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Abstract: Nanomaterials are currently being developed for the specific cell/tissue/organ delivery of
genetic material. Nanomaterials are considered as non-viral vectors for gene therapy use. However,
there are several requirements for developing a device small enough to become an efficient gene-
delivery tool. Considering that the non-viral vectors tested so far show very low efficiency of gene
delivery, there is a need to develop nanotechnology-based strategies to overcome current barriers in
gene delivery. Selected nanostructures can incorporate several genetic materials, such as plasmid
DNA, mRNA, and siRNA. In the field of nanotechnologies, there are still some limitations yet to
be resolved for their use as gene delivery systems, such as potential toxicity and low transfection
efficiency. Undeniably, novel properties at the nanoscale are essential to overcome these limitations.
In this paper, we will explore the latest advances in nanotechnology in the gene delivery field.

Keywords: nanotechnology; nanomaterials; nanomedicine; delivery; gene therapy; genetic material;
gene therapeutics; biological barriers; cancer

1. Introduction

Numerous diseases find their roots at the genetic level. The human genome project
and the latest advances in molecular genetics and high throughput techniques allowed us
to understand the genetic basis of many pathologies and, thus, to identify new therapeutic
targets [1,2]. Therefore, new strategies are being developed for “undruggable” diseases [3].
In the past few decades, gene therapy emerged as a potential treatment for a wide range of
diseases, including cancer, cardiovascular and neurological diseases [4]. However, due to
the diseases and genetic defects’ heterogeneity, different molecular approaches have been
developed to achieve the therapeutic goal.

2. Gene Therapy

Gene therapy is an experimental technique that modifies genes or gene expression to
treat or prevent diseases. It can be used to restore cell function in monogenic disorders or
to endow cells with new capabilities. Gene therapy works by editing, replacing, or altering
gene expression instead of using drugs (Figure 1).
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specific sites using enzymes that recognize a specific region of the genome. Gene editing 
occurs when cellular repair mechanisms correct the double-strand break by non-homolo-
gous end joining (NHEJ) which can introduce insertions or deletions or by homologous-
directed repair (HDR) that needs a DNA template [6,7]. 

ZNFs encode a short monomer sequence thus, they are not limited by vector se-
quence capacity, but their limitations are related to the low number of sites they can effec-
tively target, and the cytotoxicity produced when they generate an off-target. Mostly, the 
delivery systems used are viral; in particular, adeno-associated viruses, which contain a 
limited expression cassette of only 4.7 Kb capacity and also can produce a strong immune 
response [8,9]. 

While TALENs are less cytotoxic than ZNFs, the use of viral vectors has been difficult 
due to the bigger size of TALENs which make them challenging for a high efficiency cell 
delivery method. Non-viral delivery vectors are, therefore, the most suitable method of 
delivery for TALENs delivery due to the large cargo size capacity. As opposed to ZNFs, 
TALENs are not able to penetrate cell membranes when they are delivered without any 
vector [6,7]. 

Finally, CRISPR/Cas9 technology is the newest and more efficient system of gene ed-
iting. It can be performed by using DNA, RNA and/or protein. Choosing the delivery 
strategy depends on the application considering efficiency, toxicity and safety [10]. 

2.2. Gene Augmentation 
This approach consists of replacing the mutant gene that is not functional by deliv-
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2.1. Gene Editing

Currently, the three main approaches to edit the genome are: zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), both of which correct the
mutations ex vivo and clustered regularly interspaced short palindromic repeats (CRISPR)—
CRISPR associated (Cas9) system (CRISPR/Cas9) which can correct mutations in vitro
and in vivo [5,6]. These technologies introduce double-strand breaks in DNA-specific
sites using enzymes that recognize a specific region of the genome. Gene editing occurs
when cellular repair mechanisms correct the double-strand break by non-homologous end
joining (NHEJ) which can introduce insertions or deletions or by homologous-directed
repair (HDR) that needs a DNA template [6,7].

ZNFs encode a short monomer sequence thus, they are not limited by vector sequence
capacity, but their limitations are related to the low number of sites they can effectively
target, and the cytotoxicity produced when they generate an off-target. Mostly, the de-
livery systems used are viral; in particular, adeno-associated viruses, which contain a
limited expression cassette of only 4.7 Kb capacity and also can produce a strong immune
response [8,9].

While TALENs are less cytotoxic than ZNFs, the use of viral vectors has been difficult
due to the bigger size of TALENs which make them challenging for a high efficiency cell
delivery method. Non-viral delivery vectors are, therefore, the most suitable method of
delivery for TALENs delivery due to the large cargo size capacity. As opposed to ZNFs,
TALENs are not able to penetrate cell membranes when they are delivered without any
vector [6,7].

