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ABSTRACT Pulmonary hypertension (PH) is an often-fatal vascular disease of unclear molecular origins.
The pulmonary vascular remodelling which occurs in PH is characterised by elevated vasomotor tone and a
pro-proliferative state, ultimately leading to right ventricular dysfunction and heart failure. Guided in many
respects by prior evidence from cancer biology, recent investigations have identified metabolic aberrations as
crucial components of the disease process in both the pulmonary vessels and the right ventricle. Given the
need for improved diagnostic and therapeutic options for PH, the development or repurposing of metabolic
tracers and medications could provide an effective avenue for preventing or even reversing disease progression.
In this review, we describe the metabolic mechanisms that are known to be dysregulated in PH; we explore
the advancing diagnostic testing and imaging modalities that are being developed to improve diagnostic
capability for this disease; and we discuss emerging drugs for PH which target these metabolic pathways.

Introduction
Pulmonary hypertension (PH) is characterised by pulmonary vasculopathy with resulting elevations of
pulmonary arterial pressure. Based on the current World Health Organization clinical classification system,
PH is divided into five groups based on presumed molecular aetiologies, clinical associations and
histopathology [1]. Group 1 comprises a severe form of this disease, termed pulmonary arterial
hypertension (PAH). The other groups encompass a much larger global population, reflecting a wide
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variety of conditions, such as left heart disease, hypoxic pulmonary diseases, thromboembolic conditions
and multifactorial aetiologies.

PH and particularly PAH are morbid and fatal conditions. Current diagnostic approaches rely upon
invasive haemodynamic assessment, which is not readily available worldwide. Furthermore, clinical
discernment of the histological development of this disease at the level of pulmonary vascular remodelling
is currently not feasible in a living patient. Because of these points and others, late diagnoses are common
and portend an ominous prognosis [2, 3]. Advances in the treatment of PAH over the past two decades
have resulted in clinical improvement in many patients, but PAH remains incurable. Accordingly, there is
an ongoing search for new therapies and drug targets beyond the prostacyclin, nitric oxide and endothelin
signalling pathways. Additionally, there are no approved drugs for treating PH due to left heart disease or
hypoxic lung disease, which comprise the largest population of patients with PH worldwide.

The molecular origins of PH are theorised to promote remodelling of the pulmonary vasculature,
characterised by hyperproliferation and increased cellular survival [4]. Over the past 15 years, metabolic
dysregulation has emerged as a leading candidate in the quest to identify the molecular drivers of
pathogenesis. Metabolic alterations in affected vascular and cardiac tissues of PH patients have been
observed, notable even during the development of disease rather than just at the end-stages [5, 6]. In the
context of hereditary cases of PAH, genetic haploinsufficiency of the bone morphogenetic protein receptor
2 (BMPR2), a gene which is strongly associated with the pathogenesis of PH but with variable penetrance,
has been linked to metabolic reprogramming [7]. Of particular note, in mice harbouring BMPR2
mutations, almost half of the genes that were differentially expressed in BMPR2+/- mutant cells compared
with controls were classified into metabolic gene ontology groups [8]. Furthermore, emerging evidence has
indicated a link between metabolic dysfunction and autoimmune diseases such as scleroderma [9] and
infectious pathogens such as HIV [10] which predispose patients to the development of PAH.

A major tenet of the observed metabolic changes in PAH is the shift from oxidative phosphorylation to
glycolysis, known as the Warburg effect. This phenomenon is frequently observed in tumour tissue, but
has also been reported in pulmonary vasculature cells and the failing right ventricle in PAH patients. Even
beyond the Warburg effect, the proliferative, anti-apoptotic and glycolytic processes seen in diseased PAH
vessels demonstrate parallels with the cellular phenotypes observed in cancer [4, 11–14]. More recent
studies have linked anaplerosis and glutaminolysis (anabolic pathways that promote the production of
cellular biomass for highly proliferative tumour cells [15]) to the hyperproliferative state of PAH [16]. Yet,
the true extent of the metabolic commonalities between PAH and cancer is not yet known. Furthermore,
whether other subtypes of PH exhibit similar metabolic alterations to PAH and to cancer remains unclear.
In this review, we discuss the current state of knowledge of the dysregulated metabolic mechanisms (figure
1), in part informed by parallels to cancer, that contribute to the development of PH. In addition, we
explore how such insights are shaping diagnostic testing in order to detect the disease earlier and more
accurately. Finally, we discuss ongoing efforts in targeting these pathways for therapeutic benefit in PH.

