors including gp130, LIF, erythropoietin, insulin, IL12, GCSF and leptin
receptors.
e Binding to JAK2 inhibits its kinase activity.
e Suppresses fetal liver erythropoiesis.
* Regulates onset and maintenance of allergic responses mediated by T-helper type 2 cells.
® Regulates IL-6 signaling in vivo (By similarity). Probable substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box
protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins.
SOCS 4-6 * Regulate epidermal growth factor (EGF) signaling.
SOCS 7 ¢ Regulates signaling cascades probably through protein ubiquitination and/or sequestration.
e Functions in insulin signaling and glucose homeostasis through IRS1 ubiquitination and subsequent proteasomal degradation.
e |nhibits prolactin, growth hormone and leptin signaling by preventing STAT3 and STAT5 activation, sequestering them in the cytoplasm and reducing
their binding to DNA.
* Mediates the interaction with the Elongin BC complex, an adapter module in different E3 ubiquitin ligase complexes (By similarity).
CIS ¢ Negative regulation of cytokines that signal through the JAK/STATS pathway such as erythropoietin, prolactin and interleukin 3 (IL3) receptor (Mui

et al., 1996; Sasi et al., 2014; Tobelaim et al., 2015).

Inhibits STAT5 trans-activation by suppressing its tyrosine phosphorylation (Chretien et al., 1996; Matsumoto et al., 1997).
May be a substrate-recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex

which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (Yoshimura, 1998).

factors may offer much-needed premise in biomedical therapy
approaches.

SOCS Signaling Pathway
The SOCS proteins were first identified based on their ability
to suppress cytokine signaling through the JAK/STAT pathway
(Dalpke et al., 2003, 2008). The mechanism of cytokines
binding to their putative cell surface receptors induces
receptor dimerization, which allows trans-phosphorylation
of JAKs (Dalpke et al, 2008) and tyrosine phosphorylation
of the intracellular receptor subunits, to be bound by STATs.
Following STAT phosphorylation, there is dimerization
and then translocation into the nucleus (Dalpke et al,
2001). All SOCS proteins inhibit the JAK/STAT pathway
similarly, (Dalpke et al., 2001; Caballero et al., 2016) upon
cytokine stimulation, which blocks further signaling in a
classic feedback loop by targeting signaling intermediates for
degradation (Elliott and Johnston, 2004). Moreover, SOCS
proteins have been implicated in regulating inflammation
and determining cell fate because their obstruction or
imbalance causes a broad range of diseases (Elliott and
Johnston, 2004).

Upon receiving a signal, a receptor protein changes
conformation simultaneously, creating a series of biochemical
reactions within the cell that are amplified by intracellular

signaling  pathways. The JAK/STAT pathway, which
coincidentally is involved in SOCS induction, serves as the
primary signaling mechanism for most cytokines in mammals
(Rawlings et al., 2004). Moreover, the JAK/STAT circuitry
includes a negative feedback loop that activates STATs to
stimulate the transcription of SOCS genes (Alexander, 2002;
Rawlings et al, 2004). JAK is first activated when various
ligands, usually cytokines and growth factors bind to cell surface
receptors to form a dimer that can phosphorylate each other.
This phosphorylation further activates JAK, allowing it to
phosphorylate the receptor. When STAT binds to the receptor,
it then becomes phosphorylated by JAK. Once phosphorylated,
STAT dimerization occurs followed by translocation to the
nucleus, where it binds to specific sequences in the DNA.
Inactivation of STATs occurs via dephosphorylating proteins
along the signaling pathway. Alterations or mutations that
perturb the JAK/STAT pathway will affect homeostasis, growth
regulation, survival and cell migration; which are all critical
functions of this pathway (Rawlings et al., 2004). Furthermore,
mutations that activate or fail to regulate JAK signaling properly,
cause inflammatory diseases and other etiologies (Rawlings
et al,, 2004). Because understanding the mechanism of signaling
during SOCS-induced responses to bacteria can assist in halting
or altering disease pathogenesis, this pathway is of great scientific
interest for targeted therapeutics.
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BACTERIAL PATHOGENESIS AND
IMMUNE RESPONSE

