
87

Human cytomegalovirus is a ubiquitous herpes virus, which 
is not cleared after initial infection.1 Cytomegalovirus 

infection predominantly affects the CD8+ T-cell compart-
ment by memory inflation, characterized by an excessive 

increase in cytomegalovirus-specific effector memory T cells 
(T

EMRA
) and a decrease in naive cells. Cytomegalovirus in-

fection has been linked with a higher incidence of coronary 
heart disease (CHD) and may, in part, contribute to the higher 
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Rationale: There is mounting evidence of a higher incidence of coronary heart disease in cytomegalovirus-
seropositive individuals.

Objective: The aim of this study was to investigate whether acute myocardial infarction triggers an inflammatory 
T-cell response that might lead to accelerated immunosenescence in cytomegalovirus-seropositive patients.

Methods and Results: Thirty-four patients with acute myocardial infarction undergoing primary percutaneous 
coronary intervention were longitudinally studied within 3 months after reperfusion (Cohort A). In addition, 54 
patients with acute myocardial infarction and chronic myocardial infarction were analyzed in a cross-sectional 
study (Cohort B). Cytomegalovirus-seropositive patients demonstrated a greater fall in the concentration of 
terminally differentiated CD8 effector memory T cells (TEMRA) in peripheral blood during the first 30 minutes 
of reperfusion compared with cytomegalovirus-seronegative patients (−192 versus −63 cells/μL; P=0.008), 
correlating with the expression of programmed cell death-1 before primary percutaneous coronary intervention 
(r=0.8; P=0.0002). A significant proportion of TEMRA cells remained depleted for ≥3 months in cytomegalovirus-
seropositive patients. Using high-throughput 13-parameter flow cytometry and human leukocyte antigen class I 
cytomegalovirus-specific dextramers, we confirmed an acute and persistent depletion of terminally differentiated 
TEMRA and cytomegalovirus-specific CD8+ cells in cytomegalovirus-seropositive patients. Long-term reconstitution 
of the TEMRA pool in chronic cytomegalovirus-seropositive postmyocardial infarction patients was associated with 
signs of terminal differentiation including an increase in killer cell lectin-like receptor subfamily G member 1 and 
shorter telomere length in CD8+ T cells (2225 versus 3397 bp; P<0.001).

Conclusions: Myocardial ischemia and reperfusion in cytomegalovirus-seropositive patients undergoing primary 
percutaneous coronary intervention leads to acute loss of antigen-specific, terminally differentiated CD8 T 
cells, possibly through programmed cell death-1–dependent programmed cell death. Our results suggest that 
acute myocardial infarction and reperfusion accelerate immunosenescence in cytomegalovirus-seropositive 
patients.    (Circ Res. 2015;116:87-98. DOI: 10.1161/CIRCRESAHA.116.304393.)
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burden of cardiovascular disease in areas of socioeconomic 
deprivation.2

Previously, only reactivation of cytomegalovirus in immu-
nocompromised hosts was thought to be clinically relevant. 
However, a growing body of evidence now suggests an important 
role for cytomegalovirus during aging.3 Cytomegalovirus sero-
positivity has been estimated to shorten median life expectancy 
by 4 years in patients aged >65 because of a higher risk of car-
diovascular death.3 Patients with CHD are known to have shorter 
telomere length (TL) in their peripheral blood leukocytes com-
pared with age-matched healthy adults.4,5 We have previously 
shown in patients with chronic myocardial infarction (MI) that 
the TL of CD8+ T cells is shorter than that of all other myeloid 

and lymphoid leukocyte populations, and in comparison with 
age-matched seropositive healthy individuals without previous 
MI.5 CD8+ T-cell responses in elderly cytomegalovirus-sero-
positive patients are further characterized by an accumulation of 
replicatively senescent dysfunctional T cells, also with short TL.6 
The inverse correlation of telomere shortening in CD8+ T cells 
with left ventricular function additionally suggests a link between 
a history of MI and immunosenescence.5 The aim of this study 
was to investigate the effect of acute myocardial infarction (AMI) 
on immunosenescence and cytomegalovirus-specific immunity.

Methods
Please see the Online Data Supplement for further details.

Study Population

Cohort A
A time-course study was performed in 34 patients with ST-segment–
elevation myocardial infarction (STEMI; mean age, 59.9±11.1 years) 
who were treated by primary percutaneous coronary intervention 
(PPCI; Table 1). Blood samples were taken before reperfusion and 
at 15, 30, and 90 minutes and 24 hours after reperfusion. Additional 
dextramer substudies were undertaken at 3 months post-MI in 8 cyto-
megalovirus-seropositive patients.

Cohort B
Fifty-four male patients with angiographically confirmed CHD were 
included in the main study population. Of these, 28 patients had 
acute STEMI (AMI; mean age, 56±5.8 years) and 26 were stable 
patients with previously treated STEMI (chronic MI; ≥3 months 
post-MI; mean age, 61±6 years) and were analyzed 24 hours after 

Nonstandard Abbreviations and Acronyms

CHD	 coronary heart disease

HCA	 hierarchical cluster analysis

KLRG1	 killer cell lectin-like receptor subfamily G member 1

MFI	 mean fluorescence intensity

PBMCs	 peripheral blood mononuclear cells

PD-1	 programmed cell death-1

PPCI	 primary percutaneous coronary intervention

TL	 telomere length

TEM	 effector memory T cells

TEMRA	 CD45RA+ effector memory T cells

Table 1.   Baseline Characteristics of Cytomegalovirus Subgroups (Cohort A: Time-Course Reperfusion 
Substudy)

AMI (n=34)

Cytomegalovirus Negative
Median (IQR)

