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    Chapter 19   

 An Overview of Current Approaches Toward the Treatment 
and Prevention of West Nile Virus Infection                     

     Dhiraj     Acharya     and     Fengwei     Bai       

  Abstract 

   The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and 
its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention 
measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, 
similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased 
understanding of biology and pathogenesis of WNV together with recent technological advancements 
have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid 
progress in the structural and functional characterization of WNV and other fl aviviral proteins have pro-
vided a solid base for the design and development of several classes of inhibitors as potential WNV thera-
peutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent effi cacy against WNV 
in animal models and represent a promising class of WNV therapeutics. However, there are some chal-
lenges as to the design and development of a safe and effi cient WNV vaccine or therapeutic. In this chapter, 
we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, 
therapeutic antibodies, and antiviral drugs.  

  Key words     West Nile virus  ,   Vaccine  ,   Antiviral drug  ,   Therapeutic antibody  

1      Human WNV Diseases and the Need for Antiviral Drug or Vaccine 

   West Nile virus (WNV)  , a neurotropic RNA  virus   belonging to 
the  FLAVIVIRIDAE  family, is generally transmitted to human by 
infected  mosquito   bites, primarily by   Culex    species [ 1 ,  2 ]. 
However, WNV can also be transmitted through other less fre-
quent routes, including a transfusion of blood and blood compo-
nents [ 3 ,  4 ], organ transplantation [ 5 ], breastfeeding [ 6 ], and 
congenital infections [ 7 ]. After an infected mosquito bite, WNV 
replicates in keratinocytes and skin-residential dendritic cells 
(Langerhans cells), and the latter cells carry the viruses to drain-
ing lymph nodes to cause viremia [ 8 ,  9 ]. Subsequently, WNV 
disseminates to the peripheral organs, such as spleen and liver, 
and possibly to spinal cord and brain. Human WNV infection 
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may cause injury and death of neurons with various clinical 
manifestations, such as  encephalitis  ,  meningitis  , fl accid paralysis, 
persistent neurologic  sequelae  , and possibly death,    particularly in 
the elderly and immunocompromised individuals [ 1 ,  10 ,  11 ]. 
WNV strongly activates  host   immune responses, which play 
important roles in controlling viremia, viral dissemination to the 
 central nervous system (CNS),   and recovery from the disease 
[ 11 ]. However, the mechanism of WNV  pathogenesis  , including 
its  tropism   to neurons, CNS invasion, and viral or host factors 
that contribute to imbalance between viral pathology and host 
immunity still remain poorly understood. 

 Although WNV was fi rst discovered in Uganda in 1937, it had 
been considered as a minor public health concern until its fi rst 
appearance in the USA in 1999 [ 12 ]. Since then, it has dramati-
cally spread to all the continental states of the USA and became an 
endemic disease throughout North America within a few years 
[ 13 – 16 ]. In the USA alone, there have been over 40,000 reported 
cases of WNV between 1999 and 2014, of which ~45 % were clas-
sifi ed as neuroinvasive and claimed lives of nearly two thousand 
people [ 17 ]. However, the actual  WNV   burden is likely much 
higher than previously thought because only about 20 % of 
infected individual develop a clinical WNV disease [ 13 ]. It has 
been estimated that over three million individuals have been 
infected with WNV in the USA, of which about 780,000 had a 
symptomatic disease [ 18 ]. WNV also has potential to develop 
unusual clinical manifestations [ 19 – 21 ] and may involve in renal 
diseases [ 22 ,  23 ], myasthenia gravis [ 24 ], and myocarditis [ 25 ], 
suggesting that the range and  severity   of WNV disease may be 
even worse than previously believed. Importantly, increasing 
numbers of WNV outbreaks during the last 15 years have been 
associated with greater number of neuroinvasive cases and a higher 
rate of fatalities [ 16 ,  17 ]. However, no  vaccine   or antiviral  thera-
peutic   is currently available, which limits current treatments to 
only supportive care measures, such as intravenous fl uids, anti-
pyretics, respiratory support, and prevention of secondary infec-
tions. Considering the worldwide distribution of this virus and 
evidence of its potential to change in pathogenicity and  transmis-
sion   [ 26 – 30 ], there is an urgent need to develop safe and effective 
antiviral drugs or vaccines against WNV infection [ 31 ]. Intensive 
research during past decades has made signifi cant progress in the 
design and development of several treatment and prevention 
methods for WNV infection (reviewed by [ 32 – 34 ]). Here, we dis-
cuss the current approaches and recent progress toward the devel-
opment of vaccines, therapeutic antibodies, and antiviral drugs 
against WNV infection in humans.  
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2    WNV Structure and Therapeutic Targets 

 WNV is a spherical virus with 50 nm in diameter, which comprises 
an icosahedral nucleocapsid surrounded by a lipid envelope [ 35 ]. 
The virus contains a single-stranded, capped, and plus-sensed RNA 
 genome   of approximately 11 kb in size. The viral genome encodes 
a polyprotein precursor, which undergoes posttranslational pro-
cessing by cellular and viral proteases to generate three  structural 
proteins   (capsid [C], premembrane [PrM], and envelope [E]), and 
seven  non-structural proteins   (NS1, NS2A, NS2B, NS3, NS4A, 
NS4B, and NS5). The structural proteins form virion structure, 
whereas the non- structural proteins play essential roles in the  rep-
lication   of viral genome, assembly of virion, and viral  pathogenesis   
[ 36 – 38 ]. Thus, the structural and non-structural proteins of WNV 
may be potential targets for developing  vaccines   and antiviral  ther-
apeutics   (Table  1 ).

   In a WNV virion structure, C protein encapsulates viral 
genomic RNA to form a nucleocapsid that is enveloped by a lipid 
bilayer into which trimmers of prM-E heterodimers form the spike-
like projections. Among these structural proteins, E protein medi-
ates crucial roles in binding to cellular receptors, membrane fusion, 
and entry of WNV into  host   cells, making it a key target for the 
development of vaccines, neutralizing antibodies, and entry  inhibi-
tors  . Crystal structure analysis has confi rmed that E protein folds 
into three structurally distinct ectodomains (EDs) termed EDI, 
EDII and EDIII [ 39 – 43 ]. Among these, the EDIII consists of the 
major neutralizing epitopes and is an antigen of choice to elicit 
production of neutralizing antibodies [ 43 – 46 ]. Based on the struc-
tural characterization of antifl aviviral monoclonal antibodies from 
both human and nonhuman primate, it appears that the epitopes 
of fl aviviral E protein are more complex and diverse than previ-
ously thought [ 47 – 50 ]. In addition, mapping of B-cell and T-cell 
epitopes has led to the identifi cation of many immunodominant 
epitopes in both structural and nonstructural proteins of WNV 
[ 51 ,  52 ]. 

