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Diabetic Cardiomyopathy

H eart disease is the leading cause of death in patients
with diabetes.1 Although advances in medical manage-

ment and lifestyle interventions have reduced cardiovascular
mortality in diabetic patients by as much as 40% over the last
decade, the actual number of deaths is predicted to rise as a
result of the obesity epidemic (which is clinically linked to
diabetes) and an aging population.1 The underlying causes of
cardiovascular dysfunction in diabetes are complex and
include increased susceptibility to atherosclerosis, vascular
dysfunction, dyslipidemia, hypertension, and the prothrom-
botic state.2–7 Furthermore, the results of Framingham,
Strong, and other large epidemiologic studies showed that
the incidence of cardiomyopathy is higher in diabetic patients
even after adjustment for hypertension, microvascular dis-
ease, hypercholesterolemia, body mass index, and other risk
factors.8–12 The impairment of left ventricular function in a
diabetic patient without underlying coronary artery disease or
hypertension is now recognized as a distinct clinical entity
termed “diabetic cardiomyopathy.”13,14

Diabetic cardiomyopathy in humans is characterized by
diastolic dysfunction, which is often followed by the develop-
ment of systolic dysfunction.15 Echocardiographic analysis of
patients with type 1 diabetes mellitus (T1DM) and no micro-
vascular or macrovascular disease revealed increased left
ventricular thickness and left ventricular end-diastolic diame-
ter, whereas the ejection fraction was reduced.16 In a similar
study of patients with type 2 diabetes mellitus (T2DM), the
prevalence of diastolic dysfunction was as high as 30%.17–19

Various rodent models of diabetes have been developed,
including streptozotocin-induced destruction of pancreatic b
cells, genetic deletion of leptin (ob/ob) or leptin receptor
(db/db) in mice, Zucker fatty rat strain, and others.
Moreover, wild-type mice fed a high-fat diet (Western diet)
develop obesity and insulin resistance reminiscent of T2DM
and metabolic syndrome in humans.20,21 Notably, all these
animal models develop various degrees of cardiac dysfunc-
tion that starts, similar to in human patients, with ventricular
thickening and diastolic defects and may eventually progress
to systolic dysfunction.20 It is important to note that rodents
are resistant to atherosclerosis and hypertension even in the
setting of disrupted insulin signaling or lipid homeostasis.
Although there is still considerable debate regarding human
diabetic cardiomyopathy as a discrete disorder or as a
complication of diabetic comorbidities (eg, hypertension,
elevated triglycerides), the presence of cardiac dysfunction
in these animal models strongly argues for a direct
pathophysiologic link between diabetes and heart disease
and also allows for the study of diabetic cardiomyopathy
without the confounding factors commonly present in human
studies.

In the diabetic heart, there is significant disruption of
molecular processes essential for normal cardiac function.
First, calcium signaling is impaired, leading to altered
relaxation-contraction dynamics and the resultant diastolic
and systolic dysfunction.22–24 Second, the diabetic heart
shows signs of increased oxidative stress, which damages
structural components of the heart and activates signaling
pathways such as NF-jB, c-Jun N-terminal kinases, and p38
mitogen-activated protein kinases through oxidative modifi-
cations to select residues.25–27 Third, endoplasmic reticulum
stress and accumulation of unfolded proteins exert significant
toxicity and eventually lead to cardiomyocyte apoptosis.28,29

Finally, disruption in cytokine signaling and low-grade inflam-
mation of the heart further repress cardiac function in
diabetes.30 In addition to these pathways, diabetic cardiomy-
opathy is being exceedingly recognized as a metabolic disease
of the heart characterized by increased reliance on fatty acids
(FAs) compared with glucose as a source of energy, and the
resulting maladaptive changes of this metabolic switch will be
highlighted in this review.
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Diabetic Cardiomyopathy as a Metabolic
Disease of the Heart
Derangements in cardiac lipid and glucose metabolism are
becoming recognized as an early event in the deterioration of
heart function in diabetes. To sustain continuous contrac-
tions, the human heart consumes the largest amount of
energy per gram of tissue in the body, about 6 kg of ATP, or
�20 times its own weight, per day.31 This energy can be
generated from a variety of substrates, such as fat, carbohy-
drate, protein, ketone bodies, or lactate, with 95% of total
energy being derived from mitochondrial oxidative phosphor-
ylation of fatty acids and glucose.32–34 Oxidation of fatty acids
amounts to �70% of all ATP produced by the heart under
resting conditions, whereas increased work load such as
exercise or adrenergic stimulation increases the relative
contribution of glucose to this process.32,35 Moreover, the
inherent flexibility of the heart to use different types of fuel is
critical for maintaining consistent ATP production with ever-
changing metabolic substrate availability.

In diabetic hearts, there is a dramatic shift away from
glucose utilization and almost complete reliance on FAs as the
energy source, resulting in loss of metabolic flexibility. In
human patients with T2DM and heart failure, a dramatic
accumulation of lipids within the myocardium and restructur-
ing of the lipid metabolic gene expression profile were
observed.36 In addition, McGavoc et al found intramyocardial
lipid deposits in diabetic patients with normal cardiac
function, suggesting that metabolic disturbances may precede
the onset of left ventricular dysfunction.37 Functionally,
positron emission tomography studies of human patients
with T1DM revealed increased myocardial FA utilization, with
a concurrent reduction in glucose oxidation,38,39 and similar
findings were obtained in patients with T2DM.40