Molecular insights into metabolic dysfunction in PH: above and beyond the Warburg
effect
Hypoxia-inducible factor and downstream metabolic effectors relevant to the Warburg effect
Hypoxia-inducible factor (HIF) is a transcription factor and master hypoxic regulator, controlling
metabolic reprogramming in response to low oxygen levels. HIF has a well-described role in the
pathogenesis of PAH and hypoxia-induced PH with probable contributions to other PH subtypes [17]. In
all metazoan cells, exposure to low oxygen tension inhibits the proteasomal degradation of the HIF-1α/
HIF-2α subunit via alteration of proline hydroxylation within HIF. This stabilised HIF-1α/HIF-2α subunit
then translocates to the nucleus, heterodimerises with HIF-1β and binds to the promoters of hundreds of
genes. Additionally, HIF-dependent processes, both directly and indirectly, are integrally related to
numerous proliferative and survival genes and pathways implicated in PAH, including p53, leptin,
caveolin-1 and PTEN, among others [18]. Evidence of the pathogenic importance of HIF in PH has been
derived from several animal models, as previously reviewed [19]. For example, mice with heterozygous
genetic deficiencies for either the HIF-1α or HIF-2α subunit display resistance to the development of
hypoxia-induced PH. More recently, it was reported that constitutive activation of HIF-2α in pulmonary
arterial endothelial cells via genetic knockout of prolyl-4 hydroxylase 2 (Egln1) resulted in profound
obliterative PAH in mice [20]. In humans, HIF activation under normal oxygen tension has been observed
in pulmonary vascular cells from PAH patients. Recently, a genetic variant of HIF-2α has been identified
that displays increased prevalence in high-altitude PH cattle compared with unaffected cattle [21], thus
providing rare genetic evidence of the importance of HIF in the development of PH.

Among the first HIF-responsive genes implicated in the Warburg effect in PH is the mitochondrial
enzyme pyruvate dehydrogenase kinase (PDK). This enzyme is well established as a gatekeeper of
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oxidative metabolism, and its expression is known to be increased in response to hypoxia and in PAH [4].
Elevated levels of PDK lead to phosphorylation and inhibition of the enzyme pyruvate dehydrogenase,
which in turn shunts pyruvate into glycolysis and induces the conversion of glucose to lactate by anaerobic
respiration. In order to reverse the Warburg effect and thus improve PH manifestations, the drug
dichloroacetate (DCA), an inhibitor of PDK originally developed as a cancer treatment, has been
evaluated. In a number of animal models of PH, the use of DCA has demonstrated robust efficacy [22–25].
The effects of DCA in advanced human PAH have yet to be reported.

Alterations to the tricyclic acid (TCA) cycle and its intermediates can stabilise HIF. For example,
α-ketoglutarate (KG) is a cofactor for prolyl hydroxylation and HIF degradation [26]. In addition, the
TCA enzyme isocitrate dehydrogenase (IDH) has been reported to be elevated in the serum of PAH
patients and in pulmonary microvascular endothelial cells derived from individuals carrying BMPR2
mutations [27]. IDH converts α-KG into isocitrate, with increased IDH activity leading to reduced
availability of α-KG for HIF hydroxylation. This reduces the rate of HIF degradation and increases the
expression of HIF-responsive genes. Other TCA metabolites can inhibit prolyl hydroxylation and activate
HIF. For example, hypoxia increases the rate at which α-KG is reduced to 2-hydroxyglutarate (2HG), and
the enantiomers L2HG and D2HG can inhibit prolyl hydroxylation of HIF [28]. In human pulmonary
vascular cell types, hypoxia increases L2HG levels, thus controlling glycolysis and oxidative
phosphorylation [29]. The influence of TCA cycle intermediates has epigenetic implications, as acetylation
and methylation of nuclear histones are regulated by citrate and α-KG, respectively [28, 30]. Notably, the
epigenetic inhibitors valproic acid and suberoylanilide hydroxamic acid (vorinostat) ameliorated PH in a
rat model [31], supporting the concept that downstream metabolic pathways are potential therapeutic
targets for PH, at least in part.