 Among the  non-structural proteins  , NS3 and NS5 are best- 
characterized, multifunctional proteins, both of which contain 
enzymatic activities that are essential for  viral replication   [ 53 – 55 ]. 
Such enzymatic functions of NS3 and NS5 have received consider-
able attention as potential targets for antiviral drug development 
[ 34 ,  54 ]. The NS3 protein contains two distinct functional 
domains. The N-terminal domain of NS3 (184 amino acid resi-
dues) has serine protease activity that requires a polypeptide cofac-
tor NS2B for activation [ 54 ,  56 ,  57 ]. Recent X-ray crystallographic 
studies have shown that the conformation of β-loop of NS2B con-
trols the substrate binding by NS2B/NS3 protease [ 58 ,  59 ]. In 
contrast, the C-terminal domain of NS3 functions as an RNA helicase, 
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nucleoside triphosphatase, and RNA triphosphatase [ 60 ,  61 ]. 
Although the ATPase and helicase activities of NS3 function inde-
pendently, NS4A protein has been suggested to regulate both of 
these activities [ 62 ]. Besides its role in cleaving the viral protein, 
the protease activity of NS3/NS2B may also contribute to  host   cell 
 apoptosis   and  neuropathogenesis   by cleaving host proteins [ 63 ]. 
Similarly, NS5 is another multifunctional protein containing 
N-terminal methyltransferase/guanyltransferase, and C-terminal 
RNA-dependent RNA polymerase (RdRp) activity [ 64 ,  65 ]. The 
N-terminal methyltransferase and guanylyltransferase activities of 
NS5 are essential for the formation of a cap structure in viral mRNA 
[ 66 ]. Thus, the functions of NS5 are crucial for both protection of 
viral  genome   and effi cient translation of viral polyprotein. The 
N-terminal domain of NS5 contains multiple residues that can be 
phosphorylated by host protein kinases [ 67 ]. Besides its function in 
 viral replication  , NS5 also plays a role in viral  pathogenesis   by antag-
onizing host’s interferon response [ 28 ]. Other nonstructural pro-
teins NS2A, NS2B, NS4A, and NS4B form the scaffold for the viral 
replication complex and also have roles in the  replication   of viral 
 genome   and  host    immune evasion   [ 68 – 70 ]. Mutations in NS4B 
protein may attenuate WNV and other  fl aviviruses   [ 68 ,  69 ]. In 
addition, a recent successful clinical trial of a hepatitis C virus NS5A 
 inhibitor   suggests that targeting  non-structural proteins   may be an 
ideal strategy to develop  therapeutics   against other fl aviviruses, 
including WNV [ 71 ].  

3    Current Approaches and Progress in WNV Vaccine Development 

 WNV infection induces potent  activation   of host immune responses 
that is critical for controlling viremia, viral dissemination into the 
CNS, and recovery from WNV diseases [ 1 ,  11 ]. Studies of WNV 
 pathogenesis   in  animal models   have demonstrated that humoral 
responses (antiviral antibodies) are essential in limiting viremia and 
neuroinvasive diseases [ 72 ,  73 ]. Thus, development of a vaccine 
that produces high  titer   of neutralizing antibodies would offer effi -
cient protection against WNV infection [ 44 ]. Several epitopes for 
both B and T cells have been characterized in WNV proteins [ 52 , 
 74 – 78 ]. In particular, the C-terminal EDIII of E protein that con-
tains critical neutralizing epitopes is the major target for neutral-
izing antibodies against WNV infection [ 40 ,  44 ,  78 ,  79 ]. In 
addition to humoral immune response, cell mediated immunity by 
CD4 +  and CD8 +  T cells play critical roles in recovery from WNV 
infections [ 80 – 83 ]. Thus, the effi cient generation of vaccine-
induced immunity against WNV may also require activating and 
shaping of multiple effectors of adaptive immune response by early 
innate signaling pathways [ 84 – 86 ]. 

Treatment and Prevention Approaches for WNV
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   Development of  an   effective vaccine requires multiple steps from 
design and development to rigorous evaluation of both safety and 
effi cacy (Fig.  1 ). Since the biology of vaccine-induced immunity 
and principles in vaccine development and testing have been exten-
sively discussed before, we will not discuss these topics here. 
Immunization of the laboratory animals and subsequent  challenge   
of those animals with a  pathogen   under controlled conditions is 
the common method for early evaluation of  vaccine   effectiveness. 
Various factors such as route of administration, immunogen dose, 
and type of adjuvant greatly infl uence the effectiveness of a vaccine 
candidate.  Mouse models   of WNV infection partially mimic the 
clinical course of WNV disease in humans, which not only help 
with the understanding of WNV  pathogenesis   but also facilitate 
the development and testing of WNV vaccines. In animal studies of 
vaccine effi cacy, infected animals are observed for mortality and 
monitored for survival, pathology, seroconversion, immune 
responses, and vaccine safety.  Plaque reduction neutralization test   
(PNRT) is a gold standard method to assess whether a candidate 
WNV vaccine induces neutralizing antibodies in both animals and 
humans, for which standard guidelines and methods are available [ 87 ]. 
Neutralizing  antibody   titer is correlated with protection against 
disease for other licensed  fl avivirus   vaccines and is considered a key 
marker to assess vaccine effi cacy [ 88 ]. For example, the protective 
threshold for a Japanese  encephalitis   virus  vaccine   is correlated 
with the  titers   of neutralizing antibodies, with a  serum   
PRNT 50  ≥ 1:10 considered protective [ 88 ]. Although WNV lin-
eage 1 strains are commonly involved in human disease and were 
used in vaccine effi cacy testing, the recent  emergence   of patho-
genic lineage 2 strains in Europe has raised additional concerns in 
WNV vaccine effi cacy studies, because WNV vaccine candidates 
based on lineage 1 strains may not protect against the lineage 2 
strains. After promising results from animal studies, human WNV 
 vaccines   are further evaluated in terms of protection against natural 
 challenge  , as well as their safety and immunogenicity during series 
of clinical trials (phases I–III).

      Both traditional and  modern   approaches have been used for the 
development of WNV vaccines, and the most common approaches 
are listed below.

3.1  Vaccine 
Developments 
and Testing

3.2  Vaccine 
Development 
Approaches

Define 
correlates of 
immunity and 
target antigen

Vaccine design 
and 
development

Preclinical studies 
(efficacy and 
safety in animal 
models)

Clinical 
Trials 
(phase I, II 
and III)

Approval, 
licensing, 
marketing, and 
post-market 
efficacy 

  Fig. 1    Overview of  vaccine   development process       
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    (a)      DNA    -based vaccine : By using the power of modern genetic 
tools, viral protein(s) can be expressed in a suitable  vector   to 
develop DNA vaccines against WNV infection [ 89 ,  90 ]. 
However, this strategy is sometimes hampered by poor immu-
nogenicity and potential safety concerns, such as integration of 
foreign DNA into the  host    genome  .   

   (b)     Chimeric/recombinant vaccine : This approach relies on the 
replacement of gene(s) of the established viral vaccine strain by 
equivalent WNV genes. Several live attenuated vaccines and viral 
vectors may be used as a backbone for developing recombinant 
WNV  vaccine   candidates, such as yellow fever virus (YFV) vac-
cine (YFV-17D) [ 91 ,  92 ], attenuated DENV serotype 4 
(DENV4) [ 93 ,  94 ], HIV-based lentivirus vector vaccine [ 95 ], 
Schwarz strain of attenuated measles virus [ 96 ], vesicular stoma-
titis virus (VSV) vaccine vector [ 97 ,  98 ], and adenovirus A [ 98 ].   

   (c)     Live-attenuated vaccine : Attenuation of WNV can be achieved 
by classic  cell culture   passage or animal passage  and   targeted 
genetic mutations. However, several potential  challenges   
including residual pathogenicity, reversion to virulent strain, 
relative short self-life, and the demand of a safe biological pro-
duction system need to be overcome.   

   (d)     Inactivated (killed)    vaccine   : Chemical inactivation of live 
viruses may be used to develop inactivated or killed virus par-
ticles. The limitations are the possibility of incomplete inactiva-
tion, short- lived immunity, and the requirement of multiple 
doses for effi cient immunization.   

   (e)     Subunit or recombinant protein vaccine : This approach uses 
soluble recombinant protein(s) or protein expressed in virus-
like particle (VLP) platform as a  vaccine   candidate. Success of 
this approach relies on optimum immunogenicity of a vaccine, 
as the protein vaccines generally require multiple boosts with 
strong adjuvants to provide acceptable effi cacy.    

     Although no  vaccine   is  currently   available against WNV infection 
in human, several WNV equine vaccines are available (Table  2 ). 
Several human vaccines are under development, and some are in 
clinical trials (Table  3 ). Their current status and approaches used 
for development are discussed below.