Cytomegalovirus Positive
Median (IQR) P Value

N 15 19

Age, median (range) 55 (48; 68) 66.0 (58; 72) 0.06

Sex, male/female 13/2 10/9 0.06

Previous MI, % 0 0 1.0

Ejection fraction, % 53 (48; 66) 54 (43; 61) 0.54

No. of vessel-disease, 1/2/3 15/0/0 17/2/0 0.49

Serum creatinine, μmol/L 81 (69; 95) 75 (63; 88) 0.31

HDL cholesterol, mmol/L 1.2 (1.1; 1.4) 1.2 (1.0; 1.4) 0.94

LDL cholesterol, mmol/L 4.1 (3.1; 5.0) 3.6 (3.2; 4.7) 0.57

Triglycerides, mmol/L 1.9 (0.9; 2.7) 1.3 (0.8; 2.2) 0.39

BMI 26 (23; 29) 25 (23; 28) 0.99

Diabetes mellitus, % 0 5.3 1.0

Hypertension, % 26.7 36.8 0.72

Active smokers, % 53.3 52.6 1.0

Statin treatment, % 20 21.1 1.0

Initial troponin T, ng/L 40 (17; 132) 61 (33; 141) 0.35

Peak troponin T, ng/L 4371 (2102; 6200) 4395 (1933; 8408) 0.9

Onset-to-balloon time, min 135 (112; 219) 164 (114; 211) 0.63

Door-to-balloon time, min 24 (17; 28) 22 (18; 34) 0.82

All indicated P values (control vs CHD and cytomegalovirus positive vs cytomegalovirus negative) were calculated by nonparametric 
t test or χ2 and Fisher exact test. AMI indicates acute myocardial infarction; BMI, body mass index; CHD, coronary heart disease; HDL, 
high-density lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein; and MI, myocardial infarction.
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PPCI or routine control coronary angiography, respectively (Table 2). 
Eighteen healthy male volunteers were enrolled as controls (mean 
age, 53.5±5.8 years).

For both the study populations, none of the patients were knowingly af-
fected by neoplastic, autoimmune, or chronic infectious disease. All sub-
jects with recent infections were also excluded. The study protocol was 
approved by the institutional ethical committee of Newcastle University 
(REC 12/NE/0322, cohort A, and REC 09/H0905/50, cohort B). Written 
informed consent was obtained from all patients and healthy volunteers.

Blood Collection
Up to 80 mL of peripheral blood was obtained by venopuncture. Peripheral 
blood mononuclear cells (PBMCs) were isolated by density gradient cen-
trifugation, cryopreserved, and stored at −80°C as previously described.7

Enumeration of Peripheral Blood Leukocyte 
Subsets
Absolute counts of peripheral blood leukocyte subpopulations were 
determined using 5-color BD TruCount-based flow cytometry assay 
as described previously.7

Determination of Donor Cytomegalovirus 
Serostatus
Cytomegalovirus status was determined by enzyme-linked immu-
nosorbent assay (CMV IgG Enzyme Immunoassay Kit; GenWay 
Biotech, San Diego, CA). Cytomegalovirus IgG concentration was 
measured in stored (−80°C) serum. Cytomegalovirus seropositivity 
was defined as an IgG Index of >1, as per manufacturer’s instructions.

Eleven-Color Flow Cytometry 
For Cohort B, high-throughput 11-color flow cytometry assays were 
performed as previously described.7 CD8+ T-cell subset counts were cal-
culated as total cells multiplied by percent cells within the subset gate. 
Gating strategy for 11-color flow cytometry is shown in Online Figure I.

Hierarchical Cluster Analysis of Flow Cytometry 
Data
After data acquisition, files were exported from FACSDiva software 
and saved as fcs version 3.0 files. The analyzed parameters were 
11-color channels (killer cell lectin-like receptor subfamily G member 
1 [KLRG1], CD3, CD28, CCR7, CD45RA, CD57, CD27, CD4, CD8, 
programmed cell death-1 [PD-1], and Aqua Dye) and 3 to 4 param-
eters based on forward and side scatters (FS-A, SS-A, SS-H, and [SS-
W]). The raw or viable CD3+CD8+ T-cell pregated data were extracted 
from.fcs files and imported into R environment, where all subsequent 
analysis was performed. Compensation matrix (as present in.fcs files) 
was applied to the data followed by biexponential-like transforma-
tion and normalization (z score). Hierarchical cluster analysis (HCA) 
was then performed using our own previously described algorithm.8 
Representative HCA graphical output of the gated viable CD8+ T cells 
and the heatmaps/dendrograms from all analyzed patients and healthy 
controls are shown in Online Figures II and III, respectively.

Dextramer Staining
Cytomegalovirus-specific T cells were detected in PBMC samples 
using a Dextramer CMV Kit (Immudex, Denmark). Patient human 

Table 2.   Baseline Characteristics of Cytomegalovirus Subgroups (Cohort B)

AMI (n=28) Chronic MI (n=26)

Cytomegalovirus 
Negative

Median (IQR)

Cytomegalovirus 
Positive

Median (IQR) P Value

Cytomegalovirus 
Negative

Median (IQR)

Cytomegalovirus 
Positive

Median (IQR) P Value

N 14 14 11 15

Age, median (range) 57.2 (52; 61) 57.9 (50; 60) 0.87 59.9 (50; 64) 63.0 (61; 64) 0.15

Sex, male/female 14/0 14/0 1.0 11/0 15/0 1.0

Previous MI, % 0 7 0.33 100 100 1.0

Ejection fraction, % 42 (32; 47) 52 (43; 59) 0.01 27 (17; 47) 47 (20; 60) 0.38

No. of vessel-disease, 
1/2/3

11/2/1 7/5/2 0.29 2/2/7 5/2/8 0.69

Serum creatinine, 
μmol/L

94 (88; 100) 92 (88; 103) 0.96 95 (78; 110) 108 (97; 113) 0.18

HDL cholesterol, 
mmol/L

1.1 (0.9; 1.2) 1.1 (1.0; 1.3) 0.44 1.1 (0.9; 1.3) 1.1 (1.0; 1.4) 0.41

LDL cholesterol, mmol/L 4.1 (3.5; 4.8) 3.9 (3.5; 4.3) 0.52 2.4 (1.9; 3.6) 3.1 (2.4; 3.7) 0.27

Triglycerides, mmol/L 1.3 (0.9; 2.0) 1.4 (0.9; 2.4) 0.98 1.9 (1.3; 2.8) 2.3 (1.4; 2.5) 1.0