Finally, CRISPR/Cas9 technology is the newest and more efficient system of gene
editing. It can be performed by using DNA, RNA and/or protein. Choosing the delivery
strategy depends on the application considering efficiency, toxicity and safety [10].

2.2. Gene Augmentation

This approach consists of replacing the mutant gene that is not functional by delivering
the correct copy of the gene using a delivery vector. The therapeutic nucleic acid of interest
can be DNA, mRNA, mRNA analogue or an oligonucleotide. The advantages of using RNA
are the low risk of insertion in the host genome and that it does not need to be delivered
in the nucleus. On the other hand, its low stability and the risk of immunogenicity are
the main disadvantages. Currently, the most used approach is introducing the gene using
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plasmid DNA due to its high stability. Since plasmids become rapidly chromatinized once
internalized, the gene enters the nucleus and remains episomal [11].

2.3. RNA Therapy

RNA therapeutics can either mimic or antagonize endogenous RNA functions. Several
advantages of using RNA as a therapy consist of its ease of design, cost effectiveness,
stability and easy combination with other drugs presenting also low immunogenicity [12].
The major RNA therapeutic methods are: (I) antisense oligonucleotides (AONs) which
are small RNA or DNA chemically modified molecules that bind by complementary base
pair to the pre-mRNA and their main functions are to exclude exons and pseudo-exons,
include exons, degrade transcripts and block the translation [13]; (II) U1 spliceosomal
RNA that utilizes a modified and an adapted U1 snRNA to the mutation favouring the
correct splicing [5,12,14]; (III) trans-splicing therapy, that consists of introducing an exogen
RNA containing a binding domain to the target mRNA and thus, activates the trans-
splicing process [5,15]; and (IV) post-transcriptional gene silencing therapy which can be
approached by iRNA to degrade the transcripts or by AONs RNAse H which are based on
the hybrids RNA/DNA are degraded by RNAse H activity [12,16,17].

During the past few decades, gene therapy became an essential tool to treat multiple
diseases and investigators strive to develop an efficient methodology. Although there are
many clinical trials and some treatments are already approved, delivery systems for gene
therapy are still a challenge. The therapeutic nucleic acids need to find the specific cell,
enter the target cell, reach the nucleus without being degraded and finally be expressed or
do its corrective function. Thus, the delivery system has to be directed to a specific cell,
overcome physical cell barriers, avoid degradation and not cause toxicity to the body. These
reasons raised the demand for a suitable delivery system that delivers gene therapeutics
more efficiently, without toxicity and that are cell-targeted and cost-effective.

3. Why Does Gene Therapy Need a Carrier?

Gene therapeutics must cross many biological barriers in order to reach their site of
action [18]. First of all, they need to reach their target organ/tissue/cells without being
degraded. For instance, oligonucleotides have a very short half-life in physiological media
due to the presence of endo- and exonucleases [19,20].

Depending on their target organ or tissue and their administration route, gene thera-
peutics must cross specific biological barriers. One of the most common administration
routes is intravenous (IV). Once in circulation, gene therapeutics must cross the endothe-
lium in order to reach their target. This barrier has different properties depending on the
organ/tissue. Organs such as the spleen, liver or tumours have a fenestrated vasculature
and thus, crossing the endothelium is easier when targeting these organs.

A vast number of studies aim to develop gene therapy strategies for the treatment of
neurological diseases. In order for gene therapeutics to reach the brain, they must cross
the blood–brain barrier (BBB) [21]. This biological barrier is a continuous endothelial
membrane, present in the brain vasculature. Endothelial cells are attached to each other
by tight junctions to avoid the crossing of substances such as toxins and pathological
microorganisms [22].

Currently, 67.4% of clinical trials involving gene therapy are for cancer indications [23].
In solid tumours, in order to reach the cancer cells, gene therapeutics must go through
a dense extracellular matrix formed mainly of collagen secreted by cancer-associated
fibroblasts [24]. Moreover, the high interstitial fluid pressure (IFP) in solid tumours due to
the leaky vasculature, the lack of lymphatic drainage and the rapid growth of cancer cells
presents a barrier for the uptake of drugs, especially high molecular weight molecules such
as gene therapeutics [25].

Furthermore, gene therapeutics must cross the complex molecular structure of the
cellular membrane. Nucleic acids are high molecular weight molecules. Because of the
phosphate group in their backbone, they are negatively charged and thus, highly soluble
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in water. These characteristics make them unable to cross biological membranes. The
main mechanism of cellular internalization is endocytosis [26,27]. Gene therapeutics are
internalized to intracellular vesicles called endosomes, which contain many digestive
enzymes that can degrade nucleic acids. Moreover, endosomal pH acidifies progressively
as they transition from early to late endosomes and finally to lysosomes, nucleic acids,
especially DNA, are not stable at such a low pH [28]. Therefore, gene therapeutics must
escape the endosomal pathway in its early stage to avoid being exposed to low pH and
catalytic enzymes.