     West Nile Innovator ®  DNA is the fi rst licensed  DNA   vaccine for 
veterinary use following a successful demonstration of vaccine 
induced B and T cell-based immunity after immunization of mice 
and  horses   with DNA vaccines expressing  prM  and  E  genes of 
WNV [ 89 ] or the domain III (DIII) region of  E  gene [ 99 ]. This 
 approach   has been widely used do develop various DNA vaccines 
against WNV. One of the fi rst DNA vaccines introduced in phase 

3.3  Anti-WNV 
Vaccine Candidates 
Currently 
in Development 
and Clinical Trial

3.3.1  DNA-Based 
Vaccine

Treatment and Prevention Approaches for WNV
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I clinical trial was based on a circular  plasmid   DNA  vector   incor-
porating a cytomegalovirus (CMV) promoter to express the 
WNV-NY99  prM  and  E  coding sequences in downstream of a 
modifi ed JEV signal sequence (VRC-WNVDNA017- 00-VP) 
[ 90 ]. Although no serious adverse effects were reported, its low 
immunogenicity hampered further development [ 90 ]. In an effort 
to improve immunogenicity of this  vaccine  , an additional regula-
tory element from human T-cell leukemia virus type 1 (HTLV-1) 
was incorporated in conjunction with the previously used CMV 
promoter [ 100 ] but without signifi cant success when tested in the 
clinical trial [ 100 ]. Several studies have also tested carrier-conju-
gation and different  inoculation   routes [ 101 ,  102 ] to improve 
immunogenicity and effi cient delivery of  DNA   vaccines. For 
example, a DNA vaccine expressing full length of truncated WNV 
 E  gene derivatives conjugated to the P28 region of C3d (a com-
plement protein) induced strong IgG  titers   and effi cient protec-
tion of mice when vaccinated by  gene   gun method [ 103 ]. In 
another study, a  plasmid   DNA  vector   expressing the ectodomain 
of WNV E protein into linear polyethyleneimine (lPEI) nanopar-
ticles covalently bound to mannose was developed. However, this 
conjugation failed to generate suffi cient E-protein specifi c  humoral   
responses, despite the boosting of the vaccinated mice with recom-
binant E protein induced a signifi cant increase in neutralizing 
antibodies [ 104 ]. 

 Large  deletions   of capsid gene in the fl aviviral RNAs result in a 
failure to produce infectious virions but retain the ability to repli-
cate viral RNA  genome   and express prM and E proteins [ 105 , 
 106 ]. This novel property has been used to develop several plas-
mids DNA (pDNA) vectors that after  transfection   produce single-
round infectious particles (SRIPs), which in turn produce virus-like 
particles (VLP) containing viral surface proteins without viral 
genome. This strategy has been used to develop several candidate 
 DNA    vaccines   against  fl avivirus   by expressing E and prM proteins 
in a plasmid vector and forming VLPs. Using this approach, several 
 plasmid  -DNA constructs were developed as candidate DNA vac-
cines against WNV. This type of DNA  vaccines   encode for single-
round infectious particles expressing E/prM [ 107 – 109 ], a 
full-length  cDNA   copy of attenuated WNV Kunjin strain [ 110 ], or 
ectodomain of E protein [ 111 ].  

    Cell culture   or  animal   passage used to be conventional methods to 
develop live-attenuated  vaccines  . The advents of genetic manipula-
tion techniques make it feasible to introduce targeted mutations 
into the viral  genome   and attenuate viruses. Using this approach, a 
WNV vaccine (RepliVAX WN) developed by an internal deletion 
of a region in capsid gene [ 112 ,  113 ] has been shown to induce 
neutralizing antibodies and protective immune responses in mice 

3.3.2  Live Attenuated 
Vaccine
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[ 114 ], hamsters [ 108 ], and nonhuman primates [ 109 ]. RepliVAX 
WN strongly activates B cell population secreting anti-NS1 IgG 
 antibody   and induces prolonged activation of memory CD8 + , 
CD4 + , and NS1 specifi c plasma cells [ 115 ]. Innate immune signal-
ing pathways, such as TLR3 and MyD88-dependent signaling 
pathway are involved in strong activation of B cell response, devel-
opment of germinal center, generation of long-lived plasma cells, 
and production of antibodies following immunization with 
RelpiVax WN vaccine [ 116 ]. In addition, another live attenuated 
WNV vaccine developed by generating mutations in glycosylation 
sites of E and NS1 proteins induces neutralizing antibodies and 
protective  immune   responses in mice [ 117 ]. Similarly, approaches 
of introduction of mutations in  NS4B  [ 69 ],  NS2A  [ 36 ], or  E  gene 
that were previously characterized to attenuate JEV-SA-14142 
[ 118 ] have also been used to develop attenuated WNV  vaccine   
candidates.

      Using this approach, a  recombinant   live attenuated WNV  vaccine   
for veterinary use was developed and licensed in 2004 by Merial 
(RecombiTEK). This vaccine expresses WNV prM and E proteins in 
a canarypox virus backbone [ 119 ,  120 ]. Using a similar approach, 
a chimeric vaccine (ChimeriVax-WN02) has been developed by 
replacing  prM  and  E  genes in YFV vaccine strain (YFV-17D) with 
WNV-NY99  prM  and  E  genes [ 91 ,  121 ]. ChimeriVax-WN02 was 
the fi rst  recombinant WNV vaccine candidate tested in clinical trial. 
Introduction of three mutations responsible for attenuation of JEV 
(SA14-14-2) in equivalent positions of WNV  E  gene further atten-
uated ChimeriVax-WN02. Similarly, DENV4 vaccine candidate 
(rDEN4Δ30), attenuated through a 30-nucleotide deletion in the 
3′  untranslated region (UTR)   of the viral  genome  , was further 
engineered to express WNV-NY99  prM  and  E  [ 122 ,  123 ]. After 
preclinical evaluation in mice, geese, and monkeys, rDEN4Δ30 
showed strong immunogenicity in the clinical trial [ 94 ]. In addi-
tion, a chimeric DENV2 vaccine candidate expressing the WNV 
NY99 prM and E proteins has been shown to protect mice from 
infection with WNV NY99 strain [ 124 ]. Another recombinant 
WNV vaccine based on infl uenza  vaccine   (FLU-NA-DIII) was 
developed by cloning DIII of WNV E into the N-terminal region 
of neuraminidase of infl uenza virus. This vaccine candidate induced 
WNV-specifi c neutralizing IgG and protected mice against lethal 
WNV infection [ 125 ]. Similarly, a recombinant adenoviral vaccine 
 vector   (CAdVax-WNVII) expressing all three  structural proteins   
(C, prM, and E) along with NS1 of WNV induced neutralizing 
antibodies in mice [ 98 ]. Several other recombinant WNV vaccines 
have also been developed by expressing WNV protein in the back-
bones of attenuated measles virus [ 96 ], vesicular stomatitis virus 
[ 97 ], and herpes virus-1 [ 126 ].  

3.3.3  Chimeric/
Recombinant Vaccine
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   The most  common   approach to develop non-replicating inactivated 
viral vaccines is to inactivate entire virus particles by using chemi-
cals. A formalin-inactivated WNV vaccine based on WNV-NY99 
strain was the fi rst successful veterinary vaccine (marketed by Pfi zer 
as West Nile Innovator ® ) licensed in 2003 [ 127 ]. Another veteri-
nary WNV vaccine using killed virus was also licensed by USDA 
(marketed by Boehringer Ingelheim as Vetera™ WNV). Recently, 
an inactivated WNV vaccine (WN-VAX) based on WNV NY99 pro-
tects mice against lethal WNV infection and exhibits immunogenic-
ity in monkeys [ 128 ]. In addition to WNV NY99, formalin 
inactivation of WNV IRS98 strain induces neutralizing  antibody   
and protects immunized geese [ 129 ]. As an alternative to tradi-
tional formalin-based vaccines, a novel hydrogen peroxide (H 2 O 2 ) 
inactivation approach has been recently used to produce a whole-
virus vaccine against WNV [ 130 ,  131 ]. Mice immunized with 
H 2 O 2 -inactivated WNV vaccine candidate developed high  serum   
neutralizing  titers  , and offered complete protection of vaccinated 
mice against lethal WNV  challenge   [ 130 ]. One of such H 2 O 2  inac-
tivated vaccine (HydroVax-001) has been recently introduced into 
phase I clinical trial. Although inactivation of virulent WNV virus 
strain has been successfully achieved by chemical- inactivation 
method [ 127 ,  129 ], use of a naturally attenuated Kunjin strain of 
WNV [ 132 ,  133 ], or chemically synthesized virus by  cDNA   system 
[ 134 ] as starting material has also been proposed.  