Bacterial Pathogenesis

Despite this new era of biomedical development, the leading
cause of mortality is still significantly influenced by new and
pre-existing infectious diseases (O’Connor et al., 2006). Added
to this for further exacerbation is the increasing incidence of
antimicrobial resistant strains, the emergence of new diseases,
and the re-surging of older deadly infectious diseases causing
a direct negative impact on the economy and welfare in
endemic areas (Peterson, 1996; Morens et al., 2004). It is well-
documented that microbial pathogens use common strategies to
cause infection and disease. These include adherence, invasion,
and enhanced pathogenicity, while also evading host defenses
(Peterson, 1996; Wilson et al., 2002; Morens et al., 2004). A
common strategy employed by bacterial pathogens is the Type
III secretion system (T3SS), which in some cases can be used
to invade host cells and/or evade immune detection by injecting
bacterial signaling proteins to manipulate host immune response
for their intracellular survival. Some bacteria that employ the
T3SS machinery, as well as the secreted effector proteins for
their virulent functions, are C. trachomatis (Betts-Hampikian
and Fields, 2010), Yersinia pestis (Nair et al., 2015), Salmonella
serovar Typhi (Johnson et al., 2017), Shigella (Hu et al., 2017),
Escherichia coli (Hu et al., 2017; Shaulov et al., 2017), and
Pseudomonas aeruginosa (Brannon et al., 2009). Pathogens may
also reside within a phagolysosome, a phagosome or within the
host cell cytosol to evade host immune responses (Wilson et al.,
2002). The production of virulent microbial toxins also plays
a vital role in the pathogenesis of some diseases (de Sousa,
2003; Ramachandran, 2014). Highly infectious microbes such
as Clostridium tetani (tetanus toxin) (Caballero et al., 2016),
Corynebacterium diphtheria (diphtheria toxin) (Bermejo-Martin
et al., 2016), Shigella dysenteriae (Shiga toxin) (Zadravec et al.,
2016), and Clostridium botulinum (botulinum toxin) (Ozcan and
Ismi, 2016) produce some of the most potent and lethal toxins.

Immune Responses to Bacterial Infections
The manifestation and severity of a disease are under the
influence of the host immune response induced by a bacterial
pathogen. Mediation of the host defense mechanisms occurs by
its primary and secondary defense responses, respectively innate
and adaptive immune responses (Chaplin, 2010). Consequently,
the host inflammatory response may be the most important
for dealing with microbial infections because it purposely
diverts antimicrobial factors such as phagocytes and lymphocytes
directly to the infection site. Mediation of inflammation occurs
via central effector cells such as mast cells or blood basophils that
give rise to localized or systemic responses, respectively (Chaplin,
2010; Ren and Dubner, 2010). Other effectors include phagocytes
that engulf microbes, neutralization of microbial pathogens by
antibodies or toxins that possess potent antimicrobial properties
as well as by lymphocytes and macrophages that initiate immune
responses against the pathogen (Tosi, 2005).

When bacteria, such as Neisseria meningitidis, and Salmonella
spp. invade their respective hosts; complement proteins are

up-regulated and assist in bacteria-killing via complement-
mediated lysis (Finlay and McFadden, 2006; Lewis and Ram,
2014). Gram-positive bacteria such as Staphylococcus spp.
that are resistant to this type of bacteria-killing mechanism
eventually will become opsonized by acute phase proteins and
destroyed by phagocytes. However, other pathogens can avoid
these above-described killing mechanisms. In these cases, the
host relies on cell-mediated immune responses to identify
and eliminate such organisms. Macrophages are targets for
intracellular bacteria (e.g., Salmonella spp.) that have evaded
detection by complement or antibody (do Vale et al., 2016).
When infected, these macrophages use MHC class II molecules
to present bacterial peptides on their cell surface for recognition
by T-helper cells (Goldman and Prabhakar, 1996). T-helper cells
recognize the microbial peptides and release IFN-vy that initiates
killing mechanisms for clearance of the invading intracellular
bacterium (Goldman and Prabhakar, 1996). Notably, many
bacteria can benefit from the stimulation of inflammatory
reactions as their induced responses usually cause considerable
tissue damage to the host making the host more susceptible to
an infection (Mogensen, 2009). Moreover, the same cytokines
and chemokines present at the inflammatory site are also very
critical in regulating the immune system and inflammation
(Cekici et al, 2000). Thus, dysregulation or an improper
balance of cytokine signaling can cause a variety of diseases not
only limited to bacterial but also including allergy, intensified
inflammation, and some forms of cancer (26). It is therefore
urgent that additional studies be performed with SOCS proteins
as inflammatory regulators to encourage novel therapeutic
approaches to eradicate bacterial diseases.

Broad Activity of SOCS Proteins in

Bacterial Responses

Robust innate and adaptive immune responses against microbial
pathogens are determined by the detection of the diverse
repertoire of their specific PAMPs, by PRRs of the host innate
immune cells such as TLRs, and nucleotide oligomerization
domain proteins (NOD) (Janeway and Medzhitov, 2002;
O’Riordan et al., 2002; Takeuchi and Akira, 2010). Upon bacterial
infection and PAMPs recognition, the PRRs initiate highly
complex intracellular signaling pathways, which trigger pro-
inflammatory and antimicrobial responses allowing the host to
respond promptly to the infection (Athman and Philpott, 2004;
Philpott and Girardin, 2004; Kumar and Yu, 2006; Gerold et al.,
2007; Mogensen, 2009; Takeuchi and Akira, 2010; Stokes et al.,
2015). TLRs play a central role in recognition of PAMPs and
in driving host inflammatory responses. They activate the cells
of innate immunity and promote pathogen-specific adaptive
immunity through their action on antigen-presenting cells
(Dalpke et al., 2001; Athman and Philpott, 2004; Kumar and Yu,
2006; Tapping, 2009). Triggering of PRRs and cytokine signaling
in immune effector cells induces the expression of inflammatory
and antimicrobial mediators as well as regulatory factors, which
coordinate the elimination of the pathogen and infected cells
(Mogensen, 2009; Takeuchi and Akira, 2010; Stokes et al., 2015).
This process mainly occurs via the activation of JAK/STAT
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signaling pathways and results in gene expression and production
of a variety of molecules, including an array of cytokines,
chemokines, growth factors and immune-receptors (Rawlings
etal., 2004; Mogensen, 2009). These proteins, especially cytokines
play essential roles as mediators of immune responses and
therefore have to be tightly regulated to induce appropriate and
safe antimicrobial responses (Baetz et al., 2007; Dalpke et al.,
2008).