Finally, RNA-based gene therapeutics, such as silencing RNAs, find their site of action
in the cytoplasm. On the contrary, DNA-based gene therapy strategies need to reach the
nucleus, getting through a double nuclear membrane or a nuclear pore to find their target.

Consequently, the need for a delivery system that allows gene therapeutics to reach
their site of action, avoid degradation, cross cellular membranes, escape or avoid the
endosome and reach the nucleus is evident.

4. Gene Delivery Systems

Many delivery systems are being developed to accomplish a safe and effective delivery
of gene therapy products (Figure 2). The potential of gene therapy as a treatment for many
diseases has been known for a while, but the lack of optimal delivery systems has hindered
its presence in the clinic.
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4.1. Viral Vectors

An ideal viral vector is genetically stable, safe to handle, non-toxic for host cells, has
a high packaging capacity and transduction efficiency, and does not elicit an immune
response. Several viruses, such as retroviruses, lentivirus, adenovirus and adenovirus-
associated viruses (AAV), have been widely studied to deliver gene therapeutics in diverse
applications. Each of them has its unique characteristics, which affect their use as vehicles
in gene therapy [29].

Although viral vectors have high transfection efficiency, several obstacles had been
reported that compromise their use as delivery systems. It has been proved that adenovirus
delivery systems can trigger host immunogenicity and cellular toxicity [30]. Integrating
viral vectors, such as lentivirus and retrovirus vectors, fuse a fragment of their genetic
material into the host cell genome, that increase the probability of insertional mutagenesis,
which can lead to carcinogenesis, a drawback to adopt retroviruses and other integrating
viral vectors as vectors for gene therapeutics [31–33].

Adenovirus-associated viruses (AVV) are viral systems that can infect a broad range
of hosts, including dividing and non-dividing cells, without integrating with the host
genome. Thus, the genetic material remains episomal. The main advantage is the low
risk of genotoxicity, caused by insertional mutagenesis. Non-integrating viral vectors can
provide stable transgene expression in non-dividing postmitotic cells, such as neurons, and
transient or stable expression in dividing cells. If the stable expression in dividing cells
is required, repeated dosing of non-integrating vectors may be an option, as long as the
immune response can be managed. One limitation of AAV vectors is their small packaging
size (~5.0 kb) compared with other viral vectors. However, several strategies have been
investigated to enable the delivery of a large therapeutic gene [34].

4.2. Physical Methods

Non-viral gene delivery systems can be divided into physical and chemical techniques.
Physical methods take advantage of physical phenomena that disrupt the cellular mem-
brane and allow for the internalization of the genetic material. Physical methods include
techniques, such as needle injection, in which naked DNA is directly injected through a
syringe. This hydrodynamic injection is surprisingly effective for the in vivo transfection of
genetic material into mice. [35]. Less invasive and new variants of this technique have been
developed. These include the use of microneedles to deliver genetic material intradermally
or in vivo intracellular injections for applications that only require the local uptake of small
quantities of genetic material, such as vaccines [36,37].

Particle bombardment or gene gun is also a physical technique used to deliver gene
therapeutics. In this method, gold nanoparticles are coated by DNA and propelled by
pressurized helium gas against the target tissue. These accelerated particles can penetrate
through cell membranes and several layers of cells in tissues [38,39].

Laser-assisted nucleic acid delivery is a technique in which laser energy creates mi-
croscopic holes in the cell membrane, enabling the genetic material’s internalization. An
advantage of this technique is the ability to control the area of treatment and the energy
delivered by modulating the laser wavelength and the duration of laser pulses [40,41].

Other techniques that use physical phenomena to facilitate gene delivery are electro-
poration and sonoporation, which induce pore formation and transient permeability using
electric pulses or ultrasound, respectively [42,43]. Physical methods are attractive because
of their low immunogenicity compared to viral vectors, but they can cause tissue damage.

4.3. Chemical Methods
4.3.1. Organic Strategies

Chemical methods can be divided into organic and inorganic strategies. Organic
strategies mainly include the use of cationic lipids or polymers that interact with negatively
charged nucleic acids. Lipid-based drug delivery systems are one of the most attractive
non-viral vectors for delivering of gene therapeutics as several formulations of these
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carriers have been approved by the FDA and EMA to deliver different drugs [44,45].
These systems take advantage of the self-assembling properties of amphiphilic lipids,
such as phospholipids, to generate carriers that protect nucleic acids. Lipoplexes are
electrostatic complexes spontaneously formed when liposomes composed of cationic lipids
such as DOTAP (dioleoyl-3-trimethylammonium propane) interact with negatively charged
oligonucleotides [46,47]. However, liposomes are highly dynamic systems that lack stability,
which can significantly impact nucleic acid encapsulation, causing the genetic material’s
release before its arrival to the site of action.