Similar to human patients, rodent models of T1DM and
T2DM exhibit striking intramyocardial lipid accumulation, as
well as an approximately 2-fold increase in fatty acid
oxidation and a decrease in glucose use.41–43 To better
understand the contribution of metabolic remodeling to the
development of diabetic cardiomyopathy, mouse models
with disruption of select regulatory points in FA and glucose
metabolism were created and studied. It was shown that a
decrease in glucose utilization is detrimental to the heart, as
mice with heterozygous deletion of glucose transporter 4
(GLUT4+/�) and subsequent reduction in glucose delivery
to the cardiomyocytes increased their use of FAs as an
energy source and developed a cardiac phenotype resem-
bling diabetic cardiomyopathy in humans.44 On the other
hand, overexpression of GLUT4 in diabetic db/db mice
increased glucose delivery to the heart and reduced its use
of FAs and was protective against the development of
cardiac dysfunction.42 An increase in FA utilization by the

heart through targeted cardiac-specific overexpression of
human lipoprotein lipase and increased uptake of FAs from
circulating very-low-density lipoproteins led to cardiac lipid
accumulation and the development of dilated cardiomyopa-
thy.45 A similar phenotype of cardiac steatosis and reduced
heart function was observed in other mouse models of
increased FA utilization either by cardiac-restricted trans-
genic expression of long-chain acyl coenzyme A (CoA)
synthetase 1 involved in FA transport across membranes,46

FA transport protein 1 (FATP),47 or peroxisome proliferator-
activated receptor a (PPARa) transcription factor, which
upregulates the expression of genes involved in FA uptake
and oxidation.48 Thus, the switch from glucose to FA
oxidation is an important determinant in the development of
diabetic cardiomyopathy.

Fatty Acid Metabolism in the Heart
The heart has a limited capacity for de novo synthesis of FAs;
thus, it primarily relies on the exogenous supply of FAs from
circulation, including albumin-bound free FAs and triglyceride
(TAG)–rich lipoproteins.49,50 The rate of FA uptake by the
heart is not primarily under hormonal control and instead is
largely determined by the arterial FA concentration, which can
range from very low levels in fetal circulation to >2 mmol/L in
an adult with uncontrolled diabetes and metabolic syn-
drome.32,51

Although free FAs can translocate into the cardiomyocyte
through passive diffusion across the plasma membrane, this
mechanism demonstrates slow kinetics and is inhibited by
proteases.52 To facilitate FA uptake, the heart has a protein-
mediated carrier system consisting of 3 FA transporters:
CD36, FATP, and the plasma membrane form of FA-binding
protein.53 Of these potential carriers, CD36 plays a major
role in the translocation of FAs across the sarcolemmal
membrane of cardiac myocytes.54 Indeed, studies in CD36-
knockout mice demonstrated that CD36-mediated transport
is responsible for up to 70% of FA uptake into contracting
cardiomyocytes.55 Furthermore, patients with CD36 defi-
ciency have low rates of myocardial FA tracer uptake,
consistent with a key role for CD36 in regulating cardiac FA
metabolism in vivo.56 Approximately 50% of cellular CD36 is
stored in intracellular vacuoles where it can be recruited to
the sarcolemmal membrane to facilitate FA uptake.57 Muscle
contraction, insulin, and several pharmacological agents,
including caffeine and phenylephrine, stimulate CD36 trans-
location to the sarcolemmal membrane, thereby facilitating
FA uptake.58

After uptake by the cardiomyocyte, approximately 75% of
cytosolic FAs is transferred into the mitochondria and
oxidized for ATP generation, whereas the remainder is
converted to TAG for storage that can be rapidly mobilized

DOI: 10.1161/JAHA.113.000433 Journal of the American Heart Association 2

Diabetic Cardiomyopathy and Lipid Metabolism Bayeva et al
C
O
N
T
E
M
P
O
R
A
R
Y

R
E
V
IE

W



for energy purposes based on cellular demand.59 Long-chain
FAs cannot freely enter the mitochondria and must be first
esterified into fatty acyl CoA by cytosolic fatty acyl CoA
synthetase (FACS). Studies have demonstrated that FACS is
associated with CD36 or FATP on the cytosolic side of the
sarcolemmal membrane, suggesting that FACS also influ-
ences FA uptake.60 Consistent with this finding, overexpres-
sion of FACS in the heart or fibroblasts causes increased FA
uptake and intracellular TAG accumulation.61 The fatty acyl
CoAs are then converted to acylcarnitine by carnitine
palmitoyltransferase–1 (CPT1) and transported across the
inner mitochondrial membrane by a carnitine-acylcarnitine
translocase that exchanges acylcarnitine for carnitine.62

Finally, mitochondrial FAs undergo b-oxidation to yield acetyl
CoA, which is then fed into the tricarboxylic acid cycle for ATP
production (Figure 1). The generation of acetyl CoA and 3
NADH from b-oxidation also decreases glucose oxidation via
the activation of pyruvate dehydrogenase kinase (PDK) and
the subsequent phosphorylation and inhibition of the pyruvate
dehydrogenase (PDH) enzyme complex, allowing the heart to
switch sources for energy production based on nutritional
status. This relationship between FA and glucose metabolism,
first described by Philip Randle in 1963, is known as the
glucose–FA cycle or the Randle cycle.63

Enzymes involved in FA transport and oxidation are under a
high degree of transcriptional control, particularly by the

nuclear receptor transcription factor superfamily known as
the PPARs, with PPARa the dominant isoform in the heart.64

Activation of PPARa promotes the expression of genes that
mediate nearly every step of FA oxidation, including FA uptake
(CD36, FATP), cytosolic FA binding, FA esterification (FACS),
malonyl-CoA metabolism (malonyl-CoA decarboxylase), mito-
chondrial FA uptake (CPT1), FA b-oxidation (very-long-chain
acyl CoA dehydrogenase, long-chain acyl CoA dehydrogenase;
medium-chain acyl CoA dehydrogenase; 3-ketoacyl-CoA thio-
lase), mitochondrial uncoupling (mitochondrial thioesterase
1), and glucose oxidation (pyruvate dehydrogenase kinase 4
[PDK4]; for a review, see reference 65). The end result of
PPARa activation is increased breakdown of fats via increased
FA flux into the cell and upregulation of enzymes involved in
FA b-oxidation.48 Another PPAR isoform, PPARc, is expressed
in the heart, and its activation is associated with increased
insulin-stimulated glucose uptake by peripheral tissue and
reduced hepatic gluconeogenesis.66,67 However, the use of
certain forms of glitazones, which are PPARc agonists, is
associated with edema, plasma volume expansion, and the
development of congestive heart failure, thus limiting their
use.68,69

Alterations in Lipid Homeostasis
in the Diabetic Heart
That both T1DM and T2DM are associated with lipid
accumulation and cardiac dysfunction21,70 is suggestive of a
common molecular mechanism for these diseases. In fact, the
underlying pathways for the 2 disorders appear to converge at
the point of increased delivery and utilization of FA for ATP
production, although the primary reasons for the overreliance
on lipid as an energy source are distinct.