SOCS proteins, protein inhibitors of activated stats (PIAS)
and protein tyrosine phosphatases (PTPs) are negative regulators
that activate the JAK/STAT pathway effectors of PRRs (Rawlings
et al., 2004; Abbas et al, 2012). SOCS proteins represent
one of the fundamental molecular mechanisms, which regulate
the level of microbial pathogen-induced signaling of cytokines
employing JAK/STAT signaling cascades (Yoshimura et al., 2012;
Trengove and Ward, 2013; Kyoko Inagaki-Ohara, 2014), and also
they interfere with cell signaling by mediating the degradation
of signaling proteins (Grutkoski et al., 2003). These proteins
regulate a broad range of pro- and anti-inflammatory cytokines
in immune cells and therefore determine the sensitivity of the
host to bacterial infections and the outcome of various bacterial
infections (Dalpke et al., 2003; Baetz et al., 2004; Takagi et al.,
2004; Yoshimura et al., 2004, 2007; Chaves de Souza et al., 2013).

Gram-Negative Bacteria and SOCS

Proteins
Many gram-negative bacteria of the genera Escherichia,
Pseudomonas, Chlamydia, Klebsiella, Neisseria, and Salmonella
can cause spectra of manifestations in humans (Kang et al., 2005;
Mogensen, 2009). Their cell wall is composed of peptidoglycan
surrounded by LPS, phospholipids, and proteins (Mogensen,
2009); LPS is their main immune-stimulatory component
and primary PAMP (Freudenberg et al., 2008). LPS interacts
with host immune cells via TLR4 in association with several
co-receptors: myeloid differentiation protein-2 (MD2), CD14
and LPS-binding protein (LBP) (Dumitru et al.,, 2000; Kumar
and Yu, 2006; Strengell et al., 2006; Freudenberg et al., 2008).
Moreover, these bacteria can simultaneously activate other
TLRs via alternative PAMPs, including TLR2 (peptidoglycan
and bacterial membrane proteins), TLR9 (non-methylated CpG
(cytosine-guanosine)-DNA), and TLR5 (flagellin) (Mogensen,
2009). The interaction of LPS with TLR4 leads to activation of
NF-kB and MAPK (JNK, p38, ERK) via myeloid differentiation
factor 88 (MyD88)-dependent pathway, serine/threonine kinase
IL-1R-associated kinase 4 (IRAK-4), and TNFR-associated factor
6 (TRAF-6). Besides, there are MyD88-independent pathways
that activate interferon regulatory factor-3 (IRF-3) and IRF-7
resulting in the induction of IFN-dependent genes to activate the
JAK/STAT pathway (Qin et al., 2007; Freudenberg et al., 2008;
Hu et al., 2009). These various activation machineries culminate
in triggering multiple immune response genes, especially
pro-inflammatory cytokines and chemokines (Nakagawa et al.,
2002; Qin et al., 2007; Freudenberg et al., 2008; Hu et al., 2009)
(Figure 1).

Host immune cells have developed negative regulatory
mechanisms, such as SOCS proteins, to control the exacerbated

inflammatory reactions caused by prolonged exposure to LPS.
Studies have shown that SOCS1 protects a host from fatal LPS
responses (Kinjyo et al., 2002; Nakagawa et al., 2002; Hu et al,,
2012), as underscored in SOCS1-deficient mice that exhibit a
high sensitivity to LPS mediated thru MyD88-dependent and—
independent pathways in association with IRAK1 (Kinjyo et al.,
2002; Baetz et al, 2004; Croker et al., 2008; Manicassamy
and Pulendran, 2009; Fujimoto and Naka, 2010). SOCSI also
facilitates blocking the uptake of LPS in mouse hepatocytes
potentially to control sepsis (Scott et al., 2009). Experiments
using SOCS1- and IFN-y-deficient mice showed that IFN-
signaling was modulated via JNK, p38, and NF-«kB activations
(Kinjyo et al., 2002; Croker et al, 2008) through direct
interactions with NF-kB p65 and TLR/MAL (MyD88-adaptor-
like protein) leading to their suppression and degradation
(Nakagawa et al., 2002; Abbas et al., 2012). Others have reported
that SOCS1 regulates the IFN-B-induced JAK/STAT pathway by
directly inhibiting STAT1 phosphorylation and indirectly TLR4
signaling via IRF-3 (Wilson, 2014).