After the recent success of SARS-CoV-2 vaccines, lipid nanoparticles have become
widely known vectors for delivering genetic material [48,49]. These spherical vesicles are
composed of ionizable lipids that, due to their positive charge at low pH, allow the interac-
tion with nucleic acids through electrostatic forces and the endosomal escape once they
are internalized by cells. In addition, these lipids are neutral at physiological pH, which
reduces their toxicity and immunogenicity. As a result, lipid nanoparticles have allowed for
the delivery of the first RNAi therapeutic approved by the FDA [50]. Additionally, it has
been demonstrated that lipid nanoparticle systems can deliver CRISPR/Cas9 components
to achieve clinically relevant levels of genome editing in vivo [51].

Exosomes are extracellular vesicles naturally secreted by numerous cells with a size
range of 40 to 160 nm in diameter. These vesicles mediate intercellular communication by
interchanging many different cell components, including DNA, RNA, proteins and other
metabolites between cells. Their natural biocompatibility and minimal immune clearance
have driven extensive research to exploit these carriers as gene delivery vectors [52,53].
Exosomes differ from liposomes in that exosomes have a more complex composition. In
addition, their lipid membrane is rich in proteins that allow for more specific targeting and
provides higher stability [54]. However, the use of these systems as gene delivery vectors
is hindered by difficulties in production, isolation and purification.

Polymer-based systems have also been widely studied for the delivery of gene ther-
apeutics. Positively charged polymers, such as poly-ethylenimine (PEI) or chitosan, can
form nanoparticles, called polyplexes, upon interaction with negatively charged nucleic
acids [55]. In addition, novel polymerizable pH-sensitive surfactants are being developed.
These carriers can form stable nanoparticles with nucleic acids and disrupt membranes in
a pH-sensitive manner, enabling endosomal escape [56]. Lipoplexes and polyplexes can
achieve high in vitro transfection. However, their use in vivo is hindered by their toxicity
and immunogenicity [57–61].

Most of these systems have a positively charged surface leading to interaction with
negatively charged membranes and proteins in physiological media. The positively charged
surface consequently prompts the recognition and uptake of these systems by phagocytic
cells and results in activation of the immune response [62].

Novel gene delivery systems are being developed within the cutting-edge field of DNA
and RNA nanotechnology. Nucleic acid molecules can now be produced and manipulated
easily and have great structural flexibility. The specific sequences of these molecules can be
designed to predictably fold by complementarity into specific shapes and self-assemble into
supramolecular modular structures [63,64]. DNA and RNA nanostructures are naturally
biocompatible and negatively charged, which minimizes toxicity and off-target effects.
Chemical modifications that have been introduced in the nucleic acid backbone confer
resistance to degradation by nucleases [65].

4.3.2. Inorganic Strategies

Inorganic nanomaterials are an emerging tool for therapeutic delivery because of
their different structural and physical properties. Nanostructures’ size, shape and surface
can be tailored depending on their needs, making them a helpful approach in almost
every gene delivery case [66]. Inorganic nanoparticles present unique optical, physical,
electrical and magnetic properties, depending on the base material. Gold nanoparticles,
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magnetic nanoparticles, carbon nanotubes, quantum dots and silica nanoparticles are the
most commonly used for gene delivery or as a therapeutic tool [67–69].

Gold Nanoparticles (AuNPs)

AuNPs exhibit photothermal properties, which are used as a biomedical application
in different diseases such as cancer [70]. There are several types of AuNPs depending on
the shape, such as nano-spheres, nano-rods, nano-stars, nano-shells and nano-cages. These
nanoparticles are the most studied because of their (I) high biocompatibility, (II) ease of
surface modification, (III) ability to conjugate with biological ligands, such as polymers
or genetic material, (IV) ease of molecular imaging. The AuNP surface can be treated to
improve its stability and specificity and to reduce aggregation. Functionalized AuNPs
are used for gene transfection and silencing, targeted drug or gene delivery, intracellular
detection, bioimaging, cancer studies, and as biosensors [71–74]. Unveiling the applications
of AuNPs depending on the size and shape to design the most accurate delivery system is
still a challenge that needs to be further explored.