Control of iron handling has also emerged as a key pathway implicated in HIF biology and the Warburg
effect, and iron deficiency has previously been reported in PAH populations [32, 33]. Specifically,
microRNA-210 (miR-210), a transcriptional target of HIF, was found to downregulate expression of the
iron-sulfur (Fe-S) cluster assembly proteins (ISCU) 1 and 2 [34]. These are involved in the assembly of
Fe-S clusters, which are prosthetic groups incorporated into enzymes involved in cellular redox signalling
[35]. Hypoxic repression of ISCU1/2 via miR-210 decreased Fe-S-dependent mitochondrial respiration in
favour of glycolysis in pulmonary arterial endothelial cells, thereby promoting PH in rodent models [36].
Importantly, a female with a genetic deficiency in ISCU1/2 was found to suffer from exercise-induced PH,
offering evidence to support a role for Fe-S clusters in the development of PH. This relationship between
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Fe-S deficiency and PH is also supported by epidemiological data showing that histological manifestations
of PAH occur in infants with a genetic deficiency in NFU1, another Fe-S cluster assembly protein [37].
More than 30 Fe-S biogenesis genes have been identified in mammalian cells [35], and it is likely that
several others also contribute to the Warburg effect in PH.

Iron can directly regulate expression of HIF-1α and HIF-2α. Prolyl hydroxylases that regulate HIF protein
stability are dependent upon iron and oxygen as cofactors. Iron deficiency decreases such hydroxylase
activity and promotes HIF stability [38, 39]. In vivo, iron-deficient rats have been found to display HIF
upregulation, accompanied by decreased mitochondrial activity, increased glycolytic activity and
substantial pulmonary vascular remodelling. These alterations were reversed with iron replacement therapy
[40]. Iron deficiency also was found to be associated with elevated hepcidin [33], which in turn can
predispose to PAH and could serve as an additional therapeutic target. Furthermore, iron-regulatory
proteins such as Irp1 are known to be influenced by both iron levels and hypoxia. Irp1-deficient mice
develop PH and in pulmonary endothelial cells from these animals, increased HIF-2α protein levels were
observed compared with cells from wild-type animals [41]. Notably, iron-specific biology may be
context-specific and/or dose-dependent, given the reported predisposition to PH in sickle-cell patients
with iron overload [42]. Nonetheless, iron replacement therapy is currently under study as a therapy for
PAH (NCT01447628), and drugs that inhibit miR-210 or Fe-S cluster biogenesis, or activate Irp1 (i.e.
tempol) [43], could represent future PH therapies.

Independent of HIF, additional molecules have been identified that control glucose metabolism in the
remodelled arteries of PH. Peroxisome proliferator-activated receptor (PPAR)γ is a nuclear hormone
receptor and transcription factor. In pulmonary vessels, PPARγ is vasoprotective [44]. Furthermore, in
pulmonary artery smooth muscle cells (PASMCs) from PAH patients and in PH rodents, decreased
BMPR2-PPARγ signalling has been reported [45, 46] and has led to PH and right ventricular (RV)
hypertrophy in animals [46]. This metabolic connection of PPARγ with BMP signalling further correlated
with studies of BMPR2 activity in regulating mitochondrial biogenesis and membrane potential, thus
promoting a pro-proliferative state [7]. PPARγ was identified as a target of the microRNA family miR-130/
301, a systems-level regulator of cell proliferation, vascular stiffness, vasomotor tone and metabolism [47].
Most recently, PPARγ was found to regulate key enzymes controlling glucose utilisation in vascular
smooth muscle cells (SMCs) [48]. Despite these encouraging findings, the clinical use of older PPARγ
agonists has been tempered by indications of adverse myocardial events [49] and has stymied advances in
PH. Nonetheless, the weight of evidence regarding the activity of PPARγ in PH indicates its potential as a
future drug target, particularly for newer PPARγ agonists [50].