SOCS3 plays a vital role in regulating LPS inflammation by
targeting multiple cytokine signaling cascades. Results from Qin
etal. (2007) confirm that the transcriptional expression of SOCS3
by LPS in macrophages and microglia was mediated by activation
of MAPK (ERK1/2, JNK, p38), STAT3 and endogenously
produced IL-10. Macrophages deficient in SOCS3 expressed
heightened LPS-induced STAT1, STAT3, and IL-6, but with no
ensuing effect on NF-kB and ERK1/2 activation (Qin et al., 2012;
Wilson, 2014). Moreover, it appears that depletion of SOCS3 in
macrophages results in positively regulating TLR4 responses by,
respectively suppressing STAT3- and SMAD3-mediated IL-6R
and TGF-p activations, which are both necessary for negatively
regulating LPS-induced IL-6 and TNF-a (Frobose et al., 2006).
Also, SOCS3 has been implicated in controlling bone-associated
inflammation as it inhibited LPS-induced IL-6 in osteoblasts
by blocking the transcription factor, CAAT/enhancer-binding
protein (C/EBPB) (Yan et al, 2010). Paradoxically, SOCS3
positively regulated LPS/TLR4 responses by a feedback inhibition
of endogenous TGFB-1/SMAD?3 signaling in macrophages (Liu
et al,, 2008). Others have reported that SOCS3 regulates IL-
10 control of LPS-induced TNE iNOS (inducible nitric oxide
synthase) and nitric oxide (NO) in macrophages by targeting
specific SOCS3 protein domains (SH2, SOCS box, and KIR)
(Qasimi et al., 2006), thus associating SOCS3 with the IL-10
anti-inflammatory effects. SOCS3 inhibited STAT1 and regulated
IFN-y signaling, in response to LPS stimulation by binding
to phosphorylated tyrosine sites of the JAK2 receptor domain
(Stoiber et al., 1999) to control macrophage anti-bactericidal
effects. Likewise, SOCS3 prevented IL-1 signaling, among others,
by inactivating the TRAF-6/TAK1 complex (Posselt et al., 2011;
Qin et al, 2012) to regulate LPS deleterious inflammatory
responses.

Unlike SOCS1 and SOCS3, the control of LPS signaling by
SOCS2 is minimal. Moreover, SOCS2 is differentially regulated
in human and mouse cells (Frobose et al., 2006; Hu et al., 2009;
Posselt et al., 2011), and the reason for this divergence has yet
to be delineated. To promote TLR4 signaling, SOCS2 may target
and mediate proteasome-dependent degradation of SOCS1 and
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FIGURE 1 | Role of SOCS proteins in the regulation of the signaling pathways induced by recognition of gram-negative bacteria. Recognition of gram-negative
bacteria through LPS by TLR4. Activation by LPS of TLR4 leads to the activation of transcription factor NF-kB and MAP kinases (JNK, p38, ERK) by myeloid
differentiation factor 88 (MyD88)-dependent pathway, serine/threonine kinase IL-1R-associated kinase 4 (IRAK-4), and TNFR-associated factor 6 (TRAF-6) resulting in
the induction of essential cytokines and chemokines (Nakagawa et al., 2002; Qin et al., 2007; Freudenberg et al., 2008; Hu et al., 2009). The regulation of TLR

SOCS3 (Tannahill et al., 2005; Hu et al., 2009). It is noteworthy
to mention that some intact gram-negative organisms like
E. coli (Qin et al., 2007; Hu et al, 2012; Demirel et al,
2013), P. aeruginosa (Ding et al., 2017), Chlamydia pneumoniae
(Yang et al., 2008), Burkholderia pseudomallei (Ekchariyawat
et al., 2005), Salmonella enterica (Uchiya and Nikai, 2005,
2008), Rickettsia conorii (Colonne et al., 2013), and Anaplasma
phagocytophilum (Bussmeyer et al., 2010) can directly stimulate
the expression of SOCS1 and SOCS3 in vitro and in vivo.
These organisms exploit multiple signaling pathways including
STAT1, STAT3, MAPK and NF-kB to induce the transcription
and/or protein expressions of SOCS1 or SOCS3 as a feedback
mechanism to control their induced inflammatory responses
(Ekchariyawat et al., 2005; Uchiya and Nikai, 2005, 2008; Yang
et al,, 2008; Bussmeyer et al., 2010; Colonne et al., 2013; Demirel
etal., 2013; Ding et al., 2017).