Magnetic Nanoparticles (MNPs)

MNPs are synthetically produced using mainly two approaches: (I) breaking down
materials to the nanoscale size and (II) forming MNPs from the nucleation of atoms and
growth process. In addition, MNPs can be functionalized with different moieties to target
specific cells or molecules. Thus, there are two main mechanisms of delivery: (I) passive
targeting that occur via enhance permeability and retention and (II) active targeting, which
targets the desired localization by functionalizing the MNP or using a magnetic field. (see
“What happens when nano enters the body?”).

Usually, in biomedicine, the core of the MNPs is made by magnetite (Fe3O4) or
maghemite (γ-Fe2O3) which is synthesized chemically, and finally, the base material is
coated to ensure the colloidal stability and the specificity of the MNP. The properties
of the MNPs strongly depend on the shape and the size of the nanoparticles. MNPs
are a promising therapeutic tool that could be used in several medical approaches, such
as (I) targeted drug delivery in cancer theranostic, (II) MRI-assisted drug delivery, (III)
magnetically guided drug delivery, and (IV) stimuli-responsive drug delivery, although
more research is needed to optimize the delivery methodology in combination with the
detection modality [75–78].

Carbon Nanotubes (CNT)

CNTs are rolled-up sheets of carbon atoms that form single or multi walled cylinders.
They exhibit exceptional electrical, thermal, mechanical and optical properties. CNTs are
highly hydrophobic, and the shape tends to form bundles altogether, contributing to cell
toxicity. However, functionalizing the CNT surface seemed to reduce its toxicity either via
covalent or non-covalent modifications.

One of the multiple advantages of using CNTs is the large loading capacity compared
to spherical shape nanomaterials. The ease functionalization allows CNTs to be targeted
to specific cells or molecules. Moreover, they allow for multiple functionalization which
is a useful property in terms of targeting and delivery. Another characteristic of CNTs is
their ability to absorb light at an infrared wavelength which could be useful for tracking
the delivery and for imaging. CNTs offer high loading capacity, improved biocompatibility,
targeting and tracking ability. This combination of properties makes them an excellent
nanomaterial for gene delivery with great potential in nanomedicine [79,80].

Quantum Dots (QDs)

Conventional QDs are semiconductor crystals with unique optical and electronic
properties that depend on their size and shape. Since different types of QDs can be
excited with the same wavelength and emit light at different wavelengths depending on
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the material, shape, and size. This property has led to the development of many QDs
formulations [81,82].

The multiple characteristics such as high brightness, resistance to photobleaching,
multiplexing capacity, and high surface-to-volume ratio make them excellent candidates
for intracellular tracking, diagnostics, in vivo imaging, and therapeutic delivery. QDs
have been used to facilitate gene therapy through intracellular delivery and imaging
of treatment with small interfering RNA (siRNA). On the other hand, QDs show several
limitations: low aqueous solubility, complicated surface chemistry, low biological specificity,
poorly controlled biodistribution to target tissues, and the potential for severe long-term
toxicity [82,83].

A new group of QDs, called natural carbon-based quantum dots (NQDs), has recently
emerged in the biomedical field. These novel QDs are natural carbon QDs that exhibit
several advantages: abundance, eco-friendly nature, aqueous solubility, photo-stability,
diverse functionality, and biocompatibility in comparison with other conventional quantum
dots (CQDs). Based on their advantages, multiple NQD applications, focused on drug
delivery, have been developed. These include their use as sensing and tracing probes,
photo-activated antimicrobial agents, anticancer drug delivery systems, antioxidants, and
sensors for neurodegenerative diseases [84].

Mesoporous Silica Nanoparticles (MSNs)

MSNs have large pore volume and area, tuneable pore size and shape, robustness, and
facile surface functionalization. These advantages make MSNs an amenable nano-system
to carry small and large molecules such as proteins or even DNA. Although MSNs are
hardly degraded in the body, it seems that MSNs exhibit low toxicity and are biocompatible.
Nevertheless, variations of their shape, size, surface chemistry, administration dose and
functionalization, can have a great impact on their toxicity. MSNs are promising delivery
systems that have been used for (I) improvement of drug solubility, (II) selective targeting
for localized therapy, (III) controlled dosage and smart behaviour (internal and external
stimuli-responsive drug delivery) and (IV) theranostics [85,86]. (See “Future perspectives
on nanotechnology-based gene delivery”.)

In the field of inorganic nanoparticles, there are other emerging methodologies, such
as nanodiamonds. Because of their inexpensive, large-scale synthesis, the potential for
surface functionalization, and high biocompatibility, nanodiamonds are being investigated
as a potential material in biological applications [87]. Improving the current delivery
systems to avoid toxicity and enhance the delivery process and finding new inorganic
nanoparticles suitable for gene delivery is still a challenge.