Emerging metabolic and mitochondrial pathways in PH beyond the Warburg effect
The preference for glycolysis over oxidative phosphorylation is unlikely to represent the only metabolic
shift required for vascular cell proliferation in PH. Beyond the requisite ATP production, sufficient
biomass must be generated to support proliferation. Anaplerosis is the replenishing of TCA carbon
intermediates via either the glutaminase (GLS1)-mediated deamidation of glutamine or the carboxylation
of pyruvate. In multiple subtypes of PH, it has been reported that two transcriptional coactivators,
yes-associated protein (YAP)-1 and transcriptional coactivator with a PDZ-binding motif (TAZ), are
required for GLS1 upregulation and subsequent glutaminolysis to sustain vascular cell proliferation and
migration within stiff pulmonary vessels [16], and is reviewed in the article by HEMNES and HUMBERT [51]
in this issue.

TCA cycle and electron transport chain modulations are associated with alterations in reactive oxygen
species (ROS), which are known to regulate pulmonary vasodilation or vasoconstriction [52]. For example,
the redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that decreases
ROS generation and subsequent inflammation. In preclinical PH studies, Nrf2 activation improves
mitochondrial dysregulation, decreases ROS and inflammatory signalling, and consequently improves
arterial and RV remodelling [53]. A chemical inducer of Nrf2, bardoxolone methyl, is under investigation
in a phase II clinical study in PAH patients (NCT02036970) [54]. Although beyond the scope of this
review and reviewed in detail elsewhere [55], ROS dynamics are further influenced in PH by various forms
of superoxide dismutase [56], voltage gated potassium channels (Kv1.5) [57], and L-type voltage gated
calcium channels, to name but a few. In this regard, Kv1.5 channels are controlled by key upstream
metabolic effectors such as the AMP-activated protein kinase (AMPK). As previously reviewed, the
antidiabetic drug metformin, a known stimulator of AMPK, was found to protect against the development
of PH in both hypoxia and monocrotaline (MCT) rat models, while also displaying antiremodelling
properties. Other AMPK activators, such as salicylate and methotrexate may also be effective. A clinical
trial to evaluate the effects of metformin on pulmonary vascular function in patients with PAH is
currently recruiting patients (NCT01884051).
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Mitochondrial metabolic functions depend substantially on intramitochondrial calcium dynamics.
Uncoupling protein (UCP)2 is a calcium uniporter which transports calcium from the endoplasmic
reticulum into mitochondria [58]. Genetic ablation of UCP2 in cultured PASMCs resulted in
mitochondrial hyperpolarisation and decreased activity of calcium-sensitive mitochondrial enzymes [59, 60].
In endothelial cells, loss of UCP2 promoted mitophagy and decreased mitochondrial synthesis [61].
Correspondingly, in mice, genetic deficiency of UCP2 increased pulmonary vascular remodelling and
promoted the development of PH [59, 60]. Additionally, microRNA-dependent impairment of another
calcium uniporter (the mitochondrial calcium uniporter complex) resulted in decreased mitochondrial
calcium levels and a concomitant PAH phenotype in PASMCs as well as in MCT rats [62]. Further
downstream, calcium dynamics are dysregulated at the level of the sarco-/endoplasmic reticulum
calcium-ATPase (SERCA), a sarcoplasmic reticulum transporter that is downregulated in PAH. Gene
transfer of SERCA2a in both rodent and porcine PH models rescued expression of SERCA2 in pulmonary
arteries, resulting in decreased pulmonary artery pressure and improved RV function [63, 64].
Additionally, dysregulated calcium homeostasis can alter electrical dynamics within the cell and
mitochondria. Studies have implicated glycolysis in the control of the mitochondrial permeability
transition pore, a voltage- and redox-dependent channel that remains closed under hyperpolarised
mitochondrial membrane potential and thus promotes cell survival [65]. Finally, the transfer of calcium
from the endoplasmic reticulum to mitochondria, specifically dependent on the protein Nogo-B, has been
studied in the pulmonary vasculature and found to be important in the development of PH [66]. Further
work will be necessary to determine whether more substantial links exist between endoplasmic reticulum
stress and metabolic dysregulation in PH.