   Several studies demonstrated that soluble  recombinant   protein or 
VLP based approach could serve to develop WNV  vaccines   [ 135 –
 139 ]. VLP are specialized subviral particles that lack of viral 
 genome   and solely contain viral  structural proteins   [ 140 ,  141 ] or 
express viral proteins on envelope membranes [ 142 ,  143 ]. Different 
 vectors   and production system were evaluated for development of 
various subunit vaccines against WNV. For example, a recombi-
nant truncated form of WNV E protein produced in  Escherichia 
coli  induced neutralizing antibodies and protected mice from lethal 
WNV  challenge   [ 46 ,  144 ]. In addition, a recombinant truncated 
WNV E  protein   produced in the SF+ insect cells via baculovirus 
infection induced neutralizing antibodies and protected mice and 
hamsters from WNV infection [ 145 ]. Recombinant baculovirus 
was also used to express WNV prM and E proteins in mammalian 
cells under the CMV promoter, with or without vesicular stomati-
tis virus glycoprotein (Bac-G-prM/E). Such  vaccines   induced 
robust immune responses when inoculated in mice and produced 
both neutralizing antibodies and infl ammatory  cytokines   [ 146 ]. 
In a recently proposed novel approach, known as pseudotyping, 
a retrovirus Gag polyprotein forms a VLP scaffold to display the 
ectodomain of human membrane glycoprotein (CD16) that was 
fused to the high affi nity IgE receptor gamma chain (RIgE). 

3.3.4  Inactivated (Killed) 
Vaccine

3.3.5  Subunit, VLP, or 
Recombinant Protein 
Vaccine
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Using this retrovirus based VLPs platform, a WNV vaccine was 
generated by replacement of the CD16 ectodomain in CD16-
RIgE glycoprotein with EDIII of WNV, which induced neutraliz-
ing antibodies in mice [ 139 ]. 

 A recombinant E protein of WNV-NY99 produced in 
 Drosophila  S2 cells (WNV-80E, developed by Hawaii Biotech) is 
the only WNV subunit  vaccine   candidate that has been tested in 
phase I clinical trial. Although preclinical studies revealed WNV-
specifi c neutralizing  antibody   responses in vaccinated animals 
[ 136 ,  147 ,  148 ], the immunogenicity of this vaccine in humans 
was low. To increase immunogenicity, conjugation of recombinant 
proteins with nanoparticles or  pathogen   associated molecular pat-
terns (PAMPs) as carrier/adjuvant have been tested. For instance, 
a recombinant WNV E protein administered with unmethylated 
CpG oligonucleotide adjuvant or loaded onto CpG-modifi ed 
nanoparticles strongly activated dendritic cells and lymphocytes 
and elicited Th1-dominant immune responses by producing high 
 titers   of IgG2a and IgG2b  in   immunized mice [ 149 ,  150 ]. 
Similarly, mice injected with DIII of WNV E conjugated with bac-
terial fl agellin (STF2∆.EIII) [ 137 ] or VLP derived from bacterio-
phage AP205 engineered to express DIII of WNV E 
(DIII-C-AP205) [ 138 ] also signifi cantly increased neutralizing 
 antibody   production and protected the immunized mice.   

   Despite the intensive efforts in development  of   WNV vaccines, 
only a few reached the clinical trial stages. Of those in clinical trials, 
most candidate vaccines fail to demonstrate effi cient immunity and 
safety. Development of new tools for antigen screening, expanded 
understanding of immunological correlates of vaccine induced-
immunity, and discovery of novel adjuvants for vaccine delivery 
may facilitate the design and the development of WNV  vaccines  . 
For example, knowledge of genomic information and bioinformat-
ics has been used for in silico identifi cation of candidate antigens 
and development of vaccines by a novel method called “reverse 
vaccinology” [ 151 ,  152 ]. This comprehensive tool can quickly 
identify all potential antigens coded in the  genome   and may be 
used to develop a novel viral vaccine [ 153 ]. Development of vac-
cine against group B streptococci proved the potential of this 
approach [ 151 ]. Similarly, a “structural approach” that improves 
antigenicity of vaccines by rational designing has been developed 
by utilizing the knowledge of immunology, structural biology, and 
bioinformatics [ 154 ]. In addition, increased understanding of 
immunogenetics and role of  environmental and  host   factors that 
determine the variation of vaccine immunity may offer new 
approaches to design a more effective  vaccine   against WNV infec-
tion in humans.   

3.4  Potential Novel 
Approaches for WNV 
Vaccine Development
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4    Antibody-Based Therapy: A Promising WNV Therapeutic 

 Therapeutic  monoclonal   antibodies (mAbs) or hyperimmune sera 
have been successfully used for prophylaxis of a number of infec-
tious and noninfectious diseases, including WNV infection. In 
recent years, the number of mAbs in preclinical development and 
clinical trials has been increased signifi cantly [ 155 ]. So far, nearly 
50 mAbs have been approved for  therapeutics   by US FDA, includ-
ing a humanized mAb Synagis (palivizumab) for preventive use 
against respiratory syncytial virus (RSV) infection in neonates and 
immunocompromised individuals [ 156 – 158 ]. Many mAbs have 
been developed against viruses, such as SARS-CoV, infl uenza, 
HIV-1, and other (re)emerging viruses including WNV [ 155 , 
 159 – 163 ]. Some of them showed excellent therapeutic potential 
for clinical use in humans. 

 WNV infection induces a potent humoral immune response, 
which is essential in controlling viremia and limiting WNV dis-
semination to the CNS [ 72 ,  73 ]. Hyperimmune sera,  γ -globulin, 
or affi nity- purifi ed antibodies harvested from WNV-infected 
humans and animals protect both wild-type and immunocompro-
mised  mice  from WNV  challenge   in laboratory conditions [ 164 – 166 ]. 
In addition, WNV patients who received antibodies from the WNV 
seropositive donors recovered from WNV infection [ 167 – 171 ]. 
These studies not only encouraged the efforts toward the develop-
ment of human or humanized monoclonal antibodies against 
WNV, but also led to the discovery of several potent monoclonal 
antibodies that showed effi cient protection of mice and hamsters 
from WNV infection [ 172 – 175 ]. Among these, a humanized anti-
WNV mAb (Hu-E16) that binds to a highly conserved epitope in 
WNV E protein blocks viral fusion and provide post-exposure 
therapeutic potential [ 172 ]. This antibody is currently being 
assessed for its potential use as a WNV therapeutic antibody [ 176 ]. 
The phase I clinical trial showed that another humanized recombi-
nant antibody targeting E protein of WNV (known as MGAWN1) 
has a good safety and tolerance profi le in healthy humans [ 177 ], 
however, the phase II trial to assess its effi cacy in WNV infection 
failed due to poor enrollment of participants. Besides the develop-
ment of whole antibody, recombinant fusion proteins are also gen-
erated from single-chain antibody fragment of the variable region. 
Such antibody fragments that target E protein may be potential 
candidates for immunoprophylaxis and therapy of WNV infections. 
A recombinant human single-chain variable region antibody frag-
ments (Fv-Fc) fusion protein has a protective role against WNV 
infection in mice [ 178 ]. 

 One of the potential  limitations   of this approach is antibody- 
dependent enhancement (ADE), a phenomenon by which infec-
tion of some viruses is enhanced by virus-reactive antibodies 
resulting in more effi cient virus entry through Fc receptor-mediated 
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pathways. This phenomenon plays a role in the pathology of severe 
dengue infection and has also been observed in WNV in vitro 
[ 179 ]. Although the role of ADE in WNV disease in unclear, the 
development of a therapeutic antibody against WNV should 
address this potential issue. Another limitation of antibody-based 
 therapeutics   is high production cost, which limits mAb scalability. 
Producing therapeutic proteins, including antibodies in plants, 
may be a promising solution. Feasibility of this approach has been 
affi rmed by the successful production of anti-WNV monoclonal 
antibody Hu-E16 in plants ( Nicotiana benthamiana ) (MAb-pE16) 
[ 180 ,  181 ]. The plant-derived MAb-pE16 confers a potent neu-
tralizing activity in vitro without ADE, effi ciently binds to comple-
ment and Fc receptors, and protects mice against lethal 
WNV- challenge   with similar potency as their mammalian-cell 
counterparts [ 180 ,  182 ,  183 ]. 