5. What Happens When Nano Enters the Body?
5.1. Protein Corona

When nanotechnology-based delivery systems reach systemic circulation, they interact
with the biomolecules present in blood, mainly with proteins that bind to the nanoparticle
surface and form the so-called protein corona (Figure 3a) [88]. Protein absorption is
governed by van der Waals, hydrophobic and electrostatic forces. The composition of this
protein corona is highly dynamic and dependent on the charge, size and hydrophobicity of
the nanoparticle surface [89].

Depending on the composition, the protein corona can have different effects on the
fate of nanoparticles. Some proteins, such as complement factors and immunoglobulins,
called opsonins, can facilitate the uptake of nanoparticles by the phagocytic system leading
to a decreased half-life and the activation of the immune response [90,91]. Opsonisation
induces nanoparticle uptake by the mononuclear phagocyte system, including Kupffer cells
and macrophages in the liver and spleen. Opsonisation leads to an evident biodistribution
of nanoparticles that accumulate in these organs.
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On the contrary, protein corona formation can have certain advantages if formed
by specific proteins. It can help the nanoparticle evade the immune system because, if
non-immunogenic self-proteins envelop the nanoparticle, it will hide the nanoparticle’s
surface and not trigger an immune response. The protein corona, in some cases, can also
increase the uptake of the nanoparticles by target cells. For example, if the nanoparticle is
coated with albumin, this can increase internalization into cancer cells. Tumours naturally
uptake higher quantities of albumin than normal cells because they need nutrients to
sustain their rapid growth [92]. Furthermore, it is possible to modulate the surfaces of
nanoparticles to increase interaction with selected proteins such as albumin [93].

Nanoparticles with a hydrophobic or positively charged surface tend to be opsonized
more efficiently in the bloodstream. Thus, it is desirable to avoid forming the protein
corona to provide stealthiness to the nanoparticles and avoid recognition and uptake by
macrophages in most cases. The primary strategy to achieve stealthiness is by grafting
polyethylene glycol (PEG) to the surface of nanoparticles. PEG is a hydrophilic polymer that
sterically reduces the interaction of proteins with the nanoparticle surface, increases circula-
tion time by preventing macrophage uptake and increases nanoparticle stability, avoiding
aggregation. The PEGylation of proteins and oligonucleotides has been widely used, and it
has been approved by the Food and Drug Administration (FDA) [94]. However, it has been
recently reported that PEG can be immunogenic, and individuals treated with PEGylated
compounds can produce antibodies against PEG. The presence of anti-PEG antibodies can
increase drug clearance and cause hypersensitivity and severe side effects [95]. Therefore,
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several alternatives to PEG are being developed, such as polysarcosine, a biodegradable,
more biocompatible, less immunogenic polypeptoid [96].

5.2. Active and Passive Targeting

Furthermore, the protein corona is not the only reason that nanoparticles tend to
accumulate mainly in the liver, but also their natural size. The liver and spleen have a
discontinuous endothelium that allows for the extravasation of nanoparticles without
having to cross this barrier. This fenestrated vasculature is also characteristic of most
solid tumours. The process of creating new blood vessels, called angiogenesis, which
happens in most solid tumours, is far from perfect and leads to the presence of similar
gaps in the endothelium. Nanoparticles are thus able to easily extravasate and enter the
tumour. Moreover, the lack of lymphatic drainage facilitates nanoparticle accumulation.
This phenomenon is called the enhanced permeation and retention (EPR) effect and was
discovered by Maeda in 1989 [97]. Even though the EPR has been widely used for passive
targeting of nanoparticles, its effectiveness has recently aroused substantial controversy.
Recently, clinical and preclinical studies have established the heterogeneity of this phe-
nomenon [98]. The EPR effect in tumours differs depending on their tissue of origin, size
and vascular density. The high tumour interstitial fluid pressure and complex extracellular
stroma (Figure 3b), characteristic of most solid tumours, can negatively impact the passive
targeting of nanoparticles. Recently, it has been demonstrated that an active delivery
mechanism based on cellular transcytosis may be more dominant than passive EPR-based
nanoparticle accumulation, thus creating a strong need for in vivo nanoparticle delivery
and tumour penetration. These results challenge our current methods for developing
cancer nanomedicine and suggest that understanding these active pathways will unlock
strategies to enhance tumour accumulation [99,100].

To selectively deliver gene therapeutics to organs other than the liver, spleen or solid
tumours, it is essential to consider alternative targeting strategies. A widely studied ap-
proach to increase nanoparticle uptake by targeted cells is active targeting. It consists of
grafting targeting moieties to the nanoparticle surface, such as antibodies, aptamers, pep-
tides, sugars or other biomolecules that are recognized by receptors differentially expressed
on the surface of the targeted cells [101]. Nanobodies are a new type of targeting moieties
being developed; these are single-domain antibodies that are more stable and versatile
than traditional antibodies and display much lower intrinsic immunogenicity [102].