Alterations of mitochondrial structure and biogenesis have been found to drive metabolic alterations in
PH. Emerging studies have identified interconnected and dynamic sets of mitochondrial structures which
exist within each cell and are controlled by an ever-changing balance of fission and fusion processes.
Dynamin-related protein (Drp)1 is a GTPase that regulates mitochondrial fission and fragmentation [67, 68]
and has been associated with the pro-proliferative vascular state in PH [69]. Decreased levels of
mitofusin-2 in PAH have also been implicated in driving mitochondrial fragmentation and an imbalance
of proliferation/apoptosis [70]. Pharmacological inhibition of mitochondrial fission and Drp1 with
Mdivi-1 [71, 72] has been shown to ameliorate both pulmonary vascular and right ventricular dysfunction
in animal models of PH. In parallel, decreased activation of peroxisome proliferator-activated receptor-γ
coactivator (PGC)1α, a transcription factor mediating mitochondrial biogenesis and fission, has been
linked to PH [70]. Additionally, deficient BMPR2 signalling has been implicated in the control of
mitochondrial fission and a pro-inflammatory state [7]. In combination with PGC1α, Sirtuin 3 (SIRT3), a
factor implicated in the control of mitochondrial structure via protein deacetylation [73], was recently
reported to be repressed in rodent PH models, and SIRT3-null mice spontaneously developed PH [74].
Yet, due to their ubiquitous activity in other organ systems, it remains to be seen whether molecules
involved in controlling mitochondrial structure can be useful therapeutic targets for PH.

Dysregulated fatty acid oxidation in the diseased right ventricle
Under non-diseased and baseline activity, fatty acid oxidation (FAO) generates 60–90% of energy
production in cardiomyocytes, with the remaining 10–40% derived from glycolysis and glucose oxidation.
A mutually competitive relationship, known as the Randle cycle, exists between these processes [75]. At
baseline, increased production of citrate during FAO inhibits phosphofructokinase and leads to an
accumulation of glucose-6-phosphate. This inhibits hexokinase, resulting in a decrease in pyruvate
production and further inhibiting glycolysis. Perhaps incited by increased pulmonary arterial pressures and
impaired coronary perfusion as a result of advancing RV hypertrophy, initial RV injury in PH is thought
to produce an inadequate oxygen supply. Consequently, HIF-1α is activated in cardiomyocytes thus
driving upregulation of glycolytic genes [76]. Such reprogramming consequently leads to a reduction of
FAO and worsens RV hypertrophy and cardiomyocyte contractile function. In fact, the upregulation of
HIF-1α and glycolysis in hypertrophied RV has been demonstrated in both hypoxic and MCT PH rodent
models [77, 78]. Correspondingly, inhibition of this process in mice via administration of DCA resulted in
increased cardiac output and function [79]. Targeting the Randle cycle via FAO inhibitors may improve
RV function by allowing more efficient use of glucose oxidation. For example, trimetazidine and
ranolazine are FAO inhibitors that enhance glucose oxidation, and both compounds improved RV
function in a pulmonary artery banding model of RV failure [80]. FAO inhibitors are under investigation
in clinical trials, including one with trimetazidine (NCT02102672) and a number of studies evaluating
ranolazine, both published (NCT01174173) [81] and ongoing (NCT01839110, NCT02829034 and
NCT01917136). Targeting dysfunction at the RV separately from dysregulation of pulmonary vascular
remodelling, if used in combination with classical therapeutic approaches, may provide another avenue in
the treatment of PH.
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Diagnostic application of metabolic dysregulation in PH
Plasma metabolite signatures in PH
There is a need for accurate, non-invasive and early detection of PH and the prospect of metabolomic
screening is increasingly being explored (figure 2). First, efforts have been made to determine whether
metabolites in circulating blood may reflect metabolic reprogramming in the pulmonary vessels and RV.
Recently, in addition to TCA intermediates and amino acids [82], alterations in RNA-based nucleosides,
fatty acids, sphingomyelins, steroids and phosphatidylcholine levels have been observed in the plasma of
PAH patients [83]. Interestingly, the largest differences in signature correlated with an increased risk of
death, while correction of several metabolites over time was associated with a better clinical outcome.
Plasma metabolomic analyses have been pursued in separate cohorts of patients coupled with invasive
haemodynamics and radionuclide ventriculography at rest and at exercise [84]. Novel associations of right
ventricular-to-pulmonary vascular (RV-PV) dysfunction with release of indoleamine 2,3-dioxygenase-
dependent tryptophan metabolites (IDO-TMs) into the circulation were reported. Importantly, IDO-TMs
correlated with RV-PV dysfunction in a validation cohort with known risk factors for PH and in
patients with established PAH. Interestingly, new data are emerging that show that pulmonary vasodilators
can alter tissue and circulating metabolites [85–87]. If these alterations are found to correlate with
therapeutic and haemodynamic benefit in PAH, it is possible that metabolite quantification could be
developed in the future as a valuable non-invasive method to monitor response to therapy. Finally,
circulating microRNAs, some of which include miR-130/301 [47] and miR-210 [36] and are known to
directly control metabolic reprogramming in diseased pulmonary vessels, have been identified as stably
and differentially expressed in plasma of PAH patients as compared with healthy volunteers (as reviewed
in [88]).