BMI 28 (26; 31) 27 (25; 34) 0.92 28 (21; 30) 29 (27; 36) 0.1

Diabetes mellitus, % 0 21 0.07 36 40 0.85

Hypertension, % 21 21 1.0 55 67 0.23

Active smokers, % 50 50 1.0 18 7 0.36

Statin treatment, % 7 29 0.16 100 7 <0.0001

Initial troponin I, ng/L 0.5 (0.2; 11.8) 1.0 (0.1; 1.8) 0.66 … … NA

Peak troponin I, ng/L 50 (28; 50) 40 (19; 50) 0.18 … … NA

Onset-to-balloon time, 
min

153 (96; 240) 113 (102; 272) 0.68 … … NA

Door-to-balloon time, 
min

25 (17; 35) 19 (16; 29) 0.42 … … NA

All indicated P values (control vs CHD and cytomegalovirus positive vs cytomegalovirus negative) were calculated by nonparametric t test or χ2 and Fisher exact test. 
AMI indicates acute myocardial infarction; BMI, body mass index; CHD, coronary heart disease; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density 
lipoprotein; MI, myocardial infarction; and NA, not applicable.
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leukocyte antigen (HLA) typing was performed by National Health 
Service Blood and Transplant, Newcastle. Each allele matching the 
HLA-type of the patient was analyzed separately. Cells were assessed 
by multiparametric flow cytometry (BD FACS Canto II).

Seven-Color Flow Sorting of CD8+ T Cells
Cell sorting was performed on a BD FACS Aria-II cell sorter. Viable 
CD8+ T-cell subsets were directly sorted and aliquots spun down and 
dry stored at −80ºC until DNA isolation.

DNA Isolation and TL Real-Time Polymerase 
Chain Reaction Assay
DNA was extracted from sorted CD8+ T cells using a QIAamp DNA 
Mini Kit (Qiagen Ltd, Crawley, United Kingdom). TL was measured 
by quantitative real-time polymerase chain reaction with modifica-
tions as described previously.9

Enzyme-Linked–Immunospot Analysis of CD8-
Cytomegalovirus–Specific Antigens
PBMCs were isolated and cryopreserved as for dextramer staining. 
Enzyme-linked–immunospot analysis was carried out as previously 
described.10

IL-7, IL-15, and Interferon-γ ELISA
Serum IL-7 and IL-15 concentration was determined using MSD 
96 Multiarray human IL-7, IL-15, and interferon-γ assays on an 
SECTOR Imager instrument (Meso Scale Discovery) according to 
manufacturers’ protocol.

Th1, Th2, and Th17 Response
Th1, Th2, and Th17 T-cell responses were assessed by measuring 
the frequencies of interferon-γ–, IL-5–, and IL-17–secreting cells, 
respectively, using enzyme-linked–immunospot assays.

Proliferation of CD8+ T cells (Ki-67)
Intracellular Ki-67 T-cell staining was performed on whole-blood 
samples before (0 minutes), at 90 minutes, and 24 hours after reperfu-
sion. Samples were analyzed by flow cytometry (BD FACS Canto II).

T-Cell Apoptosis Studies
For spontaneous apoptosis experiments, PBMCs obtained from 
STEMI patients before PPCI were incubated in 96-well plates (2×105 
cells per well) for 16 hours at 37°C. Cells were washed and stained 
with anti-CD8 and anti-PD-1 monoclonal antibodies, followed by 
staining with Annexin V and 7-AAD. For PD-1 blocking experiments, 
PBMCs were cultured in 24-well culture plates (106 cells per well). 
Cells were stimulated with anti-CD3 monoclonal antibody (Mabtech) 
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Figure 1. Myocardial ischemia/
reperfusion triggers acute depletion of 
circulating CD8+ effector memory cells 
in cytomegalovirus (CMV)-seropositive 
patients. A, Peripheral blood mononuclear 
cells (PBMCs) from CMV-seropositive 
patients with acute myocardial infarction 
(MI) displayed significantly higher T-helper 
type-1 (Th1) response (interferon [IFN]-
γ enzyme-linked–immunospot assay 
after PHA stimulation) than PMBCs from 
CMV-seronegative MI patients already 
before primary percutaneous coronary 
intervention (PPCI; Th2 response [IL-
5], Th17 response [IL-17]). B, CMV-
seropositive MI patients showed increased 
serum levels of IFN-γ after reperfusion 
(intraindividual time course from n=15 
patients). C and D, Magnitude of Th1 
response depends on total ischemic time 
(onset-to-balloon) in CMV-seronegative MI 
patients. E, Absolute numbers of leukocyte 
populations before reperfusion. F, 
Absolute changes in circulating CD8+ T-cell 
subpopulations during the first 30 minutes 
of reperfusion. G, Loss of CD8 TEMRA cells 
24 hours postmyocardial infarction (acute 
myocardial infarction), compared with 
healthy controls and patients with chronic 
MI (Cohort B). H, Increase in proliferating 
CD8+ T cells 24 hours postreperfusion, 
as quantified by intracellular staining 
for Ki-67 and flow cytometry. All bars 
are mean±SEM. *P<0.05; **P<0.01. ns 
indicates not significant.
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at 5 μg/mL alone or in the presence of 10 μg/mL of blocking anti-
PD-1 monoclonal antibody (eBioscience), for 1 or 4 days. Cells were 
washed and stained with annexin-V, anti-CD3-FITC, and propidium 
iodide. PBMCs were analyzed using a BD FACSCanto II cytometer.

Statistical Analysis
Data are reported as mean±SE. Comparison of 2 groups was per-
formed using either the Mann–Whitney U test or an unpaired t test, 
if normal probability–probability plots demonstrated approximate 
normality. Comparison of 3 means was performed by ANOVA, fol-
lowed by Tukeys’ post hoc test. Wilcoxon and Friedman tests were 
used to compare the means of 2 or 3 matched groups, respectively. 
Correlation analyses were performed with the use of linear regression 
and Spearman rank coefficient. P<0.05 was considered statistically 
significant. All statistical tests were performed using GraphPad Prism 
version 6 for Macintosh (www.graphpad.com).