Gram-Positive Bacteria and SOCS Proteins
Gram-positive bacteria such as Listeria, Bacillus, Clostridium,
Staphylococcus, Streptococcus, and Enterococcus cause numerous
severe infections in humans (Navarre and Schneewind, 1999;
Plouffe, 2000; Hessle et al., 2005; Moellering, 2009; Woodford
and Livermore, 2009; van 't Veer et al., 2011). These bacteria
have a high resistance to a variety of antimicrobial therapies
(Plouffe, 2000; Hessle et al., 2005; Moellering, 2009; Woodford
and Livermore, 2009; van 't Veer et al., 2011; Schneewind and
Missiakas, 2012) as their cell wall is composed of a layer of

peptidoglycan (PGN) and lipoteichoic acid (LTA), encased in
the cytoplasmic membrane by diacylglycerol (Nandi et al., 2004;
Hessle et al., 2005; Brown et al., 2015). PGN is their principal
PAMP that is recognized through Nod-like receptors [NLRs
(Nod1 and Nod2)] and cryopyrin response proteins (Plouffe,
2000; Draing et al., 2008; Brown et al., 2015). Exposure to gram-
positive bacteria triggers various patterns of pro-inflammatory
cytokines notably, amongst many, IL-1a/, TNF-a, IL-6, and IL-8
(Ploufte, 2000; Draing et al., 2008; Brown et al., 2015). TLR2 is the
primary receptor activated in response to PGN and LTA (Draing
et al., 2008). Furthermore, both S. aureus and S. pneumoniae
LTA-recognition is attained by TLR2 associated with LBP and
CD14 in human monocytes to y contribute in the pathogeneses
of their diseases (McDonald et al., 2005). The activation of TLR2
by these bacteria is mediated by MyD88 and Toll/interleukin-1
(IL-1)-receptor (TIR)-domain, which leads to the activation of
NEF-kB, MAPK (via JNK, ERK-1, and p38) and pro-inflammatory
caspase-1 (Schroder et al., 2003; Draing et al., 2008) (Figure 2).
The role of SOCS proteins in regulation of gram-positive
bacteria-induced inflammation has not been extensively
investigated in comparison to gram-negative bacteria and
their LPS. Wu and colleagues (Son et al, 2015) reported
that SOCS1 enhancement in macrophages infected with the
pathogenic Group A Streptococcus (GAS), led to the blockage
of cytokine expression. In addition to IFN-f signaling, which is
involved in the GAS-induced SOCS1, the TLR4/MyD88 pathway
was observed to play a crucial role in stimulating SOCS1 by
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FIGURE 2 | Role of SOCS proteins in the regulation of the signaling pathways
induced by recognition of gram positive bacteria. Recognition of gram positive
bacteria through their lipopeptide by TLR1 or/and 2. MyD88 and
Toll/interleukin-1 (IL-1)-receptor (TIR)-domain mediates the activation of TLR2
by gram-positive bacteria, leading to the activation of the NF-«kB pathway;
MAPK signaling pathway via JNK, ERK-1, and p38 kinase activation; and
pro-inflammatory caspase-1 (Schroder et al., 2003; Draing et al., 2008). The
SOCS protein responsible for regulation of TLR signaling is highlighted in red.

forming a complex with JAK1/STAT1 (Son et al., 2015). Both
Bifidobacterium (B. breve, B. longum, and B. adolescentis)
and E. faecalis stimulated an increase in SOCS1 and SOCS3
mRNA transcripts in mouse macrophages by triggering NF-kB
and MAPK signaling pathways to regulate the production of
pro-inflammatory cytokines (Wu et al.,, 2015).

A study by Stoiber et al. (Okada et al, 2009) revealed
that prolonged infection of macrophages with L. monocytogenes
inhibited the phosphorylation of STAT1 and IFN-y signaling
with an enhancement of SOCS3 transcript and protein via
the p38 MAPK pathway. Both live and heat-killed bacteria
induced SOCS3; however, live bacteria induction of SOCS3
required de novo protein synthesis (Okada et al., 2009). The

non-pathogenic probiotic bacterium Lactobacillus and non-
pathogenic/pathogenic Streptococcus spp. induced the expression
of SOCS3 mRNA in human primary macrophages by directly
stimulating macrophages. Expression of SOCS3 by these bacteria
was dependent on endogenously produced IL-10 and mediated
through the p38 MAPK signaling pathway (Stoiber et al,
2001). Consequently, their stimulation of SOCS3 is induced
directly, through at least p38 MAPK-mediated signaling pathway,
and indirectly through IL-10 produced by bacterial-stimulated
macrophages.

Mycobacteria and SOCS Proteins

The Mpycobacterium genus includes, but not limited to,
M. tuberculosis and M. avium complexes (Imai et al., 2003;
Gao et al, 2006; Latvala et al, 2011), that are responsible
for several pulmonary diseases in humans, in particular,
Tuberculosis (TB) caused by M. tuberculosis (MTB) (Prince
etal., 1989; Gao et al., 2006). Mycobacteria cell wall is composed
of a thin internal layer of peptidoglycan, phosphatidyl-myo-
inositol mannosides (PIMs) and arabinogalactan, and an
external layer of hydrophobic mycolic acids (Nandi et al.,
2004; Rottenberg and Carow, 2014). Other components
include mannose-capped lipoarabinomannan (Man-LAM),
a significant virulence factor; the related lipomannan (LM),
and mannoglycoproteins (Rottenberg and Carow, 2014).
Mycobacteria are facultative intracellular pathogens, and
macrophages are their primary host cells (Gao et al., 2006;
Kleinnijenhuis et al., 2011).