 Antibodies  employ   several mechanisms to control WNV and 
other viral infections, including blockage of viral entry, Fc-dependent 
viral clearance, complement-mediated viral lysis, and antibody- 
dependent cytotoxicity of infected cells. Most of the current 
researches in the development of therapeutic antibodies against 
WNV are designed and tested for effi cient neutralization potential 
[ 184 ,  185 ]. Increased understandings of the biology of antibody Fc 
regions, in particular, the roles of glycan in Fc mediated functions 
may facilitate the design and development of high-quality antibody 
through glycoengineering [ 186 ,  187 ]. Such engineering of anti-
body Fc region may be used to overcome ADE, modulate pharma-
cokinetics, and enhance Fc mediated effector functions, such as 
enhancement of antibody-dependent cell mediated cytotoxicity 
(ADCC), complement binding, and phagocytosis [ 188 ]. 

 Recent technological advancement not only in development, 
production, and purifi cation but also in ease of achieving desirable 
quality, effi cacy, and safety required for the FDA approval makes 
monoclonal antibodies a promising therapeutic option. Thus, 
monoclonal antibodies may prove useful for WNV prophylaxis and 
therapy particularly in the elderly and immunocompromised indi-
viduals with limited ability to respond to a  vaccine  . To meet its 
therapeutic goal, a  controlled   clinical trial of therapeutic antibody 
should ensure its prophylactic and therapeutic effi cacy along with 
optimal dose and timing of administration across the range of 
patient groups.  

5    Moving Towards Anti-WNV Drug Discovery: Recent Approaches and Future 
Directions 

 Development of effective  therapeutics   have been successful in 
treating many viral diseases including infl uenza, HIV-1, hepatitis 
C virus (HCV), and hepatitis B virus (HBV). WNV causes tran-
sient viremia in human and  animal models   that is associated with 
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its dissemination to brain and development of more severe disease 
[ 73 ,  189 – 192 ], suggesting that reducing viral loads by an antiviral 
drug during the early phase of infection may offer effi cient control 
of WNV or lessen the chances of progression to neuroinvasive 
diseases. In addition, antiviral drugs are particularly useful for the 
elderly and the immunocompromised patients who may fail to 
develop effi cient  vaccine  - induced immunity. Recent progress in 
the structural characterization of WNV and other  fl aviviruses   
broadens the understanding of WNV biology and provides a foun-
dation for the development of small molecule  inhibitors   for WNV 
therapeutics [ 34 ,  193 ]. In addition, better understanding of the 
 pathogenesis   of WNV and other fl aviviruses has offered new 
opportunities for designing many different classes of promising 
antiviral  therapeutics   by targeting both  viral replication   and the 
 host   cell metabolism. 

   The development of an antiviral drug is a multistep process that 
takes years before it reaches the market. A general overview of a 
drug development process is outlined in Fig.  2 . Hit-to-lead is an 
initial stage in a drug discovery, where small molecule hits are 
screened and further evaluated to identify promising lead com-
pounds with a therapeutic potential. Recent progress in the devel-
opment of multiple approaches for designing, screening, 
identifi cation, and validation of hit compound (reviewed by [ 194 –
 199 ]) have witnessed growing interests in the fi eld of drug devel-
opment. Signifi cant progress in structural and functional 
characterization of both structural and nonstructural proteins of 
WNV and other  fl aviviruses   has facilitated identifi cation of thera-
peutic targets and hit-to-lead screening. For example, characteriza-
tion of pseudo-atomic structure of mature and immature WNV 
[ 35 ], atomic resolution structure of WNV and other fl aviviral pro-
tein by X-ray crystallography and nuclear magnetic resonance 
(NMR) spectroscopy [ 39 ,  41 ,  48 ,  200 – 203 ], and structural char-
acterization of binding of a neutralizing monoclonal  antibody   to E 
protein of WNV [ 48 ] have greatly increased our understanding of 
both structural and functional aspects of potential therapeutic tar-
gets. Two approaches have been commonly used for small mole-
cule  inhibitor   screening include target-based approach and 
cell-based approach. For target- based screening, several methods 
can be applied, including enzyme activity-based screening, fragment-
based screening, affi nity-based screening, structure-based rational 

5.1  Approaches 
for Drug Discovery

Identification
and validation 
of targets

Hit screening /lead 
discovery/ drug 
development

Preclinical 
studies

Clinical 
trials

Approval and 
licensing

  Fig. 2    Steps in antiviral drug development       
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designing, and in silico docking [ 197 ,  198 ,  204 – 207 ]. In contrast, 
cell-based approaches use viral infection and  replication  -dependent 
assays to identify inhibitors [ 208 ]. Each of these approaches pres-
ents their unique sets of merits and  challenges  . For instance, it is 
generally diffi cult to identify a target and also achieve specifi city by 
cell-based assay because such identifi ed inhibitors may potentially 
affect multiple steps of viral infection cycles and may target both 
viral and  host   proteins. Although inhibitors identifi ed by cell-based 
assay may prove useful as antiviral drug candidates, these com-
pounds could also act nonspecifi cally; thus further elucidation of 
their mechanism of action is required. The target-based approaches 
are highly effi cient in screening process, however, an inhibitor 
screened by such method may require further modifi cation for 
effective cellular permeability and validation for its antiviral activ-
ity, selectivity and toxicity by using cell-based assays. In the fi nal 
stages, lead compounds are selected for in vitro and in vivo phar-
macokinetic profi ling, including effi cacy, plasma stability (half-
life), exposure, bioavailability, and preclinical toxicity before 
planning a clinical trial.

      The most common strategies for antiviral drug development 
include blocking virus attachment or entry into  host   cells and 
inhibiting  viral replication  , either by targeting on viral components 
or host cells metabolism. There has been a signifi cant progress in 
development and testing of potential antivirals against  fl aviviruses   
including WNV (reviewed by [ 34 ,  209 ,  210 ]). Several natural and 
synthetic compounds, antiviral peptides and siRNAs have been 
identifi ed to target both structural and nonstructural proteins of 
WNV and evaluated for their potential therapeutic roles. Other 
approaches include targeting host cell metabolism and physiology 
and modulating host immune system by using antiviral  cytokines   as 
potential  therapeutics   against WNV. Current status and strategy 
used to develop antiviral drugs targeting WNV and other fl avivi-
ruses are described below. 

   Several natural and synthetic compounds have been identifi ed to 
target both structural and  non-structural proteins   of fl aviviruses. 
Most of these compounds are designed to target DENV and some 
of them also show antiviral activities against WNV and other 
 fl aviviruses. As these compounds are diverse in their chemistry, 
they are discussed below based on their modes of action. 