Results
Myocardial Ischemia/Reperfusion Causes Acute 
Depletion of CD8 Effector Memory Cells
Seropositive patients displayed a significantly stronger 
T-helper type-1 (Th1) response (P=0.0072 versus cytomega-
lovirus-seronegative patients; Figure 1A) immediately before 
reperfusion. Subsequently, we detected a significant rise in 
systemic levels of interferon-γ, the signature Th1 cytokine, 
in cytomegalovirus-seropositive patients after reperfusion 
(P<0.01 versus seronegative patients at 30 minutes post-
PPCI; Figure 1B). The magnitude of Th1 response correlated 
with total ischemic time in cytomegalovirus-seronegative 
patients (r2=0.71; P=0.0006; Figure 1C–D). In contrast, Th1 
response in cytomegalovirus-seropositive patients was higher 
and did not correlate with ischemic time (r2=0.03; P=0.47; 
Figure 1C–1D).

Quantification of blood leukocyte subsets before reperfu-
sion revealed significantly increased concentrations only of 
cytotoxic CD8+ T cells in cytomegalovirus-seropositive pa-
tients (median, 470 versus 272/μL; P=0.026; Figure  1E). 
Therefore, we focused on the CD8+ T-cell compartment for 
more detailed study.

The 4 main subsets of circulating human CD8+ T cells (naive 
CD45RA+CCR7+, central memory (T

CM
) CD45RA+CCR7−, 

effector memory (T
EM

) CD45RA−CCR7−, and CD45RA+ ef-
fector memory (T

EMRA
) CD45RA+CCR7−) were sequentially 

analyzed in STEMI patients after PPCI. Only CD8+ effec-
tor memory (T

EM
 and T

EMRA
) cell concentration fell (−47 and 

−135 cells/μL, respectively) during the initial 30 minutes 
after reperfusion. When taking cytomegalovirus status and 
absolute cell concentrations into account, cytomegalovirus-
seropositive patients had a 3-fold greater drop in T

EMRA
 cell 

concentration than cytomegalovirus-seronegative patients 
(−192 versus −63 cells/μL; P=0.008; Figure  1F). Other 
T-cell subsets did not differ. At 24 hours postinfarction, ab-
solute cell numbers of CD8+ T

EM
, but not T

EMRA
, had fully 

recovered (Tables  2 and 3). The percentage of CD8+ T
EMRA

 
cells 24 hours postinfarction was significantly lower in acute 
STEMI patients compared with healthy controls or patients 
with chronic MI. However, T

EMRA
 cells were reduced in 

cytomegalovirus-seropositive AMI patients only and not in 
cytomegalovirus-seronegative patients (27% versus 40%; 
P<0.05; Figure 1G). To investigate whether homeostatic pro-
liferation might contribute to the recovery in T

EM
 cells, we 

quantified IL-7 and IL-15 after reperfusion. Although IL-7 
serum levels did not change significantly over time, IL-15 in-
creased from 0.9 to 1.7 pg/mL after 24 hours (P<0.001; data 
not shown). As expected, proliferating Ki67+ CD8 T cells in-
creased from 3 to 12 cells/μL PB between 90 minutes and 24 
hours (P=0.0029; Figure 1H).

It has been shown previously that primary CMV infection 
(as measured by seroconversion) may occur lifelong and the 
rate of seroconversion increases with age, with a peak at the 
age of 30 to 35 years.11 The time point of primary infection 
determines the duration of virus persistence and exposition to 
viral antigens, which may largely influence the currently mea-
sured immune parameters. To address this question, we per-
formed additional analyses of the CD8 T-cell subset changes 
after reperfusion studying a larger group of cytomegalovirus-
seropositive patients with acute STEMI undergoing PPCI. 
Patients were divided into 2 groups, such as ≥55 years (young, 
n=12) and >55 years (old, n=25). Interestingly, although there 
was no difference in infarct size between groups (reflected by 

Table 3.   Leukocyte Characteristics of Cohort B

Healthy Controls AMI (24 hours) Chronic MI P Value 1-Way ANOVA

N 18 28 26

Total leukocyte count, cells/μL 6645±462 12533±757 8312±401 <0.0001

Total granulocyte count, cells/μL 3732±301 9088±659 5692±280 <0.0001

Total monocyte count, cells/μL 474±45 874±62 610±48 <0.0001

Total lymphocyte count, cells/μL 2302±219 2298±167 1885±124 0.13

Total CD4+ T cells, cells/μL 970±78 1077±92 890±64 0.24

Total CD8+ T cells, cells/μL 609±95 458±45 507±60 0.27

CD4/CD8 ratio 1.89±0.15 3.06±0.48 2.38±0.30 0.11

CD8+ NAIVE count, cells/μL 127±21 82±11 108±14 0.12

CD8+ CM count, cells/μL 24±6 75±14 28±4 0.0007

CD8+ EM count, cells/μL 191±33 172±18 139±18 0.27

CD8+ T
EMRA

 count, cells/μL 243±59 108±15 215±41 0.03

AMI indicates acute myocardial infarction; and MI, myocardial infarction.

http://www.graphpad.com
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peak troponin T serum levels after infarction), younger pa-
tients (≤55 years of age) demonstrated a more pronounced 
loss of senescent CD8+ T

EMRA
 cells (delta %CD8+CD27− T

EMRA
 

0–24 hours: −35% versus −0.5%; P=0.04; Online Figure IV). 
In fact, CD8+CD27− T

EMRA
 cells seemed reconstituted in older 

patients after 24 hours. There was no significant effect of dia-
betes mellitus on acute changes in the T-cell compartment, as 
shown in Online Figures V and VI.