Several PRRs are implicated in recognition of mycobacteria
by host macrophages and DCs, including TLR1, TLR2, TLR4,
and TLRY, C-type lectin receptors (CLRs) (i.e., mannose receptor,
DC-SIGN, Mincle, and Dectin-1) and NLRs (Rottenberg and
Carow, 2014; Zhao et al., 2014; Mortaz et al., 2015). Numerous
mycobacterial components activate TLRs, namely lipoproteins
(LpgH, LprA, LprG), PhoS1, LAM, LM, and PIMs, which activate
TLR2; glycolipoprotein and PIM6, which activate TLR2/TLR4;
and mycobacterial DNA, which respond via TLR9/TLR2 (Killick
et al, 2013). Mycobacteria interaction with TLRs results in
the activation of NF-kB activated protein-1 (AP-1) via MyD88,
MAL, and IRAK, leading to the production of chemokines
and several pro-inflammatory cytokines (Rajaram et al., 2014;
Rottenberg and Carow, 2014; Zhao et al., 2014) (Figure 3).
Mycobacterial components also induce IL-10 via caspase
recruitment domain-containing protein 9 (CARD9) or p38
MAPK and serine/threonine Akt kinases (Jo, 2008; Redford et al.,
2011).

Mycobacterial infections trigger the expressions of SOCS1
and SOCS3 (Gao et al., 2006; Dorhoi et al., 2010; Killick
et al., 2013) along with SOCS4 and SOCS5 in mice infected
with highly virulent MTB isolates (Vazquez et al., 2006).
Overexpression of SOCS1 and SOCS3 results in polarizing
effects permitting induction of suppressor responses, but
also the survival of mycobacteria through the manipulation
of cytokine responses, especially IFN-y that is required in
the resolution of mycobacterial infections (Manca et al,
2005; Dorhoi et al., 2010). Mycobacterial-induced SOCS1 and
SOCS3 are dependent TLR2/MyD88 along with NF-k and p38
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nflammatory cytokines particularly TNFa, IL-18, IL-18, IL-12, and nitric oxide (Rajaram
SOCS protein involved in the regulation of TLR signaling is accentuated in red.

MAPK activation (Manca et al, 2005). Specifically, SOCSI
suppressed STAT1 phosphorylation resulting in the inhibition
of STAT1-mediated IFN-a/p signaling (Manca et al., 2005;
Dorhoi et al, 2010). SOCS1 also promotes mycobacterial
growth in macrophages by blocking IFN-y secretion in
response to IL-12 induced by the infection (Srivastava et al.,
2009).

Mycobacteria-specific components (i.e., PIM2 and PPE
protein, PPE-18) via TLR2/MyD88-activation of macrophages
augment SOCS3 expression, and dislocation of the MyD88/TLR2
pathway modulated SOCS3 expression (Prince et al., 1989).
Additionally, SOCS3 induced by PPE18 inhibited NF-«kB
activation by diminishing the phosphorylation of IkBa (Carow
et al,, 2011). In general, mycobacterial-induced SOCS3 inhibits
STATS3 activation through cytokine receptors that activate STAT3

(Prince et al., 1989). As an example, SOCS3 binding to gp130
mediated the control of MTB infection in myeloid cells by
inhibiting the IL-6/STAT?3 signaling pathway (Nair et al., 2011;
Carow et al., 2013).

Both SOCS2 and CIS can also play a role in regulating
responses to mycobacterial infections. The expression of SOCS2
increased in macrophages infected with mycobacteria, and
SOCS2-deficient mice exhibited a higher sensitivity to the
inflammation induced by M. bovis infection (Carow and
Rottenberg, 2014). Nonetheless, the activity of SOCS2 seems to
be scarce and redundant and still requires a better understanding.
CIS, on the other hand, is associated with increased susceptibility
to TB (Sun et al., 2014; McCormick and Heller, 2015), likely by
negatively regulating SOCS1 and SOCS3 (Trengove and Ward,
2013).
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CORRELATION OF SOCS PROTEINS WITH
BACTERIAL DISEASE

Bacterial pathogens exploit SOCS proteins to manipulate
cytokine receptor signaling and thereby influence infection
outcomes as a strategy of evading host immune defenses (Baetz
et al., 2007). Hence, the over-expression of SOCS proteins
in bacterial infections supposedly is linked to the immune
escape and exacerbation of disease. As SOCS1 and SOCS3
play essential roles in response to bacterial infections, they
are therefore explicitly targeted for immune evasion. The
reports above have therefore indicated that pathogens can
induce SOCS1 and SOCS3 to evade deleterious host immune
responses for their perpetuation and/or to control their induced
inflammation. The most intended target is the interferon
responses, mediated by STAT1 and controlled by SOCS1 and
SOCS3, which play pivotal roles in the defense against bacterial
infections.