   The E protein of WNV and other  fl aviviruses   play key roles in viral 
entry into  host   cells by mediating viral attachment to  host   cell 
receptors and subsequent membrane fusion [ 35 ,  41 ,  211 ,  212 ]. 
After binding to host cell receptors, WNV enters into cells through 
a clathrin-independent  endocytosis   process followed by a low-pH- 
dependent viral uncoating in the endosome to release viral  genome   

5.2  Current Status 
of Anti-WNV Drug 
Development

5.2.1  Natural 
and Synthetic Compounds 
as Small Molecule 
Inhibitors of WNV

 Viral Entry/Fusion Inhibitors
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into the cytoplasm for  replication   [ 213 ]. Inhibitors that disrupt the 
interaction of E protein with cell receptors or inhibit membrane 
fusion would be a potential antiviral against WNV. Two successful 
HIV drug Maraviroc (CCR5 antagonist) and Enfuvirtide (a pep-
tide inhibitor) that respectively block viral entry [ 214 ] and mem-
brane fusion [ 215 ] attest to this antiviral strategy. The fl aviviral E 
glycoprotein contains several functional sites such as a hydropho-
bic pocket, the receptor-binding domain and stem domain that 
may be targeted by inhibitors. Among these, the hydrophobic 
ligand-binding pocket in a hinge region between domain I and II 
of E protein plays an important role in low-pH-mediated mem-
brane fusion process and is a unique target for developing small-
molecule inhibitors against fl aviviruses [ 216 ,  217 ]. Various 
screening approaches were used to identify inhibitors against 
DENV and other  fl aviviruses   that bind into this hydrophobic 
pocket and interfere with  the   conformational changes of E protein 
[ 207 ,  218 – 221 ], Most of these inhibitors were designed and tested 
against DENV, some of which were reported to exhibit antiviral 
activities against WNV [ 207 ,  220 ]. However, these compounds 
failed in the further drug development due to their undesirable 
properties, such as low solubility and cytotoxicity. 

 The domain III of E glycoprotein that mediates receptor-bind-
ing can be potentially targeted by developing  inhibitors   that can 
disrupt the viral attachment to  host   cell receptors. Neutralizing 
antibodies against E protein have proven the potential of this strat-
egy. Several compounds have also been shown to interfere with the 
binding of  fl aviviruses   to host cell receptors [ 222 – 226 ]. However, 
lack  of   understanding of cell receptor for WNV has hampered the 
success of this approach. Identifi cation of cellular receptors for 
WNV and understanding of virus–receptor interaction may pro-
vide new opportunities to identify small molecule inhibitors that 
interrupt the binding of WNV to host cell receptors.  

   Viral proteases are essential for WNV life  cycle   for they cleave the 
viral polyprotein precursors into functional proteins. Successful 
development and licensing of protease inhibitor against HIV-1 
[ 227 ,  228 ] and HCV [ 229 ,  230 ] provides the proof of concept 
and feasibility for similar targeting of proteases of other viruses. 
The N-terminal domain of fl aviviral NS3 (amino acids 1–169) has 
serine protease activity whereas a hydrophobic region of NS2B 
protein serves as cofactor to activate the enzymatic activity of NS3 
[ 53 ,  231 ,  232 ]. The NS3 protease of WNV processes the viral 
polyprotein precursor into structural and  non-structural proteins   
and disruption of this activity is lethal for WNV [ 54 ,  57 ]. In addi-
tion, WNV NS2B/NS3 protease can also cleave  host   proteins and 
may contribute to  neuropathogenesis   [ 63 ]. Recent progress in the 
expression of stable NS2B/NS3 and identifi cation of the high-
affi nity substrate for this viral enzyme has promoted large-scale 
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screening of protease inhibitors for WNV and other  fl aviviruses  . A 
wide range of assays, such as conventional enzyme-substrate based 
 detection  , HPLC, ELISA, and high- throughput fl uorescence-
based detection methods have been developed for screening of 
viral protease  inhibitors   [ 233 – 236 ]. Thus, NS3 protease is an 
attractive target for the development of antiviral against WNV and 
other fl aviviruses (reviewed by [ 237 ]). 

 Except for aprotinin,  a   pancreatic trypsin inhibitor, most of the 
classical inhibitors of serine protease do not inhibit fl aviviral NS2B/
NS3 protease activity [ 238 ,  239 ]. Although aprotinin is a potent 
inhibitor of fl aviviral protease, this compound was withdrawn from 
the market in 2008 due to safety issues [ 240 ]. To screen and iden-
tify small molecule inhibitors of  fl avivirus   protease, both high 
throughput screening and structure-based drug designing have 
been used. These strategies are based on the identifi cation of allo-
steric inhibitors that target the interface of NS2B-NS3 protease, or 
the active site of NS3 protease. The former strategy may overcome 
nonspecifi city of the latter due to the largely conserved active sites 
of the human and viral serine proteinases. A number of inhibitors 
for WNV NS2B/NS3 protease have been identifi ed by in silico 
docking or  high- throughput screen   using in vitro enzyme activity-
based assays [ 34 ,  59 ,  206 ,  241 – 249 ]. However, most of these 
compounds failed to demonstrate potent antiviral  activity   in  cell 
culture  . Although a few compounds identifi ed by these approaches 
show anti-WNV activity in cell-based assays [ 62 ,  206 ,  242 ], none 
of the  inhibitors   has progressed beyond the hit optimization stage. 
Discovery of NS2B/NS3 protease inhibitors has been hampered 
largely due to the diffi culties in obtaining co-crystal structures of 
inhibitor-protease complexes. Moreover, because of the weak 
binding affi nity of NS2B/NS3 active site due to its fl at and charged 
nature, the design of potent small molecule inhibitors by structure-
based method becomes diffi cult [ 53 ,  242 ,  250 ,  251 ].  

   The helicases are enzymes that unwind nucleic  acid   by using energy 
derived from hydrolysis of NTP. The C-terminal domain of NS3 of 
WNV contains helicase/nuclease activities and plays important 
roles in virulence and  pathogenesis   [ 252 – 254 ]. High throughput 
assays that measure helicase activity by monitoring helicase-cata-
lyzed strand separation in real-time by using radioactive or 
fl uorescent- labeled oligonucleotides have been developed to screen 
helicase inhibitors [ 255 – 258 ]. 

 Several small molecule inhibitors targeting helicase of HCV 
and HIV-1 have been developed [ 259 ]. By using the substrate-
based assay, a few compounds have been identifi ed and evaluated 
in vitro against NTPases/helicases of WNV and other  fl aviviruses   
[ 260 – 262 ]. However, inhibitory effects of WNV helicase by these 
compounds are specifi c to either  DNA   or RNA substrate. For 
example, a compound named 4,5,6,7-tetrabromobenzotriazole 
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(TBBT), a halogenated benzotriazole, inhibits NS3 helicase, but 
not NTPase activity [ 260 ]. A series of ring-expanded nucleoside/
nucleotide analogs (RENs) also inhibit NTPases/helicases activi-
ties of fl aviviruses, including WNV, HCV, and JEV [ 263 ,  264 ], 
however, these compounds did not show any promising anti-WNV 
activity in  cell culture  . A nucleoside analog imidazo[4,5-d]pyrida-
zine nucleosides [ 265 ], and a broad- spectrum   antiparasitic drug 
named ivermectin [ 266 ] inhibit NS3 helicase and also show anti-
WNV activity in cell culture.  

   The RNA-dependent RNA polymerase (RdRp) activity of 
C-terminal NS5 protein of WNV and other  fl aviviruses   is an attrac-
tive target for developing antiviral agents [ 55 ,  267 – 269 ]. Two 
approaches used to target WNV RdRp include nucleoside inhibi-
tors (NIs) or non- nucleosides inhibitors (NNIs). NIs (also known 
as type 1 inhibitors) are nucleoside/nucleotide analogs that target 
the active sites of the polymerase and generally compete with natu-
ral NTP substrates of RdRp to block their incorporation into viral 
 genome   during  replication   and lead to incomplete replication or 
mutations of viral genome. The success of NIs against several 
viruses including HIV-1, herpesviruses, HBV, and HCV has 
already proved the therapeutic potential of  this   class of compounds 
[ 270 – 272 ]. In addition, NI generally displays broad-spectrum 
antiviral activities across related RNA viruses suggesting its poten-
tial as pan-fl aviviral  therapeutics  . Various cell-based and cell-free 
assays have been developed for  high-throughput screening   of fl avi-
viral RdRp  inhibitors   [ 273 – 276 ]. 