Cytomegalovirus-Specific CD8 TEMRA Cells are 
Persistently Lost After Myocardial Ischemia/
Reperfusion
To phenotype the CD8+ T-cell memory subset that was depleted 
24 hours after reperfusion, we used a computerized algorithm 
for 13-parameter polychromatic analysis, followed by HCA in 
10 cytomegalovirus-seropositive patients and 10 cytomegalo-
virus-seropositive controls (Figure 2A and 2B). The algorithm 
identified 3 CD8+ clusters (naive, T

EM
, and senescent T

EMRA
 

cells) that were present in all 20 samples (Figure 2C). Cluster 
9, which contained terminally differentiated T

EMRA
 cells was 

contracted in patients 24 hours post-MI compared with con-
trols (median, 8% versus 23%; P=0.0021; Figure 2D). We then 
compared the frequencies of cells resembling the phenotype 
of cluster 9 (CD3+CD4−CD8+CD27−CD28−CD57+KLRG1+) in 
cytomegalovirus-seropositive and cytomegalovirus-seronega-
tive patients, to determine whether this cluster harbored main-
ly cytomegalovirus-specific cells. We found that CD8+ T

EMRA
 

cells of this phenotype were increased ≤90 cells/μL in cyto-
megalovirus-positive CHD patients after MI, compared with 
6 cells/μL in cytomegalovirus-negative patients (P<0.0001; 

Figure 2E). Using conventional gating strategies, we then in-
vestigated whether it was only specific subsets of CD8+ T

EMRA
 

cells that were lost after MI. Surprisingly, CD27+CD28+ T
EMRA

 
cells were unaffected, while CD27−CD28− T

EMRA
 cells showed 

the largest decrease compared with controls (11.6% versus 
21.9%; P=0.009; Figure  3A). To then prove the loss of cy-
tomegalovirus virus–specific memory T cells, we used HLA 
class I cytomegalovirus–specific dextramers (Figure  3B). 
The percentage of cytomegalovirus-specific CD8+ T cells that 
could be detected with individual HLA-specific dextramers 
ranged from 0.2% to 18% between patients and HLA-specific 
epitopes (Figure 3C). Furthermore, compared with their rela-
tive proportion before reperfusion, we saw a significant de-
cline in cytomegalovirus-specific CD8 T cells to 24% at 90 
minutes, 53% at 24 hours, and 54% at 3 months (Figure 3B 
and 3D). In addition, we found that the number of cytomega-
lovirus-specific CD8+ T cells did not correlate with the mag-
nitude of memory cells reacting to cytomegalovirus antigen 
in the enzyme-linked–immunospot assay. This was illustrated 
by an inverse relationship between dextramer-positive cells 
and the proportion of functional cells among them (r=−0.79; 
P=0.006; Figure 3E).

PD-1+ TEMRA Cells Become Depleted During AMI
Attrition of virus-specific CD8+ T cells has been linked to 
PD-1 (programmed death-1), which can be upregulated on 
the surface of memory T cells on activation. We, therefore, 
determined if PD-1 was responsible for the selective loss of 
CD8+ T

EMRA
 cells in STEMI patients undergoing PPCI. Co-

staining of CD8 T-cell populations with CD69 showed that 
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C
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Figure 2. Hierarchical cluster analysis (HCA) 
of CD8+ T cells in cytomegalovirus (CMV)-
seropositive acute myocardial infarction (MI) 
patients and controls (Cohort B). A, Dendrogram 
with heatmap-HC of the gated viable CD3+CD8+ T 
cells acquired from peripheral blood mononuclear 
cells of healthy control and ST-segment–elevation 
myocardial infarction patients (24 hours after 
primary percutaneous coronary intervention). 
Heatmap shows relative levels of selected 
parameters (columns) in all gated events (rows) in 
color coding (blue, low expression and red, high 
expression). Dendrogram shows the hierarchy 
of CD8+ T cells based on their similarity in all 
parameters measured. Colored branches of the 
dendrogram are selected clusters. B, Histogram 
cluster representation. C, Immunophenotypic 
summary of the selected clusters. D, HCA clusters 
5, 7, and 9 in CMV-seropositive patients (n=10) and 
healthy controls (n=10). E, CD28−CD27−KLRG1+

CD57+ senescent TEMRA cells are the predominant 
CD8 effector cell subpopulation in CMV-positive 
coronary heart disease patients with chronic MI. 
AMI indicates acute myocardial infarction; CTRL, 
control; KLRG1, killer cell lectin-like receptor 
subfamily G member 1; and PB, peripheral blood.
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10% of T
EMRA

 cells were activated before reperfusion, as op-
posed to only 2% of naive cells (P=0.016; Figure 4A). PD-1+ 
T

EMRA
 cells were specifically depleted during the first 90 min-

utes of reperfusion (P<0.01; Figure 4B). Twenty-four hours 
after reperfusion, cytomegalovirus-seropositive patients had 
a smaller proportion of PD-1+ cells among their CD8+ T

EMRA
 

cells than cytomegalovirus-seronegative patients (23% versus 
34%; P=0.04; Figure 4C). Accordingly, the percentage of PD-
1+ cells before PPCI strongly correlated with the relative loss 
of circulating CD8+ T cells within 24 hours after reperfusion 
(r=−0.8; P=0.0002; Figure 4D).

PD-1 expression has been associated with a higher suscep-
tibility of CD8 T cells to apoptosis ex vivo.12 We, therefore, 
sought to investigate the role of PD-1 in spontaneous and in-
duced apoptosis of T cells from STEMI patients. Our results 
show that apoptosis sensitivity depends on PD-1–expression 
level on CD8+ T cells (Figure 4E). Accordingly, PD-1dim and 
PD-1high cells displayed significantly higher susceptibility to 
spontaneous apoptosis ex vivo, when compared with PD-1neg 
cells (P<0.05 for % early apoptosis PD-1dim versus PD-1neg, 
and P<0.001 for % late apoptosis PD-1high versus PD-1neg 
CD8+ T cells, accordingly; Figure 4F–4H). Moreover, ex vivo 
PD-1 blockage significantly reduced the rate of CD3-induced 
apoptosis in T cells from cytomegalovirus-positive patients 
(32% versus 16%; P=0.03; Figure 4I). We further tested PD-1 
expression levels on cytomegalovirus-specific CD8+ T cells 
(Figure  4J). Here, cytomegalovirus dextramer–positive cells 

showed a higher mean percentage of PD-1med/high subsets than 
dextramer-negative CD8+ T cells (P=0.04; Figure 4K). STEMI 
patients with a higher percentage of PD-1+ cytomegalovirus-
specific cells before reperfusion displayed a significantly 
higher loss of CD8+ T

EMRA
 cells within 24 hours post-PPCI 

(P=0.02; Figure 4L).
Although selective loss of PD-1+ cells during reperfusion 

(via apoptosis) might in part explain PD-1 deficiency in CD8 
memory compartments, it might also indicate a limited abil-
ity of cytomegalovirus-seropositive patients to suppress T-cell 
responses in a PD-1–dependent manner. We, therefore, deter-
mined the immunophenotypic characteristics of PD-1pos and 
PD-1neg CD8+ effector memory cell subsets (Figure 5A). Here, 
we observed that PD-1neg T

EMRA
 cells from cytomegalovirus-

seropositive patients showed no significant difference in the 
expression of differentiation and senescence markers CD27, 
CD28, CD57, and KLRG1 when compared with cytomegalo-
virus-seronegative patients (Figure 5B).