The highly pathogenic bacterium, L. monocytogenes
manipulates the macrophage machinery during early
infection where there is heightened macrophage activation
to permit its intracellular establishment. However, during
persistent infections, L. monocytogenes regulates macrophage
activation by inhibiting the transcription of IFN-y and
tyrosine phosphorylation of STAT1 via induction of SOCS3
(Okada et al., 2009). As stimulation of IFN-y is necessary for
macrophage activation and functions, inhibiting IFN-y signaling
is a stratagem utilized by L. monocytogenes to facilitate its
intracellular survival by controlling its inflammation. Similarly,
perturbations of IFN-y and STAT1 signaling pathways by the
facultative intracellular B. pseudomallei through induction
of SOCS3 and CIS is a mechanistic tactic to reduce the
macrophage bactericidal effect and enabled its intracellular
survival (Ekchariyawat et al., 2005).

Results from studies by Uchiya and Nikai (Uchiya and Nikai,
2005, 2008) demonstrated how Salmonella pathogenicity island
2 (SPI-2) T3SS and its encoded virulence factor SpiC trigger
SOCS3 up-regulation via the ERK1/2 pathway for inhibition of
the JAK/STAT inflammatory signaling cascades for its continued
survival in macrophages. GAS, which causes various systemic
diseases induced SOCS] that participates in the GAS’ evasion of
host immune responses in murine macrophages by dampening
cytokine expression leading to rapid bacterial infection (Son
et al, 2015). Expression of SOCS1 was shown to prevent
C. pneumoniae-induced lethal inflammation through a STAT1
and IFN-o/p signaling-dependent manner, but conversely, its
impact on IFN-a/f and IFN-y impeded an efficient bacterial
clearance (Yang et al., 2008). Borrelia burgdoferi (non-gram
staining bacteria), the spirochetal agent of Lyme disease,
stimulates the expression of SOCS1 and SOCS3 in macrophages
to possibly control its inflammatory disorders (Khor et al.,
2010). Additionally, B. burgdorferi via CD14 signaling induced
SOCS1, SOCS3, and CIS as mediated by the p38 MAPK pathway
to control the development of chronic inflammatory etiologies
(Dennis et al., 2006).

Various mycobacteria manipulate IFN-y-driven immunity by
inducing SOCS1 and SOCS3 to evade the immune response

or hamper the disease control. Augmentation of SOCS1 and
SOCS3 levels and their subsequent inhibition of IFN-y-induced
STAT1 were found to alleviate the immune response for
several mycobacterial species like M. tuberculosis, M. avium,
and M. bovis (Gao et al., 2006; Srivastava et al., 2009; Dorhoi
et al, 2010; Trengove and Ward, 2013). M. bovis infection
stimulated SOCS1 and SOCS3 in mouse macrophages, which
mediated the inhibition of IFN-y-stimulated phosphorylation
of STAT1 and thereby the subsequent inhibition of growth
and activation of macrophages required for the control of
this intracellular pathogen (Gao et al., 2006). Moreover, there
are observations of both SOCS1 and SOCS3 association with
disease progression in peripheral blood mononuclear cells and
human macrophages of patients with TB (Sahay et al., 2009;
Masood et al, 2012, 2013). SOCS1 and SOCS3 were up-
regulated and contributed to Th2 immune polarization and
down-modulation of Th1-mediated IFN-y responses, and hence
increased the disease severity by promoting the intracellular
persistence of M. tuberculosis (Sahay et al., 2009; Masood et al,,
2012,2013). Infection of mice with highly virulent clinical isolates
of MTB induced type I IFNs, which led to the up-regulation
of SOCS1, SOCS4, SOCS5 and other negative regulators of the
JAK/STAT pathway resulting in a decrease of Th1 type cytokines
and decreased survival of MTB-infected mice (Vazquez et al.,
2006).

IMPLICATIONS AND POSSIBLE
REQUIREMENTS FOR THERAPEUTIC
APPROACHES

SOCS proteins regulate cytokine signal transduction for
maintaining immune functions but still contribute to the onset
of immunological diseases and inflammation (Yoshimura et al.,
2005). Therefore, modulating cytokine release holds promise for
minimizing disease progression. SOCS1 and SOCS3 are tightly
linked to cancer cell proliferation, as well as cancer-associated
inflammation. In some cancer therapy studies, SOCS proteins
have been used to control or suppress cytokine signaling for an
efficacious treatment. One approach is overexpressing SOCS
proteins to inhibit the growth of tumors mediated by suppressing
tumor-promoting STATs. Another method is enhancing anti-
tumor immunity by siRNA silencing of SOCS in DCs or CTLs
(Ashenafi et al., 2014). In most cases, the silencing of SOCS1
and SOCS3 exacerbated carcinogenesis; thus, overexpression
of SOCS1 and SOCS3 or SOCS-mimetics can be targeted
therapeutics (Zhang et al., 2012). However, SOCS1 in DCs and
likely T cells suppress anti-tumor immunity; therefore, silencing
SOCS1 in these cells could also be therapeutic. Silencing of
the SOCS1 gene may hinder the negative feedback regulation
of the JAK/STAT pathway, therefore, resulting in heightened
responsiveness to cytokines, and supporting survival and
expansion of myeloma myeloid cells (Inagaki-Ohara et al., 2013).
Blocking of constitutive STAT3 signaling results in growth
inhibition and apoptosis of STAT3-positive tumor cells in vitro
and in vivo (Galm et al., 2003). Development of SOCS-targeted
therapeutics based on structural analysis of the JAK/SOCS
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complex (Zhang et al., 2012) could thus be a highly desirable
approach.