Several technical and conceptual challenges remain which block the development of circulating metabolic
markers in PH diagnostics. First, metabolite quantitation typically requires specific expertise and
standardisation of each step of the process, including plasma sampling, extraction and method of
detection. The advent of a gold standard technique that is sensitive, specific and rapid is crucial for the
clinical application of metabolic signatures as biomarkers. Moreover, no universal control exists to
determine the relative abundance of metabolites, thus adversely affecting reproducibility of results among
laboratories. In addition, it is unclear how much interindividual variation exists and to what extent the
physiological context, such as exercise, time of day, diet and possibly age, may dictate variability.
Moreover, many metabolites are expressed at relatively low levels, making these species difficult to assay.
Finally, the majority of metabolites are ubiquitously expressed, making the source of these molecules and
their role in pulmonary vascular disease more difficult to ascertain. Nonetheless, the relative stability,
noninvasive sampling method and the sensitivity and specificity of quantifying metabolite signatures in
PH are all compelling arguments for further optimisation of their use as clinical biomarkers.

Healthy

PAH

Amino acids

Fatty acid
s

O
xa

lo
a

ce
ta

te

Phospha-

microRNAs

ID

O-TM

S
te

ro
id

s

Uracil

tid
ylc

holin
e

S
p

h
in

g
o

m
ye

lin

FIGURE 2 Diagnostic applications of metabolic dysregulation in pulmonary hypertension. Differences in the
profiles of extracellular metabolites in circulating blood may reflect metabolic reprogramming in pulmonary
arterial hypertension versus healthy individuals. IDO-TM: indoleamine 2,3-dioxygenase-dependent tryptophan
metabolites; PAH: pulmonary arterial hypertension.

https://doi.org/10.1183/16000617.0094-2017 6

PULMONARY HYPERTENSION | S.Y. CHAN AND L.J. RUBIN



Metabolic imaging in PH
In the upcoming years, non-invasive molecular imaging is positioned to make substantial advances in
pulmonary vascular disease. Positron emission tomography (PET) technology continues to expand in
order to visualise the metabolic shifts occurring in PH, such as the enhanced glucose uptake and glycolysis
which occur following the inhibition of mitochondrial oxidative phosphorylation. PET can examine
metabolism between two distinct anatomic compartments (the pulmonary vasculature and the RV),
perhaps revealing previously undiscovered spatiotemporal relationships. The PET marker
18F-fluorodeoxyglucose (18FDG) a radiolabelled glucose analogue, is transported into cells and accumulates
intracellularly. Highly metabolically active cells, such as those found in PH, can then be visualised based
on their 18FDG levels. In the diseased pulmonary vasculature of PAH patients, PET imaging has
demonstrated a chronic induction of the Warburg phenotype, as evidenced by increased glucose uptake;
however, variations exist between patients [5, 89]. The origins of imaging heterogeneity may be found in
the inherent cellular heterogeneity underlying pulmonary vascular remodelling in PH, involving multiple
cell types such as endothelial cells, SMCs, fibroblasts and inflammatory cells. Thus, an increase in 18FDG
uptake may be the result of both a hyperproliferative state and an invasive inflammatory component,
however current limitations of 18FDG PET imaging are unable to differentiate among cell types.
Nonetheless, in an MCT-induced PH rat model, PET imaging demonstrated that treatment with the PDK
inhibitor DCA led to lower 18FDG uptake, indicating the potential use of PET in the investigation of the
biology of PH and in clinical applications [89].