Accelerated Telomere Shortening and Increased 
KLRG1 Expression in CD8 TEMRA Cells in Chronic 
MI Patients
Because T

EMRA
 cells seemed to have been restored in patients 

with chronic MI, we wanted to know if they were more senes-
cent compared with at the time of AMI. For this, we specifi-
cally looked at the coexpression of CD57 and KLRG1 in CD8 
subpopulations. Although naive CD8+ cells expressed both the 
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Figure 3. Loss of cytomegalovirus (CMV)-
specific cells during reperfusion. A, Conventional 
gating analysis confirmed specific depletion of 
the CD28−CD27− subset among CD8+ TEMRA cells 
in CMV-seropositive patients. B, CMV-specific 
CD8+ T cells are depleted during acute myocardial 
infarction (MI; human leukocyte antigen class I 
CMV-specific dextramers). Representative flow 
cytometry scatter plots show gating of dextramere-
positive CD8+ T cells in the peripheral blood after 
reperfusion. C, Variability of CMV-specific CD8 T 
cells in patients undergoing primary percutaneous 
coronary intervention (PPCI). D, Relative changes in 
the circulating CMV-specific cell counts. Dextramer-
positive cells were rapidly depleted during the first 
90 minutes and remained significantly decreased 
after 24 hours and 3 months after PPCI. E, Inverse 
correlation between functionality of CMV-specific 
cells and number of CMV-specific CD8+ T cells in 
CMV-seropositive patients with acute myocardial 
infarction (ELISPOT+=interferon-γ release after ex 
vivo stimulation with CMV peptides). ELISPOT 
indicates enzyme-linked immunospot.
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markers at low level, all T
EMRA

 cells and the majority of T
EM

 
cells expressed high levels of KLRG1 (Figure 6A). However, 
CD57, which also reflects the proliferative history of cells, 
was specifically upregulated in T

EM
 cells of patients 24 hours 

after myocardial infarction. In T
EMRA

 cells, KLRG1 expres-
sion was highest in patients with chronic MI (Figure  6A). 
To quantify mean telomere length in different CD8+ subsets, 
we used 7-color flow cytometric cell sorting, followed by TL 
real-time polymerase chain reaction (Figure 6B). TL of CD8+ 
T cells in cytomegalovirus-seropositive individuals declined 
from healthy controls to patients with AMI and chronic MI 
(3397 versus 2814 versus 2225 bp; P<0.001; Figure  6C). 
This was mainly attributed to chronic patients with previously 
large heart attacks, complicated by congestive heart failure 
(Figure  6C). Finally, we measured TL of effector memory 
populations (CD8+ T

EM
 and T

EMRA
 cells) in relation to the same 

patients’ naive cell TL, the latter serving as an intraindividu-
al baseline for the longest telomeres of any CD8 subset. TL 
was ≈1000 to 1400 bp shorter in T

EM
 cells between controls 

and chronic MI patients (P=0.21), but significantly shorter in 

T
EMRA

 cells from patients with chronic MI (2000 versus 600 
bp; P=0.0015; Figure 6D).

Discussion
In this study, we demonstrate the depletion of circulating CD8 
memory T cells after AMI and reperfusion. These quantitative 
changes seem to be reversible for all but terminally differen-
tiated memory (T

EMRA
) cells in cytomegalovirus-seropositive 

patients. Our results suggest that PD-1, the programmed death 
protein-1, might be involved in the persistent loss of T

EMRA
 cells 

in cytomegalovirus-seropositive patients. We have used 3 dif-
ferent methods to confirm the specific depletion of T

EMRA
 cells, 

which have previously been shown to harbor the majority of 
cytomegalovirus-specific cytotoxic cells.13 Polychromatic flow 
cytometry identified a reduction in CD27−CD28− double nega-
tive CD8 T

EMRA
 cells during AMI, and HCA yielded a selective 

depletion of CD27−CD28−CD57+KLRG1+ CD8+ T
EMRA

 cells. 
Finally, by using HLA type I-specific dextramers, we found a 
reduction in cytomegalovirus-specific cytotoxic T cells, which 
persisted between 24 hours and 3 months after MI.
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Figure 4. Loss of PD-1+ effector 
memory cells during reperfusion. A, 
FACS analysis of activated CD8 T-cell 
populations (CD69 staining) before 
reperfusion. B, Loss of PD-1+ CD8 
TEMRA cells during the first 90 minutes 
of reperfusion. C, Percentage of PD-1+ 
cells among TEMRA cells is significantly 
lower in cytomegalovirus (CMV)-
seropositive patients after 24 hours after 
reperfusion. D, Percentage of PD-1+ cells 
before primary percutaneous coronary 
intervention (PPCI) correlates with a 
relative loss of CD8+ T cells during 24 
hours after reperfusion. E, Expression 
level of programmed cell death-1(PD-1) 
(left panel) determines susceptibility 
toward spontaneous ex vivo apoptosis 
of CD8+ from ST-segment–elevation 
myocardial infarction patients before 
reperfusion. F–H, Percentages of early 
(Annexin-V+/7-AAD−) and late apoptosis 
(Annexin-V+/7-AAD+), and live cells 
(Annexin-V−/7-AAD−) among PD1neg, 
PD1dim, and PD1high CD8+ T cells (n=10 
pts.). I, Blockage of PD-1 inhibits CD3-
induced late apoptosis (Annexin-V+/
PI+) of T cells from CMV-seropositive 
patients (n=6, before PPCI). J and K, 
CMV-dextramer-positive CD8+ T cells 
display higher PD-1 expression than 
dextramer-negative population. L, Higher 
PD-1 expression on dextramer-positive 
cells determines loss of CD8 TEMRA cells 
during the 24 hours after reperfusion (PD-
1+++–high percentage of PD-1–positive 
cells and PD-1+–low percentage of PD-
1–positive cells). CM indicates central 
memory; EM, effector memory; and PI, 
propidium iodide.
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Although age seemed to have an effect on T-cell recovery 
by 24 hours (Online Figure IV), it is important to emphasize 
that the relative changes observed within 24 hours after reper-
fusion might indeed not reflect the cumulative effects of isch-
emia/reperfusion. This is most probably because lymphocyte 
counts at the time point of PPCI cannot be considered as a 
true baseline after several hours of already ongoing ischemia. 
Therefore, our additional cross-sectional analysis (AMI ver-
sus chronic MI) is a potentially more objective visualization 
of the CD8+ T