Early Steps of Metabolic Derangement
in T1DM and T2DM
Studies of human patients with T1DM have shown that their
hearts remain responsive to some of the actions of insulin71;
however, their cardiac glucose uptake is dramatically impaired
because of the lack of insulin production.72,73 Insulin
stimulates glucose uptake by inducing transcription of the
GLUT4 glucose transporter in metabolically active tissues
such as liver, heart, skeletal muscle, and adipocytes. In
addition, activation of insulin signaling triggers translocation
of GLUT4-containing cytoplasmic vesicles to the plasma
membrane, thus bringing the transporter to its site of
action.74,75 In streptozotocin-induced T1DM animals, GLUT4
levels were significantly reduced in cardiac and skeletal
muscle,76,77 accounting for the low rates of cardiac glucose
uptake that force cardiomyocytes to rely heavily on FAs as
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Figure 1. Overview of myocardial fatty acid (FA) metabolism. FAs
are imported into the cell by various FA transporters, including CD36,
FA transport protein (FATP), and plasma membrane FA-binding protein
(FABPpm). Imported FAs may be stored as triglyceride (TAG) or
converted to fatty acyl CoA by FA CoA synthase (FACS). The acyl group
of fatty acid CoA can be transferred to carnitine via carnitine
palmitoyltransferase (CPT) 1. The acylcarnitine is then shuttled into
the mitochondria by carnitine translocase (CT), where it can undergo
b-oxidation, producing acetyl CoA, which can be used in the
tricarboxylic acid (TCA) cycle to produce adenosine triphosphate (ATP).
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their energy source in the absence of insulin. Notably, ample
amounts of fat are available to the heart in T1DM because of
enhanced lipolysis in adipose tissue, which is normally
inhibited by insulin.78

Although GLUT4 expression was also shown to be reduced
in the hearts of T2DM patients,79 functional studies of their
myocardium revealed preservation of insulin sensitivity and no
impairment in glucose uptake in response to insulin.80,81

Moreover, in the db/db mouse model of T2DM, reduced
cardiac glucose oxidation and increased reliance on FAs
preceded the development of insulin resistance and hyper-
glycemia,82 suggesting that insulin resistance was not the
primary mechanism for the metabolic switch. It is well
recognized that circulating FA and TAG levels are significantly
elevated in patients with T2DM and metabolic syndrome.83,84

This is because of increased consumption of FAs as a part of
the Western diet, which exceeds adipose tissue capacity for
fat storage, increased lipolysis of stored fat, and enhanced
very-low-density lipoprotein secretion by the liver. Unlike
glucose, whose entry into cardiomyocytes is tightly controlled
by insulin action and the presence of GLUT4 on the
sarcolemmal membrane, FA uptake into the heart is not
hormonally regulated and is largely driven by the availability of
lipids in the bloodstream.53 As a result of high circulating lipid
content, the type 2 diabetic heart takes in disproportionately
more FAs and suppresses glucose uptake,85 as oxidation of
FAs that are already present in the cell is sufficient to
maintain normal ATP levels. This results in almost 100%
reliance on FAs as the energy source.

In summary, the type 1 diabetic heart is glucose-starved
and forced to oxidize FAs as an alternative substrate to
maintain normal ATP levels. On the other hand, the heart in
the T2DM patient is flooded with fat, leaving little room for
glucose oxidation by the mitochondria. This paradigm is also
supported by animal model studies, although it should be
noted that differences in cardiac function exist among rodent
models of T1DM and T2DM (Table 1).20,86–88 The end result,
however, is the same: loss of metabolic flexibility through
exclusive use of fat as the energy substrate.

Common Pathways for Cardiac Dysfunction in
Diabetes
Once metabolic preference is given to FAs and the heart
moves away from glucose oxidation, the downstream changes
are similar between T1DM and T2DM. This metabolic switch is
mediated by FAs, which activate several signaling cascades to
match the rates of FA and glucose oxidation to the availability
of these substrates in the cell. The changes induced by FAs in
cardiomyocytes include inhibition of insulin receptor substrate
1 (IRS1), allosteric suppression of glycolytic enzymes, and
transcriptional activation of fatty acid metabolism genes
through PPARa, which collectively lock the heart in a
metabolically inflexible FA-dependent state.

IRS1 inhibition

Increased accumulation of FAs and their derivatives fatty acyl
CoA, diacyglycerol (DAG), and ceramide dampens insulin
signaling through activation of serine kinases such as protein
kinase C, c-Jun N-terminal kinases, mammalian target of
rapamycin, and inhibitor jB kinase b.89–92 Insulin signaling
requires phosphorylation of IRS1 by tyrosine kinase phospha-
tidylinositol 3-kinase (PI3K).93 However, phosphorylation of
residues adjacent to the PI3K binding sites by serine kinases
displaces PI3K and thus interferes with its ability to activate
IRS1.90,94 The inhibitory effect of free FAs on IRS1 and insulin
signaling was demonstrated in cell culture,95,96 animal
models,97–99 and human volunteers100 and may contribute
to the development of diabetes in patients with elevated
plasma triglyceride levels.