5.3. Internalization and Intracellular Trafficking

The interaction of targeting moieties with receptors on the cellular membrane usually
triggers nanoparticle internalization via endocytosis. Endocytosis is a cellular process
by which invaginations of the cellular membrane are formed, engulfing extracellular
substances that then become vesicles that enter the cell’s cytoplasm (Figure 3c). There
are different pathways by which endocytosis occurs. One of them is micropinocytosis, a
non-selective uptake in which a large volume of extracellular fluid is internalized in large
endocytic vesicles, called macropinosomes. Another endocytosis mechanism is clathrin-
mediated endocytosis; this is a selective process in which vesicles of an average size of
120 nm are formed and follow the endo/lysosomal route. Thus, particles internalized
by this mechanism require an endosomal escape strategy. Furthermore, endocytosis can
be caveolae-dependent, which is also a selective mechanism. In this case, invaginations
have an average size of 50–60 nm and, when internalized, form a caveosome, which
bypasses the endo/lysosomal pathway, and are delivered to the endoplasmic reticulum
and nucleus. Finally, endocytosis can be clathrin- and caveolae-independent, a poorly
understood pathway [103].

As previously mentioned, nanoparticles internalized by clathrin-mediated endocytosis
are directed to intracellular vesicles, known as endosomes. The pH in these vesicles acidifies
as they transition from early to late endosomes and finally to lysosomes. For example, early
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endosomes have a pH of 6–6.5, whereas in lysosomes the pH ranges from 5 to 4.5. At this
pH, hydrolases are activated and degrade proteins and nucleic acids.

In order to avoid the degradation of gene therapeutics and allow them to reach their
intracellular target, several strategies to escape endosomes in the early stage are being
developed. These include the use of fusogenic lipids in liposome formulations [104] or
encapsulating nucleic acids in pH-sensitive lipoplexes or polyplexes, which are able to
disrupt biological membranes when the pH acidifies [105–107]. Other strategies include
the functionalization of nanoparticles with cell-penetrating peptides (CPPs), short peptides
that facilitate cellular uptake, such as the TAT peptide discovered from the HIV-1 Tat
protein [108]. CPPs usually contain either positively charged amino acids, polycationic
peptides, alternating polar and non-polar amino acids, amphipathic peptides or non-polar
amino acids, hydrophobic peptides [109]. In addition, pH-sensitive molecules that are
protonated at acidic pH have also been used to facilitate the endosomal escape of nanopar-
ticles. These molecules become amphiphilic in acidic pH and interact with membrane
phospholipids and introduce high buffering capacity that causes membrane disruption
by the proton-sponge effect [56]. However, these mechanisms are non-selective, and they
often present toxicity issues. Thus, there is a need to develop nanoparticles that allow
alternative internalization mechanisms.

5.4. Nanoparticles Pharmacokinetics and Clearance

Even though several strategies are being studied to develop biodegradable inorganic
nanoparticles, most of the materials used nowadays do not degrade in the body. Therefore,
it is essential to understand the clearance pathways to avoid bioaccumulation [110,111].

Nanoparticles physicochemical properties can influence their clearance from the circu-
lation, but it is highly dependent on the interactions with the MPS or reticuloendothelial
system [71]. Cationic nanoparticles are generally most rapidly cleared in terms of sur-
face charge, followed by anionic nanoparticles, whereas neutral and slightly negative
nanoparticles have the most prolonged half-lives in circulation. Some nanoparticles de-
signs implement surface modifications such as peptides, PEG, or cell membrane coatings
to reduce these interactions with phagocytic cells [18]. Relating their size, for example,
nanoparticles with a diameter less than 10 nm have generally been shown to be rapidly
eliminated by the kidneys, whereas nanoparticles larger than 200 nm risk activating the
complement system [112,113].

For inorganic nanoparticles, size, shape, charge, and surface functionalization can be mod-
ified, enabling tailored designs to obtain more desirable pharmacokinetic profiles [114,115].

6. Future Perspectives on Nanotechnology-Based Gene Delivery

Nanotechnology-based gene delivery for gene therapy represents a significant step
towards personalized medicine, creating a change in our ability to treat and potentially
even cure many intractable illnesses. Each gene therapy is designed based on detailed
information about the roots of a patient’s disease. Since gene therapy emerged as a potential
approach for personalized medicine, the urge to develop a system with the capacity of
cell/tissue selective targeting and delivery of therapeutic genetic material has become of
significant priority [116,117].