EMRA
 contraction and absolute T-cell losses in the 

course of AMI and reperfusion.
The implications of these findings are 2-fold: First, the loss 

of cytomegalovirus-specific memory cells may diminish the 
antiviral T-cell potential, enhancing latent reactivation of the 
virus and sustaining low-grade chronic inflammation. Second, 
cytotoxic T

EMRA
 cells could enhance myocardial necrosis or 

delay infarct healing through direct migration into peri-infarct 
tissue.14

Acute Stress–Induced Redistribution of 
T-Lymphocytes
A short-term decrease in circulating CD8 T-lymphocytes 
may reflect trafficking of cells out of the bloodstream and 
into different target organs, including the spleen, lung, lymph 
nodes, or the site of inflammation.15 There are 2 major sig-
naling pathways that have been shown to be involved into 
T-lymphocyte migration and egress. First, migration of T 
cells is influenced by the sphingosine-1 phosphate pathway.16 
Lymphocyte egress from lymph nodes requires the S1P1 re-
ceptor, and the transmembrane C-type lectin CD69 inhibits 
S1P1 chemotactic function and leads to downmodulation of 
S1P1.17 Second, epinephrine has been shown to cause acute 
demargination of T-lymphocytes by suppressing adhesive 
fractalkine signaling.18 The receptor for fractalkine, CX3CR1, 
is mainly expressed in cytotoxic CCR7- or CD62L-negative 
T-lymphocytes, coinciding with the egressing cell populations 
in our study.18 In our opinion, fractalkine signaling could be 
a promising target to investigate the role of CD8 T cells in 
ischemia/reperfusion in the future.

Role of PD-1 in Persistent Loss of cytomegalovirus-
Specific T Cells
PD-1 is an inhibitory surface receptor, which is upregulated 
on memory T cells on activation.19 PD-1 is known to inhibit 
CD8+ T-cell effector functions by dampening T-cell respon-
siveness to antigenic stimulation.20 PD-1 expression has also 
been linked to a proapoptotic phenotype of CD8+ T cells.21 
Our data show that in CD8+ T cells from patients with acute 
STEMI spontaneous apoptosis occurs mainly in cells express-
ing high levels of PD-1. In addition, blocking PD-1 could re-
duce the ratio of induced CD8+ T-cell apoptosis ex vivo. We, 
therefore, questioned whether PD-1 expression on effector 
memory T cells could be associated with the acute inflam-
matory response and CD8+ T-cell loss in STEMI patients 
undergoing PPCI. We found that 24 hours after reperfusion, 
cytomegalovirus-seropositive patients displayed significantly 
lower proportions of PD-1+ CD8 T

EMRA
 subsets in compari-

son with cytomegalovirus-seronegative patients. Furthermore, 
CD8 T

EMRA
 cells showed the highest amount of activation, as 

evidenced by CD69 staining, and the PD-1+ subpopulation 
were specifically depleted during the first 30 minutes of reper-
fusion. This loss was not secondary to increased senescence, 
as documented by similar CD27, CD28, KLRG-1, and CD57 
expression in PD-1–positive versus PD-1–negative subsets.22 
Altogether, these findings are highly suggestive of a specific 
role of PD-1 in the permanent loss of T

EMRA
 and cytomega-

lovirus-specific cells during MI. Indeed, Zhang et al23 have 
recently demonstrated that upregulation of PD-1 during acute 
viral infection is involved in the attrition of cytomegalovirus-
specific cells. Accordingly, PD-1 has been shown in mouse 
models to limit T-cell responses in cardiomyocytes and in 
the arterial wall, thereby protecting from atherosclerosis and 
myocarditis.24,25

Coronary Artery Disease and Immunosenescence
There is an increasing evidence for continuous immune acti-
vation in CHD patients, characterized by accumulation of im-
munocompetent cells in the arterial lesion and elevated levels 
of inflammatory markers in the circulation.26 A cross-sectional 

A

B

Figure 5. A, Representative gating 
strategy of PD-1pos and PD-1neg CD8 
TEMRA cells (CCR7negCD45RApos). Naive 
CD8+ T cells (CCR7posCD45RApos) are 
shown as an intraindividual reference. 
B, Phenotypic analysis of PD-1pos 
and PD-1neg CD8 TEMRA subsets from 
cytomegalovirus (CMV)-seropositive 
and CMV-negative patients with 
acute myocardial infarction (24 hours 
after primary percutaneous coronary 
intervention; Cohort B). PD-1 indicates  
programmed cell death-1.
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study in >7700 participants found that cytomegalovirus sero-
positivity was significantly associated with a history of car-
diovascular disease.2 A further longitudinal study has shown 
a significant increase in CHD-related mortality in cytomega-
lovirus positive, but otherwise healthy individuals over the 
course of 17 years.3 This translated into shortening of lifes-
pan by ≈3.7 years. We have also found a significant increase 
in CHD among cytomegalovirus-seropositive participants in 
the Newcastle 85+ study (Spyridopoulos et al, manuscript in 
preparation), in which we investigated 751 participants of the 
same age group (85 years). Interestingly, the presence of se-
nescent CD4 and CD8 memory T cells was an independent 
predictor of mortality even in this age group. We have previ-
ously demonstrated that cytomegalovirus-seropositive patients 
with chronic myocardial infarction have increased telomere 
shortening in their CD8 T-cell compartment when compared 
with cytomegalovirus-seropositive healthy controls, indicat-
ing differences in the pathobiology of cytomegalovirus-driven 