Glycolysis inhibition

In addition to dampening insulin signaling, the products of
mitochondrial FA oxidation have been shown to repress
cellular glucose utilization through allosteric inhibition of key
glycolytic enzymes. First, a high rate of FA oxidation increases
the amount of acetyl-CoA and NADH relative to free CoA and
NAD(+), respectively. Both these metabolites activate PDK4,
an inhibitor of the PDH complex, thus preventing pyruvate

Table 1. Differences in Cardiac Function in Diabetic Humans and Among Rodent Models of Types I and II Diabetes

Obese/Diabetic Patient ob/ob db/db ZDF STZ

Cardiac size ↑ ↑ ↑ ↑ =

Systolic function ↓ ↑↓ ↓ ↓ ↓

Diastolic function ↓ ↓ ↓ ↓ ↓

LV hypertrophy ↑ ↑ ↑ ↑ ↑

Lipid content ↑ ↑ ↑ ↑ ↑

FA oxidation ↑ ↑ ↑ ↑ ↑

db/db indicates leptin receptor in mice; FA, fatty acid; LV, left ventricle; ob/ob, genetic deletion of leptin in mice; STZ, streptozotocin; ZFD, Zucker diabetic fatty. See text for references.
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oxidation by the mitochondria.101,102 Consistently, increased
PDK4 levels and activity were found in the hearts of diabetic
rats103 and in the skeletal muscle of mice fed a high-fat
diet,104 and cardiac glucose oxidation was also reduced in
db/db and ob/ob mice.82

Metabolic reprogramming by PPARa

Another target of free FAs in cardiomyocytes is the PPARa
pathway. As discussed earlier, PPARa is a transcription factor
that increases cellular utilization of FAs by upregulating a
subset of genes that promote FA uptake and b-oxidation, as
well as suppressing glucose use through the induction of
inhibitory proteins.105,106 Importantly, various saturated and
unsaturated FAs were shown to bind to and activate PPARa in
ligand-binding assays,107 establishing a direct link between
elevated FA levels in cardiomyocytes and the induction of
PPARa signaling. An increase in PPARa expression was
reported in almost all rodent models of diabetic cardiomyop-
athy, including streptozotocin-induced T1DM,108,109 Zucker
diabetic fatty rats,110 and ob/ob and db/db mice,111 whereas
deletion of the PPARa gene protected mice against high-fat-
diet-induced diabetes.112,113 The key role of PPARa induction
in the development of diabetic cardiomyopathy is exemplified
by the study by Finck et al,48 in which cardiac PPARa
overexpression in the mouse produced a phenotype that
mimicked diabetic cardiomyopathy in the absence of systemic
insulin resistance, hyperglycemia, or dyslipidemia. Impor-
tantly, the hearts from PPARa transgenic mice exhibited
increased rates of palmitate uptake and oxidation, reduction
in glucose utilization, accumulation of intramyocardial lipid
droplets, and diastolic dysfunction.48

The downstream targets of PPARa are significantly
upregulated in diabetic hearts and were shown to be
responsible for the development of cardiac dysfunction.
Thus, in streptozotocin-induced diabetes there was a signif-
icant increase in the levels of CD36 and the plasma
membrane form of FA-binding protein transporters,114,115

which are responsible for FA uptake into the cell across the
plasma membrane. Moreover, in Zucker diabetic fatty rats116

and in diabetic mice induced by high-fat feeding,117 there
was permanent relocalization of inactive CD36 and/or the
plasma membrane form of FA-binding protein in cytoplasmic
vacuoles to the plasma membrane, although the precise
mechanism for this finding is unknown. Consistent with
membrane localization of CD36, diabetic rats exhibited
enhanced rates of FA uptake and lipid accumulation in the
heart,115,118–120 whereas mice with genetic deletion of CD36
were protected against diet-induced insulin resistance.121

Notably, CD36-knockout hearts exhibited a reduction in FA
oxidation and a compensatory increase in glucose oxida-
tion.122 Although CD36-sufficient animals experienced

reduced insulin sensitivity and steady decline in heart
function with aging, CD36-knockout mice had preserved
rates of glucose oxidation and exhibited no drop in cardiac
function with age.123 Finally, deletion of CD36 in the hearts
of PPARa transgenic mice reduced myocardial TAG content,
increased glucose oxidation rates, and restored their cardiac
function.124

Another target of PPARa, CPT1, which functions in FA
uptake into the mitochondria for b-oxidation, was shown to
play a role in diabetic cardiomyopathy. In streptozotocin-
induced diabetic rats, administration of the CPT1 inhibitor
methyl palmoxirate in combination with triiodothyronine,
prevented the development of cardiomyopathy and normal-
ized the levels of long-chain acylcarnitines in the myocar-
dium.125 Similar results were obtained with another inhibitor
of CPT1, etomoxir, which also increased cardiac glucose
utilization.126

Finally, in addition to facilitating FA uptake and b-
oxidation, PPARa also suppresses cellular glucose utilization,
thus locking the cell in a FA-dependent, metabolically
inflexible state. PDK4, an inhibitor of the key glycolytic
enzyme PDH, was shown to be a direct target of PPARa. A
study of T1DM and T2DM rats reported increased PDK4
protein level and PDK activity in the heart,103,127 and similar
upregulation of PDK4 was also shown in PPARa transgenic
mice.48 Finally, PDK4 protein was elevated in the skeletal
muscle of insulin-resistant human subjects128 and in healthy
human volunteers consuming a high-fat, low-glucose diet.129

Consistent with the function of PDK4 in the regulation of
glucose oxidation, mice with a targeted deletion of PDK4 in
the heart had lower blood glucose levels and improved
glucose tolerance compared with wild-type mice after a high-
fat diet.130 However, PDK4-overexpressing mice were also
found to be resistant to high-fat diet through a novel
mechanism involving the activation of AMPK and distinctive
metabolic reprogramming.131 Although the exact contribution
of PDK4 to diabetic cardiomyopathy remains to be deter-
mined, its upregulation in diabetic hearts appears to block
the ability of the heart to use glucose as an energy substrate
and thus further lock it into a metabolically inflexible state.
Therefore, insulin resistance, lipid accumulation, overreliance
on FA metabolism, and PPARa dysregulation may all
contribute to metabolic derangements, resulting in diabetic
cardiomyopathy (Figure 2).