The regulation of the levels of pro- and anti-inflammatory
cytokines and chemokines by the immune system is critical
in limiting or modulating the host defense against invading
pathogens. SOCS proteins as negative regulators of JAK/STAT
represent a promising target for anti-inflammatory therapies
(Turkson and Jove, 2000). Therefore, the use of recombinant
forms of SOCS proteins to refill the intracellular stores of SOCS
needed to control acute or protracted inflammatory disease can
be viewed as a novel targeted therapy to suppress the JAK/STAT
pathway and prevent cytokine-mediated lethal inflammation
(Recio et al., 2014). A recombinant cell-penetrating form of
SOCS1 (CP-SOCS1) and SOCS3 were indeed shown to potently
inhibit the JAK/STAT signaling pathway in vitro by interacting
with the IFN-y signaling complex and functionally reducing the
phosphorylation of STAT1, which further resulted in inhibiting
the production of pro-inflammatory cytokines and chemokines
(Jo et al., 2005; DiGiandomenico et al., 2009; Fletcher et al.,
2010). Moreover, CP-SOCS3 protected mice from lethal effects
of Staphylococcal Enterotoxin B and LPS by decreasing the
production of inflammatory cytokines (DiGiandomenico et al.,
2009).

The exploitation of host SOCS proteins and manipulation of
their functions by bacterial pathogens make them particularly
attractive therapeutic targets. Therapeutic approaches targeting
host-directed immunomodulatory components against bacterial
infections have already been described (Finlay and Hancock,
2004; Hancock et al.,, 2012; Hawiger and Jo, 2013). Regulator
peptides of the innate immune defense, agonists of innate
immune receptors and adjuvants of innate immune components,
have been tested for this purpose (Finlay and Hancock, 2004;
Hawiger and Jo, 2013). TLRs and NOD receptors have, in fact,
been targets of several immunomodulatory therapies, of which
several are approved, to inhibit or treat bacterial infections
(Finlay and Hancock, 2004; Hancock and Sahl, 2006). Among
them, the most notable example is CADI-05, an agonist for
many TLRs, which was successfully investigated as a potential
therapy for TB (Finlay and Hancock, 2004; Hancock and
Sahl, 2006). Besides, vaccines formulated with small molecule
immune-potentiators that trigger TLRs were shown efficient
in protection against bacterial infections. A notable example
is the vaccine adjuvant based on a TLR7 agonist adsorbed to
alum (Alum-TLR7), which induced a high and broad protection
against Staphylococcus aureus (Hennessy et al.,, 2010; Bagnoli
et al,, 2015). Furthermore, targeting STAT activity that is strictly
regulated by SOCS1 and SOCS3 proteins, by inhibiting tyrosine
kinases, could allow avoiding the subversion of the innate
immune responses during a bacterial infection and therefore
represents an attractive antibacterial therapeutic approach. For
instance, dual-inhibitors of Ser/Thr protein kinases PknG/PknG,
which are required for mycobacteria growth were able to
prevent their replication in mice (Hennessy et al, 2010; Gil
et al., 2013; Mancini et al, 2016). However, investigations of
SOCS proteins as therapeutic targets have not been beyond the

development of a cell-penetrating form of SOCS to compensate
the loss of endogenous SOCS (DiGiandomenico et al., 2009;
Recio et al,, 2014). Nonetheless, since bacteria target several
intracellular pathways, many of which are linked to the SOCS
proteins, it is clear that SOCS proteins represent unnavigable
therapeutic targets in the control or eradication of bacterial
infections.

CONCLUSION AND FUTURE DIRECTIONS

A better understanding of the control mechanisms involved in
SOCS modulation of immune responses and inflammation is
key to developing effective targeted therapeutics and vaccines.
Each SOCS protein contributes either to the negative regulation
of cytokine signaling or the regulation of many biological
processes. The expression of SOCS proteins can define host
susceptibility to infection by facilitating accelerated bacterial
growth or protecting the host from severe inflammation.
However, the direct action of the SOCS-mediated inhibition
in inflammatory response is yet to be fully elucidated, thus
limiting the progress being made scientifically and clinically by
microbiologist and immunologists. Additionally, factors such
as increased virulence, mutations and antibiotic resistance over
time pose recurring challenges in the control of epidemic
bacterial diseases worldwide. Admittedly, SOCS-targeted therapy
for bacterial-induced inflammation is provocative, but yet one
that should be considered exploring. So far, inhibiting the action
of JAKs by small composites or drugs show reparative potential
(DiGiandomenico et al., 2009). Such insight along with advances
in medicine and technology may offer more efhicient, and novel
strategies surrounding SOCS therapy to control the inflammatory
bacterial disease.
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