immunosenescence in patients with CHD.5,27 This effect was 
more pronounced in patients with more extensive infarction 
and more severely impaired left ventricular function. This 
could be explained by ≥3 reasons: (1) genetic differences, 
leading to better control of the virus in patients without CHD, 
such as is seen in offspring from longevity families, (2) un-
derlying inflammation as present in atherosclerosis, driving 
latent cytomegalovirus infection, and (3) changes in the CD8 
compartment that are related to AMI, particularly in younger 
cytomegalovirus-seropositve MI patients, as seen in our pres-
ent study. Another interesting aspect in our analysis was that 
the proportion of functional cytomegalovirus-specific cells, 
as indicated by spot forming cells in response to cytomega-
lovirus antigen, declined sharply with the total number of 
dextramer-positive cytomegalovirus-specific cells. This sug-
gests that patients with a large cytomegalovirus-specific T-cell 
repertoire actually still contain relatively fewer cells that can 
control the latent infection. It is, therefore, conceivable that 
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Figure 6. Accelerated 
immunosenescence in cytomegalovirus 
(CMV)-seropositive patients with chronic 
myocardial infarction (MI; Cohort B). A, 
Expression analysis of KLRG1 and CD57 in 
TEM and TEMRA cells (MFI, mean fluorescence 
intensity). Representative histograms 
show the expression of KLRG1 and 
CD57 on TNAIVE, TEM, and TEMRA CD8+ cells 
from healthy donors, acute myocardial 
infarction, and chronic MI patients. B–D, 
Telomere length (TL) analysis in sorted 
CD8+ T-cell subpopulations: (B), Schematic 
representation of the flow sorting strategy 
for CD8+ T-cell subsets; (C) Telomere 
shortening in chronic MI is present in 
CD8+ T cells, especially in patients with 
larger infarcts and severely reduced left 
ventricular function (congestive heart 
failure). Mean telomere length (mTL) in total 
CD8+ T cells is shown for each cohort; (D) 
Accelerated telomere shortening in CD8+ 
TEMRA cells occurs in chronic MI. TL of naive 
CD8+ T cells was chosen as an internal 
standard and intraindividually compared 
with mTL of TEM and TEMRA cell populations, 
rendering ΔTL=TLX−TLCD8naive (telomeric 
gap). *P<0.05; **P<0.01; ***P<0.001. 
KLRG1 indicates killer cell lectin-like 
receptor subfamily G member 1; and ns, 
not significant.
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the lack of effective virus control in cytomegalovirus-seropos-
itive patients instigates further low-grade inflammation in the 
arterial wall, accelerating atherosclerosis.28

Conclusions
Our results suggest that the temporary loss of cytomegalovi-
rus-specific cells in patients after MI diminishes the potential 
for the host to contain latent cytomegalovirus-infection, lead-
ing to homeostatic proliferation of T cells to replenish effector 
memory subsets.29 This proposed mechanism could explain 
accelerated CD8 T-cell immunosenescence in cytomegalovi-
rus-seropositive patients with MI, as well as progression of 
atherosclerosis. In light of an aging population and cytomega-
lovirus prevalence of up to 90% in the elderly, future strategies 
to delay or reverse T-cell immunosensecence, such as early 
vaccination against cytomegalovirus or pharmacological in-
terventions aimed at direct deanergising memory T cells30–32 
but also adjuvant, anti-inflammatory, age-decelerating treat-
ment options, including statins might prove beneficial for pa-
tient outcome in older patients.33,34

Limitations
The main limitation of our study is the lack of longitu-
dinal data (beyond 4 months) in the same patient with MI. 
Furthermore, because of relative low number of patients with-
in the particular study groups, only limited subanalyses of the 
effect of diabetes mellitus and age on the observed acute and 
chronic changes within the T-cell compartment after reperfu-
sion could be performed. Finally, the value of our observations 
with respect to potential therapeutic interventions in cytomeg-
alovirus-seropositive CHD patients remains uncertain. Future 
prospective studies are needed to prove the value of T-cell se-
nescence as a predictor of adverse outcome in these patients 
and identify potential cellular targets for immunomodulatory 
interventions.
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What Is Known?

•	 Infection with cytomegalovirus is never cleared from the human body 
and leads over time to an aged immune system (immunosenescence), 
which eventually contributes to chronic low-grade inflammation.

•	 Chronic infection with cytomegalovirus leads to shorter life expectancy, 
mainly because of an increase in acute myocardial infarction.

•	 In cytomegalovirus -seropositive patients with previous myocardial in-
farction lymphocytes age faster than in those without coronary heart 
disease.

What New Information Does This Article Contribute?

•	 CD8 lymphocytes temporarily decrease by >40% in the peripheral 
blood after reopening of the blocked coronary artery in patients with 
acute myocardial infarction.

•	 CD8 memory lymphocytes that are directed against cytomegalovirus 
are selectively depleted from the blood for >24 hours, most probably 
because of programmed cell death (apoptosis) via programmed cell 
death-1 signaling.

•	 This triggers reconstitution of cytomegalovirus-specific cells and ac-
celerates immunosenescence.

Chronic infection with cytomegalovirus affects the majority of 
the population in Western countries and is thought to instigate 
chronic low-level inflammation. Cytomegalovirus infection is also 
associated with an increase in the incidence of coronary heart 
disease. We have found that acute myocardial infarction with 
subsequent reperfusion of the infarcted tissue by stent insertion 
triggers a temporary decrease of all CD8 T-lymphocytes as well 
as a more persistent loss of cytomegalovirus-specific memory 
lymphocytes, most probably through apoptotic cell death via the 
programmed cell death-1 receptor. This leads to reactivation of 
the adaptive immune system with accelerated proliferation and 
aging of memory lymphocytes, promoting a vicious circle where 
aged immune cells can lead to even further inflammation and, 
therefore, faster progression of underlying atherosclerosis. These 
findings highlight the need for immune-specific interventions in 
cytomegalovirus-seropositive patients with acute myocardial in-
farction, such as anti-inflammatory drugs that can reverse aging 
of memory lymphocytes.

Novelty and Significance