Molecular Pathology in the Diabetic Heart
The metabolic rigidity of the diabetic heart is a well-
recognized phenomenon, but the exact mechanism by which
overreliance on FAs for ATP production culminates in cardiac
pathology remains a subject of intense debate. Several
hypotheses have been proposed, including reduced efficiency
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of a fat-burning heart and toxicity of FA metabolites accumu-
lating in the myocardium.

Metabolic Inefficiency of FA Oxidation
Hearts from diabetic animals, such as ob/ob mice, consume
≥30% more oxygen compared with nondiabetic hearts, while
generating the same or even reduced amounts of contractile
force.132 The reasons for this metabolic inefficiency of the
diabetic heart are multiple and relate to the underlying
disruption of energy balance. First, a substrate switch from
glucose to FAs, even in the absence of pathology, was shown
to reduce the efficiency of oxidative phosphorylation because
of increased oxygen consumption.133 The complete oxidation
of 1 molecule of palmitate requires 46 atoms of oxygen and
generates 105 molecules of ATP. On the other hand, glucose
oxidation consumes 12 atoms of oxygen to produce 31
molecules of ATP. Thus, each molecule of ATP that came from
the oxidation of FA costs �0.3 oxygen molecules more than
the ATP generated from glucose.134,135 Several experimental
studies in nondiabetic animals and humans supported the
notion of reduced metabolic efficiency of fat oxidation in the
heart. Perfusion of isolated mouse working hearts with high
concentrations of free FAs resulted in increased myocardial
oxygen consumption. Moreover, acute elevation of FA oxida-
tion in a canine model achieved by intravenous infusion of a

heparin-TAG mixture also increased cardiac oxygen consump-
tion by �25% with no corresponding change in cardiac power
output.136,137 A reduction in mechanical efficiency of the
heart was also observed in healthy human volunteers with
increased circulating free FAs achieved by infusion of a
heparin-TAG mix.138 Alternatively, boosting cardiac glucose
oxidation was shown to reduce cardiac oxygen consumption
and to improve cardiac efficiency, as exemplified by studies in
pigs receiving intravenous infusions of a glucose-insulin
cocktail.139

Disproportional reliance on FAs for ATP generation not
only requires more oxygen, but also alters other aspects of
cardiac energetics, including cellular ATP shuttling, noncon-
tractile energy expenditure, and mitochondrial coupling.
Long-chain acyl CoA derivatives were shown to inhibit the
adenine nucleotide translocator required for the transport of
ATP from mitochondria to the cytosol,140–142 resulting in
inefficient energy delivery to myofibrils and potentially
affecting cardiac contractility. FA loading of the heart was
also linked to the futile cycling of lipid intermediates, such
as conversion of TAG to fatty acyl derivatives and back to
TAG, presumably as a protective mechanism against free FA
toxicity.135 Although the relative contribution of this pathway
to the overall energy expenditure of the diabetic heart is
unknown, in isolated noncontracting cardiomyocytes, futile
cycling of lipid derivatives was shown to consume up to 30%
of total cellular energy.143 Finally, the metabolic switch to FA
utilization in diabetes was linked to mitochondrial uncoupling
and reduction in mitochondrial membrane potential by
uncoupling proteins (UCPs) 2 and 3. UCPs were originally
identified in brown fat as proteins that dissipate mitochon-
drial proton gradient to generate heat, bypassing the ATP
synthesis step and reducing mitochondrial energetic effi-
ciency.144 Upregulation and activation of UCP2 or UCP3
were reported in the hearts of db/db and ob/ob mice82 and
streptozotocin-treated rats,145 as well as in humans with
increased circulating plasma free FAs. UCP2 and UCP3 were
shown to be positively regulated by FAs, as intravenous
infusion of lipid in nondiabetic lean Zucker rats resulted in
elevated mRNA levels of UCP2 and UCP3 in the heart.146

Moreover, treatment of cultured L6 myotubes or neonatal rat
cardiomyocytes with free FAs significantly upregulated the
expression of UCP3 and UCP2 proteins, respectively.147,148

The effects of FAs on UCP expression may be mediated by
PPARa, as pharmacologic activation of this transcription
factor was shown to increase the levels of UCP3, whereas
PPARa knockout dramatically decreased UCP3 content in
the mouse heart.149,150 Overall, overreliance on FAs as a
metabolic substrate appears to increase oxygen consump-
tion, uncouple the mitochondria, and alter energy transfer
within the myocyte, disrupting the vital aspects of cardiac
physiology.

T1DM T2DM

glucose 
uptake

FA
supply

Lipid
Glucose

Energy Metabolism

IRS1
inhibition PPARα

activation

glycolysis
suppression

FA
uptake

insulin
resistance

FA
oxidation

PDK4
activity

Metabolic rigidity 
Reduced efficiency in ATP generation

Generation of toxic intermediates

Figure 2. Pathophysiology of type 1 (T1DM) and type 2 (T2DM)
diabetes mellitus on energy metabolism in the heart. Both T1DM and
T2DM lead to insulin receptor substrate 1 (IRS1) inhibition,
peroxisome proliferator-activated receptor a (PPARa) activation,
and suppression of glycolysis, resulting in metabolic rigidity, reduced
adenosine triphosphate (ATP) generation efficiency, and generation
of toxic fatty acid (FA) intermediates. PDK4 indicates pyruvate
dehydrogenase kinase 4.
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Lipotoxicity
The dramatic accumulation of intramyocardial lipids in the
diabetic heart led to the hypothesis of “toxic lipids” as
mediators of cardiac dysfunction in diabetic cardiomyopa-
thy,151 and the role of different lipid intermediates in the heart
have since been examined. The accumulation of neutral lipids
such as TAG positively correlated with body mass index and
left ventricular hypertrophy in patients with obesity or
impaired glucose tolerance, suggesting that they may play a
role in deterioration of cardiac function.152 However, studies
of mice transgenic for diacylglycerol acyltransferase
1 (DGAT1) in the heart displayed normal cardiac function
despite increased accumulation of neutral TAG in the
myocardium, suggesting that increased TAG content itself
may not be toxic to the heart.153 In fact, when crossed with a
mouse model of diabetic cardiomyopathy through cardiac-
restricted overexpression of ACS, DGAT1 overexpression
actually protected the heart from dysfunction.153 Thus, more
toxic lipid intermediates, such as ceramide and DAG, have
been implicated.