In addition, PET imaging has shown great promise in visualising metabolic alterations of the RV. PET
studies have shown substantial increases in 18FDG uptake in the RV of both animals and humans with RV
hypertrophy [90] and PAH [79, 90–92] (figure 3a). More recent studies have determined that such
increased RV 18FDG accumulation portends a poorer prognosis [97], while treatment with agents such as
macitentan can attenuate such uptake concomitant with an improvement in RV function and
haemodynamics [98]. PET is useful for investigations into drug distribution, target binding and
drug-induced biochemical responses; however, its cost and limited availability currently restricts its use.
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Furthermore, more specialised combinations of imaging, such as PET with magnetic resonance imaging
(MRI) [94], may facilitate more detailed spatial resolution for metabolic dysfunction in this disease (figure
3b). Beyond PET, advances in four-dimensional flow MRI have provided an ability to assess RV kinetic
energy work density and energy dissipation [95] (figure 3c). Finally, cardiac hyperpolarised MRI has been
used to track specific metabolite levels in the heart and to track temporally distinct changes in pyruvate
metabolism in failing human ventricles [99, 100] (figure 3d). When coupled together, such imaging
modalities have the potential to provide extensive insights into the metabolic landscape of the failing RV
from inception to end-stage disease, paving the way towards true precision medicine paradigms for
management and treatment of this disease.

Therapeutic development of metabolic drugs in PH
As discussed earlier and by SIMMONNEAU et al. [101], strides are being made within the realm of metabolic
intervention for PH. However, the field is nascent, there are no approved metabolic drugs for PH, and
many challenges remain. Currently, the mainstay of investigational metabolic treatment of PH involves
repurposing medications already approved by the US Food and Drug Administration for other diseases.
Notably, because many metabolic alterations of PH share similarities with cancer, metabolic therapies
currently being tested for a variety of cancers may have potential in PH. Repurposing drugs decreases
development and approval time and could accelerate the introduction of such medications into the clinical
management of PH. However, challenges of repurposing thus far have involved issues of tissue specificity
for delivery, unintended off-target effects and utilisation of drugs originally intended for acute, short-term
use for more long-term therapy.

Alternatively, the development of novel small-molecule inhibitors, therapeutic antibodies or RNA-based
therapies for PH continues to advance as new metabolic drug targets emerge (figure 1). It is likely that
new, rather than repurposed medications would be necessary, particularly when targeting genetic
deficiencies important in PH [7]. Advances in genomic, transcriptomic and metabolomic profiling offer an
opportunity to individualise treatment by identifying patients with the greatest chance of response to a
specific drug. The number of metabolic anomalies beyond the Warburg effect also indicates that several
pathways may need to be targeted in combination for a robust clinical response. However, the most
effective combination of therapies is unknown.

Conclusion
Guided by the metabolic parallels between PH and cancer and anchored by the Warburg effect, numerous
molecular insights into PH pathogenesis have been reported. Yet several metabolic processes beyond the
Warburg effect are emerging as integral to PH development, and understanding those fundamental
molecular links in both the pulmonary vessels and RV will be essential for improving the clinical
management of this exceptionally complex disease. Particularly exciting future directions in this field
include interrogations of the molecular interconnections of metabolism with pathogenic processes such as
shear stress and flow [102] as well as innate immunity [18]. In that context, the rapid innovations in
molecular imaging via MRI and PET coupled with the development of metabolic tracers could provide an
opportunity to individualise diagnostic and prognostic technology for PH. Furthermore, there is hope that
new metabolic drugs will emerge as a robust means for improving outcomes for PH patients, either singly
or in combination with existing therapies.
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