 So far, several NIs that inhibit WNV, DENV, and other RNA 
viruses have been identifi ed [ 34 ]. For example, favipiravir (T-705; 
6-fl uoro- 3-hydroxy-2-pyrazinecarboxamide) and related com-
pounds selectively inhibit viral RNA-dependent RNA polymerase 
and have potent anti-infl uenza activity [ 277 ,  278 ]. This antiviral 
drug is currently being evaluated in clinical trials against infl uenza 
virus. In addition, favipiravir also blocks  replication   of many other 
RNA viruses, including WNV and are promising drug candidate 
against a broad range of RNA viral diseases [ 279 ]. Two other nucle-
oside analogs called 7-deaza-2′-C-methyl-adenosine and 5-aza-
7-deazaguanosine (ZX- 2401), which are the derivatives of 
triphosphates of 2′-C-methyl-  adenosine   and 2′-C-methyl-guanosine, 
respectively, are also broad-spectrum antiviral compounds targeting 
viral RdRp that inhibit DENV, HCV and WNV [ 280 – 282 ]. Similarly, 
two other NI  inhibitors  , NITD-008 (beta-D-2′-ethynyl-7-deaza-
adenosine triphosphate) and NITD203 (3′,5′-O-diisobutyryl-2′-C-
acetylene-7-deaza-7-  carbamoyladenosine) inhibit all four of DENV 
serotypes and WNV. 

 In contrast to NI  inhibitors  , antiviral NNI inhibitors (also 
known as type 2 inhibitors) interfere with the function of viral 
polymerase by occupying its allosteric sites, thus preventing viral 
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RNA synthesis. Analysis of RdRp crystal structure of WNV and 
DENV3 revealed a cavity that plays a critical role in  viral    replica-
tion  , suggesting a potential target for screening of structure-
based allosteric inhibitors [ 55 ,  283 ]. N-sulfonylanthranilic acids 
derivatives identifi ed by  high- throughput screening   are examples 
of allosteric inhibitors of RdRp activity of DENV [ 284 ]. However, 
these compound  were   specifi c to DENV and did not show any 
activity against WNV RdRp. A recent study demonstrated that a 
conformational change occurred in DENV-3 polymerase after 
binding with an inhibitor [ 285 ]. However, a similar antiviral 
activity of NNI inhibitors targeting polymerase of WNV has not 
been reported yet.  

   Messenger RNA (mRNA) of WNV possesses a  5′ cap   that plays 
important roles in stability of mRNA and its translation. The meth-
yltransferase (MTase) activity of the N-terminal domain of NS5 is 
responsible for N-7 and 2′ O- methylation   of the viral RNA cap 
[ 64 ,  286 ] [ 287 ]. In addition,  MTase   activity is also responsible for 
evading host’s antiviral interferon response and plays an important 
role in WNV  pathogenesis   [ 288 ]. Several structural and functional 
studies along with identifi cation of several potential inhibitors sug-
gest that targeting MTase represents a novel approach for the 
development of novel  therapeutics   against WNV and other  fl avivi-
ruses   [ 289 – 294 ]. Flaviviruses MTase catalyzes sequential methyl-
ations of the viral RNA cap using S-adenosyl- L -methionine (SAM) 
as the methyl donor and contains a single binding site for SAM in 
its crystal structure [ 289 ,  294 ]. In addition to MTase activity, 
binding of GTP has been shown in MTase domain of several mem-
bers of  fl avivirus   [ 295 ]. Several assays have been developed  for   
 high-throughput screening   of methyltransferase  inhibitors   by 
structural-based and ligand- based methods [ 296 ,  297 ]. Rational 
design of SAM analogs has identifi ed several inhibitors targeting 
MTase activity of DENV and WNV [ 34 ,  298 ]. 

 Nonspecifi c inhibition of  host   MTase is one of the potential 
drawbacks of SAM analogs. A specifi c inhibition of fl aviviral, but 
not host, MTase can be achieved by targeting a pocket near the 
SAM- binding site [ 290 ,  298 ]. Two nucleoside analogs were iden-
tifi ed that potently inhibited the MTase of WNV without inhibit-
ing human MTase. One of these compounds (GRL-003) showed 
antiviral activity against WNV in  cell culture   [ 299 ]. In addition, 
several screening  studies against YFV and DENV NS5 have identi-
fi ed hits targeting MTase activity, some of which showed antiviral 
activity against WNV in cell culture [ 204 ,  300 ,  301 ]. However, an 
extensive multistage molecular docking approach to screen a 
library of about 5 millions of commercial compounds against two 
active sites of DENV MTase/GTase failed to identify  any   specifi c 
hits [ 302 ]. Recently, 5′-silylated nucleoside scaffold derived from 
3′-azidothymidine (AZT) demonstrated antiviral activity against 
WNV and DENV, which binds MTase [ 303 ].   

 Methyltransferase Inhibitor
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   Several potential tools, including rational design and phase dis-
play library, have been developed for  high-throughput screening   
of specifi c antiviral peptides [ 304 ,  305 ]. Enfuvirtide, a 36-amino-
acid peptide based on the stem region of the HIV gp41, exempli-
fi es an effi cient antiviral peptide currently in clinical use [ 306 ]. 
Thus, antiviral peptides may serve as a novel therapeutic measure 
against WNV. Several antiviral peptides targeting both structural 
and  non- structural protein   of WNV and other  fl avivirus   have 
been identifi ed. 

 Targeting WNV E protein by antiviral peptides is a potential 
strategy that blocks virus attachment and entry into the  host   cells. 
Several short antiviral peptides (13–16 amino acid residuals) that 
bind to WNV E protein have been identifi ed by screening of a 
murine brain  cDNA   phage display library [ 307 ]. One of those pep-
tides (P9) reduces viremia and fatality after WNV infection in mice. 
P9 can effi ciently penetrate the murine  blood–brain barrier  , imply-
ing that it may have antiviral activity in the CNS [ 307 ]. Similarly, a 
peptide  inhibitor   (WN83) targeting domain II of WNV E protein 
designed by using a physicochemical algorithm approach potently 
inhibits WNV infectivity [ 308 ]. Another peptide designed to tar-
get domain II of DENV E shows antiviral activity against both 
DENV and WNV [ 308 ]. In addition, a rational drug design 
approach has been used to identify a peptidomimetic that mimic 
NS2B/NS3 protease substrate and inhibits its activity. The mecha-
nism proposed for the peptidomimetic is that NS2B/NS3 cleaves 
between P 1  and P 1 ′ in a peptide substrate consisting of P 2 P 1 P 1 ′, 
where P 1  and P 2  are basic amino acids (Arg or Lys) and P1′ is a 
side-chain amino acid (Gly, Ser, or Ala) [ 56 ,  231 ]. Thus, a pre-
ferred peptide substrate contains several positively charged amino 
acids. A common method for screening peptide inhibitors of 
NS2B/NS3 protease employs a fl uorophore conjugated peptide 
substrate containing basic amino acids at the P1 and P2 positions. 
Cleavage of peptide substrate by NS2B/NS3 protease results in a 
release of fl uorophore and increase of fl uorescence [ 242 ,  243 ]. 
Several peptide inhibitors of NS2B/NS3 protease have been iden-
tifi ed against WNV [ 62 ,  309 – 311 ]. A novel agmatine dipeptide 
 inhibitor   with improved inhibitory activity against WNV NS2B/
NS3 has been recently identifi ed [ 309 ]. In addition, a recombinant 
peptide called retrocyclin-1 (RC-1) has been shown to inhibit 
NS2B/NS3 protease [ 312 ]. However, most of these peptides 
showed poor activity in the cell-based assay and has not been tested 
for their in vivo effi cacy. Thus, all of the peptide inhibitor of NS2B/
NS3 protease that has been identifi ed so far failed at the early 
development stages. Potential limitations of this approach include 
poor pharmacokinetic properties due to charged nature of peptide, 
lack of specifi city, requirement of intravenous delivery, rapid degra-
dation in plasma, and costly production.  