Accumulation of ceramide and DAG has been demon-
strated to alter intracellular signaling pathways and promote
apoptotic cell death.154,155 In addition to its structural role as
a key component of the cell membrane, ceramide functions as
an intracellular messenger that can trigger apoptosis by
inducing the release of cytochrome c from the mitochon-
dria.156 Moreover, as mentioned earlier, ceramide and DAG
desensitize the heart to insulin action by compromising
tyrosine phosphorylation of the IRS and its ability to activate
the PI3K/protein kinase B pathway involved in insulin
signaling.157

Inhibition of ceramide synthesis in transgenic mouse
models of lipotoxic cardiomyopathy improves cardiac
structure, function, and metabolism. For example, mice fed
a high-fat diet and treated with fenretinide, an inhibitor of the
rate-limiting enzyme in ceramide biosynthesis, had reduced
tissue ceramide levels and increased insulin action.158 In
addition, the lipotoxic dilated cardiomyopathy of mice with
cardiac-specific overexpression of glycosylphosphatidylinosi-
tol–anchored lipoprotein lipase was rescued by myriocin, a
serine palmitoyl transferase I inhibitor that blocks the first
enzyme in de novo ceramide synthesis.159 In a clinical study
conducted in Poland that assessed the apoptotic role of
ceramides in the human heart, apoptotic markers were higher
in the myocardium of obese and diabetic patients compared
with lean patients. However, ceramide content remained
stable among the groups, and mRNA levels of enzymes
involved in both the synthesis and degradation of ceramides
were increased in obese and diabetic patients compared with
lean patients, suggesting that ceramide may not be the main
factor in cardiomyocyte apoptosis in the setting of obesity or

diabetes.160 Therefore, further research is needed to elucidate
the role of ceramides in the development of lipotoxic
cardiomyopathy.

In addition to ceramide, the toxic lipid intermediate DAG is
known to accumulate in obesity and diabetes.161 DAG is a
byproduct of lipolysis, derived from TAG hydrolysis via adipose
TAG lipase. DAG is hypothesized to interfere with the cardiac
insulin-signaling cascade by activating protein kinase C,
leading to decreased glucose uptake.162 Cardiac overexpres-
sion of DGAT1, the enzyme that converts the toxic lipid
intermediate DAG to TAG, in a lipotoxic mouse model,
prevented cardiac dysfunction, despite increasing heart TAG
levels.153 In addition, mice fed a high-fat diet showed a
decrease in insulin-stimulated glucose oxidation that was
positively associated with increased myocardial DAG accu-
mulation and decreased DGAT expression.163 However, the
effects of DAG on apoptosis remain to be elucidated.

Although the lipotoxic effects of FA accumulation in the
heart have been demonstrated in animal models, limited
evidence is available regarding the role of cardiac lipotoxicity
in obese or diabetic humans. This issue is further complicated
by the confounding effects of genetic and dietary variability,
as well as risk factors such as physical inactivity, hyperten-
sion, and hyperlipidemia. Ventricular biopsies from type 2
diabetic patients demonstrate increased apoptosis, consistent
with the activation of lipotoxic mechanisms, although the
cause-and-effect relationship with toxic lipid species has not
been established.164 To further elucidate the role of cardiac
lipotoxicity in humans, noninvasive in vivo imaging techniques
to track TAG metabolism, such as [1H] magnetic resonance
spectroscopy, will become increasingly important.

Targeting FA Metabolism as a Therapeutic
Intervention in Diabetic Cardiomyopathy
The strategy of targeting myocardial metabolism as a
therapeutic intervention in the maintenance of cardiovascular
health in diabetes is promising. Diabetic hearts exhibit
increased FA oxidation, decreased glucose utilization, and
decreased insulin sensitivity, and recent data indicate that
these changes may be detrimental to cardiac function.70 In
addition to commonly used treatments in T2DM, such as
PPAR agonists and metformin, myocardial substrate utilization
can be modulated by indirect and direct approaches to
decrease FA oxidation and increase glucose utilization.
Indirect approaches are aimed at decreasing circulating FA
levels, such as by the administration of glucose–insulin–
potassium (GIK) solutions, nicotinic acid, glucagon-like pep-
tide (GLP)–1 agonists, and b-adrenergic-blocking drugs. Direct
approaches include inhibition of FA mitochondrial uptake
via suppression of CPT1, the inhibition of enzymes involved in
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b-oxidation, and activation of the PDH complex through
inhibition of PDK (Table 2).

It is important to note that, although the concept of
decreasing myocardial FA oxidation to increase glucose
oxidation is appealing, the actual process of drug develop-
ment is likely to be much more complicated. Targeting
different points in metabolic pathways may result in unantic-
ipated metabolic and nonmetabolic side effects, as energy
homeostasis is intimately linked to an array of other cellular
networks. Therefore, extensive experimentation in animal
models and large, randomized, controlled multicenter clinical
trials are needed to properly investigate the effects of these
agents in diabetic patients.