Nowadays, nanotechnology-based delivery systems are starting to be commonly
used for gene therapy. One of the main advantages is their incredible versatility. Because
of their high surface to volume ratio, nanoparticle surfaces can be functionalized with
multiple moieties that allow them to be carriers of gene therapeutics and encompass other
capabilities (Figure 4). For example, grafting specific ligands to the nanoparticle’s surface,
such as transferrin, may allow them to cross the blood–brain barrier and deliver gene
therapeutics to the central nervous system, which currently presents a significant challenge.
This versatility allows nanoparticles to be used for various applications, such as in cancer
treatment [118].
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One of the most critical applications for nano-base gene delivery is the use of nanopar-
ticles in genetic-based vaccines [119,120]. The use of particles as nanoplatforms displaying
relevant antigenic moieties is appealing as an alternative approach to conventional vac-
cines. Many particles are currently evaluated as antigen carriers, including inorganic
and polymeric nanoparticles, virus-like particles (VLPs), liposomes, and self-assembled
protein nanoparticles. The advantages of these materials reside primarily in their size.
Incorporation of antigens in nanoparticles can be achieved by encapsulation (physical
entrapment) or by conjugation (covalent functionalization) [121]. Studies have demon-
strated that nanoparticles could protect the native structure of antigens from proteolytic
degradation and improve antigen delivery to antigen-presenting cells (APCs) [122].

Nanoparticles can be administered via subcutaneous and intramuscular injections or
can be delivered through the mucosal sites (oral and intranasal) and penetrate capillaries
as well as mucosal surfaces [123].

In addition, nanoparticles incorporating antigens can exert a slow local release of
antigens when attracting antigen-presenting cells relative to a fast release, ensuring pro-
longed antigen presentation to immune cells. A new framework for vaccine adjuvant
development [124].

For instance, nanoparticles such as carbon nanotubes (CNTs), carbon black nanoparti-
cles, poly (lactic-co-glycolic acid) (PLGA) and polystyrene nanoparticles, titanium dioxide
(TiO2) nanoparticles, silicon dioxide (SiO2) nanoparticles, and aluminium oxyhydrox-
ide nanoparticles have been reported to induce NLRP3-associated inflammasome activa-
tion [125]. Overall, nanoparticles are promising antigen carriers and immune cell activators
for vaccination.

Like in the case of vaccine and cancer delivery systems, one of the most relevant
advantages of nanotechnology-based systems is that they can deliver their cargo in response
to specific internal or external stimuli. This behaviour is called “smart”, and it refers to
the ability of these systems to control the release of the therapeutic agents in space and
time [126]. These stimuli can be physical, such as temperature, electric and magnetic fields
or light. For instance, superparamagnetic nanoparticles can increase their temperature
under an alternating magnetic field. This controlled temperature increase can trigger
localized hyperthermia and the release of gene therapeutics [127]. In addition, AuNPs have
been engineered to serve as targeted delivery vehicles, molecular probes and sensors. Their
small size and surface characteristics enable them to access the tumour microenvironment
(TME). Moreover, the stimuli-responsive properties (response to hypoxia and acidic pH)
of nanoparticles to TME enable the development of AuNPs as potential therapeutic and
diagnostic tools [128].

Additionally, these stimuli can have a chemical nature, including pH and redox state,
which can trigger the release of gene therapeutics. For example, this strategy can be
used when targeting tumours. The extracellular tumour microenvironment has a slightly
more acidic pH than normal tissue due to its unique cellular metabolism that favours
fermentation. Thus, nanoparticles tuned to release genetic material at this pH can target
tumours selectively [129].

Different biomolecules and enzymes can also facilitate the release of gene therapeutics
from their carrier. For example, glutathione, which is 100 to 1,000 times higher in intracel-
lular than extracellular environments, can be used to release the genetic material [130]. In
addition, enzymes specifically present in the targeted tissue or cell types can also be used
to trigger gene release at specific sites [131].

Furthermore, nanoparticles allow for combination therapy, a treatment modality that
combines two or more therapeutic agents. The basis of, for instance, a more efficient cancer
therapy [132]. Moreover, these multifunctionality characteristic of nano-systems allow
the combination of therapy with diagnostics. This strategy is called theranostics and can
be achieved mainly with inorganic nanoparticles. For example, super-paramagnetic iron
oxide nanoparticles and magnetic mesoporous silica nanoparticles can be used as contrast
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agents for MRI and can deliver gene therapeutics, making them great theranostic agents
for solid tumours [133–136].
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Although there is no doubt that novel nanotechnological methods for gene delivery
will rapidly improve our current capability, some limitations are still to be resolved for
their use as gene delivery systems, such as potential toxicity and low transfection efficiency.
Undeniably, the further understanding of different cell metabolism, cell structure and
microenvironment, the development of novel nanomaterials with specific properties at the
nanoscale will be essential to overcome these limitations.
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