5.2.2  Antiviral Peptides
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    RNA   interference (RNAi) is a cellular process fi rst described in the 
nematode  Caenorhabditis elegans  [ 313 ,  314 ]. This process specifi -
cally degrades RNA in a sequence-specifi c manner and is conserved 
in mammalian cells [ 315 ,  316 ]. RNAi is a natural defense of 
eukaryotic cells against viral infections, and may be a promising 
strategy for developing a potential antiviral  therapeutic  . Numerous 
siRNA targets were identifi ed in the genomic region of WNV 
encoding both structural and  non-structural proteins  , and siRNA 
targeting these proteins effectively inhibits WNV  replication   [ 191 , 
 317 – 321 ]. Besides the siRNA targeting coding regions, siRNA 
that targets noncoding regions have also been identifi ed to inhibit 
WNV replication in a sequence-specifi c manner [ 191 ]. Although 
anti-WNV siRNAs effi ciently block  viral replication   in  cell cultures  , 
similar successes are diffi cult to achieve in  animal models   [ 191 ]. 
Quick degradation by  serum   nucleases, failure to reach target cells, 
and rapid renal excretion due to their small size and anionic char-
acter are hindering the clinical application of antiviral siRNAs. 
Several delivery systems, including cell-penetrating peptide [ 322 , 
 323 ], nanoparticles [ 324 ,  325 ], and viral  vectors   [ 326 ], may 
improve siRNA stability and enhance delivery effi ciency. Despite 
many  challenges  , use of antiviral siRNA as anti-WNV  therapeutics   
remains promising.  

   Cytokines signaling  controls    diverse   immune  functions   during 
infection, autoimmune disease, and cancer. Various immunomod-
ulatory or immunostimulatory cytokines and chemokines have 
been identifi ed to play a protective or pathological role in WNV 
infection. For examples, type-I interferons (IFNs) [ 327 ,  328 ], 
interleukin (IL)-23 [ 192 ], interferon- γ  (IFN- γ)  [ 83 ], IL-1β [ 329 ], 
macrophage migration  inhibitory   factor (MIF) [ 330 ], CXCL10 
[ 331 ], and CCL5 [ 332 ,  333 ] protect against WNV infection, 
whereas IL-10 [ 190 ] and IL-22 [ 334 ] favor WNV pathogenicity. 
Pharmacological blockade of IL-10 by neutralizing  antibody   has 
been shown to protect mice against WNV  challenge   [ 190 ]. Type I 
IFNs (IFNα/β) inhibit many  fl aviviruses   including WNV and have 
been used as therapeutics against hepatitis C virus [ 335 ]. Although 
the therapeutic effect of type I IFNs in WNV has yet to be evalu-
ated, its application may be limited due to the  antagonistic   role of 
WNV NS5 protein in IFN signaling [ 336 ,  337 ]. Interestingly, 
treatment with pegylated IFN- λ , also known as a type III inter-
feron, has been recently shown to protect mice against lethal  WNV   
 infection   by decreasing  blood–brain barrier   permeability [ 338 ]. 
Thus, strategies targeting the expression of cytokine and  chemo-
kine  , blocking their signaling, or direct use of recombinant cyto-
kines may be novel approaches for treating WNV infection or 
controlling its pathology.  

5.2.3  Small Interfering 
RNAs (siRNA)

5.2.4  Targeting 
Cytokines/Chemokine 
Signaling as Therapeutics
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   Viruses utilize host  cellular    system   for entry,  genome   replication, 
 transcription  , synthesis of viral proteins, and production of viral 
progenies. In addition, interactions of viral proteins with cellular 
proteins may evade host immune defense and favor  viral replica-
tion   and  pathogenesis  . Several host pathways and enzymes includ-
ing clathrin-mediated  endocytosis   cyclophilins [ 339 ], 
ubiquitin- proteasome system [ 340 ], unfolded protein response 
[ 341 ], nucleotide biosynthesis [ 342 ,  343 ], post-translational 
protein modifi cation [ 344 – 346 ], and lipid metabolism [ 347 –
 349 ] have been suggested in  fl avivirus   replication and pathogen-
esis. Targeting host factors may be used as a strategy for developing 
antiviral  therapeutic   against fl aviviruses, including WNV infec-
tion [ 350 – 352 ]. 

 So far, many inhibitors targeting host proteins have been 
developed and tested against WNV and other fl aviviruses, such as 
HCV.  Host   cyclophilin, a family of cellular peptidyl-prolyl isomer-
ases, may serve as a component of  fl avivirus   replication complex 
and play a role in fl aviviral  replication  . Targeting this enzyme by 
cyclosporine inhibits replication of WNV [ 339 ]. Targeting lipid 
signaling and metabolism by a bioactive lipid signaling modulator 
4- hydroxyphenyl retinamide (4-HPR, fenretinide) also inhibits 
replication of WNV and other fl aviviruses. Similarly, ribavirin and 
mycophenolic acid target inosine monophosphate dehydrogenase 
(IMPDH), an enzyme in purine biosynthesis, and thereby inhibit 
replication of fl aviviruses [ 342 ,  343 ]. In addition, NITD-982 and 
brequinar that block pyrimidine biosynthesis also inhibit replica-
tion of broad range of RNA viruses, including WNV and other 
fl aviviruses [ 353 ,  354 ]. Besides blocking viral  genome   replication, 
antiviral targeting  of  other steps, such  as   virus maturation, assem-
bly, and viral dissemination into brain has also been suggested and 
tested against WNV. For instance,  inhibitors   of alpha-glucosidase I 
and II, enzymes that play a role in processing of N-linked oligosac-
charides of the viral glycoproteins, also inhibit WNV and other 
 fl aviviruses   [ 205 ,  355 ]. Although the mechanism by which WNV 
enters the brain is still poorly understood, the two potential routes 
include axonal retrograde transport (ART) from the peripheral 
nervous system and direct hematogenous diffusion via a break-
down in the blood–choroid plexus barrier [ 356 ]. Nocodazole, a 
microtubule inhibitor that blocks ART, delays WNV entry into 
brain [ 357 ]. The 3′ or the 5′ terminal stem-loop in fl aviviral RNA 
contains essential cis-acting elements and plays important roles in 
 viral replication   [ 358 ,  359 ]. Interestingly, a range of cellular pro-
teins have been identifi ed to interact with 3′ stem-loop of fl aviviral 
RNAs [ 352 ,  359 – 362 ], suggesting a potential strategy to design 
inhibitors targeting this virus– host   protein interaction. 

 Targeting host factors may raise a higher barrier to viral resis-
tance  emergence   and provide broad-spectrum antiviral effects. 

5.2.5  Inhibitors Targeting 
the Host
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However, current understanding of virus–host cell interaction and 
research on targeting of host factors to block viral infections are 
still limited. In addition, there are some potential drawbacks of this 
approach, including undesirable drug-induced side-effects and dif-
fi culties for drug delivery into brain to control WNV  encephalitis  . 
Further understanding of virus–host interaction will  facilitate    iden-
tifi cation   of novel antiviral agents.    

6    Conclusions and Perspectives 

 Development and testing of various methods for treatment and 
prevention of WNV infection, such as protective  vaccines  , thera-
peutic antibodies, antiviral compounds, peptides, and siRNA have 
been proposed and intensively studied. Although a number of 
WNV veterinary vaccines have already been licensed and are in use 
for years, human  vaccine   candidates are still in various stages of 
development and testing. Some therapeutic antibodies that show 
excellent effi cacy in small  animal models   and are currently being 
tested in clinical trials represent a promising class of WNV thera-
peutic. Recent technological advancement and increased under-
standing of the biology of WNV and other  fl aviviruses   along with 
structural/functional characterization of viral proteins have pro-
vided a solid foundation for the development of small molecule 
 inhibitors   as future WNV  therapeutics  . However, efforts for devel-
opment of an effective drug for prevention or control of WNV 
infection in human still remain unsuccessful. Some of the reasons 
include a low incidence of diseases, low commercial interest by 
pharmaceutical companies, high cost of mass vaccination, and dif-
fi culties with running clinical trials due to unpredictable and spo-
radic nature of WNV outbreaks [ 363 ,  364 ]. Another  challenge   for 
developing successful WNV therapeutics is to ensure safety and 
effi cacy in target populations that mostly include children, elderly, 
and immune-compromised individuals. Despite all these diffi cul-
ties, the quest for development of effective treatment and preven-
tion methods against WNV infection are likely to be facilitated by 
recent technological advancement and should continue to meet 
the public health  needs.     
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