Glucose–Insulin–Potassium
Insulin is a powerful inducer of GLUT1 and GLUT4 expression,
which significantly enhance myocardial glucose uptake and
utilization.191 Because insulin and ischemia increase GLUT4
translocation via independent but additive mechanisms, it was
originally proposed that exposure to insulin during episodes of
ischemia could further increase myocardial glucose uptake at
the expense of FA metabolism, resulting in a lower myocardial
oxygen requirement.192 However, acute administration of
insulin alone (in hyperglycemic diabetics) or together with
glucose and potassium (GIK) in an attempt to stimulate
glucose disposal and overcome insulin resistance yielded
conflicting results. The Diabetic Patients with Acute MI study
showed that intensive insulin and glucose infusion during

acute myocardial infarction followed by subcutaneous insulin
therapy for 3 months after myocardial infarction reduced
mortality in diabetic patients.179 However, the Polish GIK trial
did not demonstrate any decrease in cardiovascular mortality
with GIK,180,181 and a follow-up study (Diabetic Patients with
Acute MI 2) failed to show any advantage with intensive
insulin therapy.182 The failure of certain GIK regimens may be
because of differential effects on glycolysis versus glucose
oxidation, as GIK disproportionally stimulates glycolysis,
leading to intracellular acidosis.183 In addition, infusion of
glucose into diabetic patients may further exacerbate hyper-
glycemia, resulting in cardiomyocyte apoptosis and oxidative
stress.193,194 Therefore, the differences in clinical outcomes
with GIK therapy may be a result of the dosage and timing of
GIK administration, the patient population studied, and the
negative effects of hyperglycemia.

Nicotinic Acid
Another indirect therapeutic approach to modulate FA
oxidation in the failing heart is to reduce the circulating
levels of FAs. Nicotinic acid and its derivatives such as
acipimox reduce the activity of lipoprotein lipase in adipose
tissue, which progressively decreases plasma levels of FAs,
resulting in decreased myocardial FA oxidation.195,196 Acip-
imox administration in Zucker diabetic rats decreased plasma
free FA, glucose, and insulin concentrations and improved
glucose tolerance.197 Although acute treatment with acipimox
lowered plasma free FAs, reduced myocardial free FA uptake,

Table 2. Compounds Targeting Fatty Acid Metabolism as a Treatment for Diabetic Cardiomyopathy

Approach Class Examples Mechanism of Action
References for
Human Trials

Direct Fatty acid (FA) uptake inhibitors Etomoxir
Perhexiline

Irreversible inhibition of CPT1
Reversible inhibition of CPT1

165,166

167–170

Malonyl-CoA decarboxylase (MCD)
inhibitors

CBM-301106 Allosteric inhibition of CPT1 by increasing malonyl-CoA None

Mitochondrial b-oxidation partial
inhibitors

Trimetazidine
Ranolazine

Inhibition of 3-ketoacyl-CoA thiolase (3-KAT)
Inhibition of late sodium current, partial inhibition of FA
oxidation

171–175

176,177

Pyruvate dehydrogenase kinase
(PDK) inhibitors

Dichloroacetate Inhibition of a negative regulator of glucose oxidation 178

Indirect Glucose–insulin–potassium (GIK) GIK therapy Increase glucose uptake, decrease circulating plasma free FA
(FFA) levels

179–183

Nicotinic acid Acipimox Decrease circulating plasma FFA levels through reduction in
lipoprotein lipase (LPL)

184,185

Glucagon-like peptide (GLP)–1
agonists

Liraglutide Increase insulin secretion, decrease glucagon release, delay
gastric emptying

186

b-adrenoreceptor antagonists
(b-blocker)

Carvedilol Decrease circulating plasma FFAs, inhibit mitochondrial FA
uptake

187–190
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and enhanced glucose uptake in patients with dilated
cardiomyopathy, these results were also surprisingly associ-
ated with decreased left ventricular stroke work and mechan-
ical efficiency (work done/oxygen consumption).184 This may
be explained by insufficient increase in glucose uptake to
compensate for the loss of FAs as a substrate, suggesting that
FAs are a critical source of energy that can lead to functional
disorders if inhibited by aggressive pharmacological treat-
ment. Unfortunately, this study did not include a control group
or placebo. A more recent study in patients with ischemic
heart failure treated with either acipimox or placebo for
28 days demonstrated no beneficial effect of acipimox on
cardiac function, despite a significant decrease in plasma FA
levels.185 Taken together, the available evidence suggests
that FA lowering by suppression of lipolysis in adipose tissue
does not improve cardiac function in heart failure.

GLP-1 Agonists
GLP-1 is a major incretin hormone released from L cells in the
gut in response to food intake to stimulate insulin secretion
and reduce glucagon release, leading to a reduction in blood
glucose levels.198 GLP-1 receptor agonists are currently used
in T2DM patients who are refractory to oral hypoglycemic
agents and have been shown to increase insulin synthesis and
secretion, suppress glucagon secretion, and slow gastric
emptying.199,200 Recent reports have also demonstrated that
GLP-1 therapeutics have beneficial effects on the cardiovas-
cular system; for example, the GLP-1 analogue liraglutide
improves cardiac function in db/db mice and streptozotocin-
induced diabetic rats via downregulation of endoplasmic
reticulum stress.201,202 In addition, GLP-1 reduced intestinal
lymph flow, TG absorption, and the synthesis of chylomicron-
related apolipoproteins in rats.203 In the LEAD-6 trial,
liraglutide reduced plasma TG and free FAs in patients with
T2DM.186 In addition to their therapeutic effects on diabetic
cardiomyopathy, GLP-1 receptor agonists have also been
shown to reduce infarct size after coronary ligation in murine
models and improve the left ventricular ejection fraction in
patients with heart failure.204–207

b-Adrenoreceptor Antagonists
b-Adrenoceptor antagonists (b-blockers) are an established,
commonly prescribed treatment for improving the symptoms
of angina and as a therapy for patients with ischemic heart
disease. Despite concerns of masking hypoglycemic symp-
toms and aggravating peripheral artery disease, b-blockers
are effective for the treatment of hypertension and angina in
diabetic patients.208 Although their predominant mode of
action is to reduce cardiac workload through both negative
inotropic and negative chronotropic effects, some of their

beneficial effects may also be through metabolic modula-
tion.209 Although short-term stimulation of b-adrenergic
receptors increases glucose uptake, glycolysis, and glucose
oxidation, long-term stimulation antagonizes the actions of
insulin, promotes lipolysis, and increases circulating free FA
levels, all of which can exacerbate insulin resistance.210 By
inhibiting catecholamine-induced lipolysis, b-blockers may
reduce the mobilization of free FAs from adipose tissue and
therefore decrease circulating plasma free FA concentra-
tions.211

Long-term therapy with the b-blockers metoprolol and
carvedilol is known to improve cardiac function and survival in
patients with heart failure through several mechanisms,
including an energy-sparing effect, consistent with the
possibility of a switch in myocardial substrate preference
from FA to carbohydrate oxidation.187–189 Using radioactive
free FA and glucose tracers, heart failure patients with
carvedilol treatment were found to exhibit a 57% reduction in
myocardial free FA uptake.188 Although this study did not
note an increase in myocardial uptake of labeled glucose
tracers or in the rate of glucose utilization, the decreased ratio
of myocardial free FA–to–glucose utilization does suggest a
“metabolic shift” induced by carvedilol. It is also important to
note that there are differences in the pharmacological effects
and clinical efficacy of various b-adrenergic receptor antag-
onists, as seen in clinical studies demonstrating that admin-
istration of carvedilol increased insulin sensitivity and
improved glycemic control compared with metoprolol in
patients with hypertension and T2DM.190

Inhibitors of Mitochondrial FA Uptake
Several studies have suggested that direct inhibition of
mitochondrial fatty acyl CoA uptake is an effective approach
to shift myocardial energy metabolism from free FA to glucose
utilization.212–214 Several CPT1 inhibitors have been studied
for this purpose, including etoxomir and perhexiline. Originally
introduced as an antidiabetic agent because of its hypogly-
cemic effects, etomoxir is an irreversible inhibitor of CPT1
that efficaciously inhibits myocardial FA oxidation and causes
reciprocal activation of the PDH complex and glucose
oxidation.215–217 Furthermore, chronic treatment with etoxo-
mir was shown to induce the expression of the sarcoendo-
plasmic calcium ATPase (SERCA) in cardiomyocytes, which
may lead to improved calcium handling and improved cardiac
function.218 Streptozotocin-induced diabetic rats treated with
etomoxir demonstrated increased myocardial glucose oxida-
tion rates and restoration of cardiac function.219 Consistent
with these animal data, a small open-label, uncontrolled study
of etomoxir appeared to improve myocardial function and
clinical status in patients with heart failure.165 However, this
study was not able to assess the long-term effects of etomoxir
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treatment. The more recent Etoxomir for the Recovery of
Glucose Oxidation randomized placebo-controlled study had
to be stopped prematurely because several patients with
moderate heart failure in the etomoxir group developed
abnormalities in liver function tests.166 Although the study did
not detect significant improvement in the etomoxir group
compared with placebo, there was a trend toward an increase
in exercise time.

Perhexiline shifts myocardial substrate utilization from FAs
to carbohydrates through reversible inhibition of CPT1 and, to
a lesser extent, CPT2.213 Perhexiline was originally designated
as a calcium channel blocker and was introduced as an anti-
ischemic agent for the treatment of angina in the 1970s;
however, its use declined rapidly in the 1980s amid reports of
hepatic toxicity and peripheral neuropathy.167 Subsequent
studies demonstrated that the toxicity occurred because of
chronic exposure to high drug levels, leading to phospholip-
idosis in the liver and peripheral nerves.168 These adverse
effects were found to occur most commonly in patients who
are “slow hydroxylators,” bearers of a genetic variant in the
P450 2D6 enzyme that is responsible for perhexiline clear-
ance by the liver.169 In vitro studies have shown that
perhexiline is more effective at inhibiting the cardiac isoform
of CPT1 than the liver isoform, which allows for the use of a
lower dose to minimize adverse effects.220 Maintaining
plasma perhexeline concentration within the therapeutic
range of 150 to 600 lg/L prevents the development of
long-term toxicity without compromising drug efficacy.170 This
has led to a resurgence of the use of perhexiline for the
treatment of chronic stable angina in Australia and some parts
of Asia, although it is not yet clinically available in the United
States or Europe.221

MCD Inhibitors
Malonyl-CoA decarboxylase (MCD) enzyme promotes FA
oxidation by catalyzing the degradation of malonyl-CoA to
acetyl-CoA and thus removing allosteric inhibition of CPT1 by
malonyl-CoA. Cardiac overexpression of MCD protein has
been observed in streptozotocin-induced diabetic rats, con-
tributing to the high rate of FA oxidation in these animals.222

Selective MCD inhibitors are effective at increasing myocar-
dial levels of malonyl-CoA, leading to a decrease in cardiac FA
oxidation with a parallel increase in cardiac glucose oxidation
secondary to inhibition of CPT1.223 Animal studies using MCD
inhibitors have shown that the drug is associated with
reduced FA b-oxidation, increased glucose oxidation, and
increased insulin sensitivity.224,225 In addition, MCD-deficient
mice have enhanced cardiac function and efficiency, suggest-
ing that the inhibition of malonyl-CoA may be an effective
method to modulate myocardial metabolism in diabetics with
heart disease.226

Partial Inhibition of Mitochondrial FA b-Oxidation
Trimetazidine is a metabolic agent used for antianginal
therapy throughout Europe and Asia.227 By acting as a
competitive inhibitor of 3-ketoacyl-CoA thiolase, the terminal
enzyme of b-oxidation, trimetazidine shifts the energy
substrate preference from FA oxidation to glucose oxida-
tion.228 The improved coupling of glycolysis and glucose
oxidation limits the intracellular acidosis attributed to glucose
metabolism and also minimizes sodium and potassium
overload during ischemia and reperfusion.229,230 This allows
trimetazidine to increase cardiac efficiency during ischemic
episodes by sparing ATP hydrolysis from being used to correct
myocardial ionic homeostasis. The effects of trimetazidine in
experimental studies make this drug an attractive treatment
for angina in diabetic patients.171 This hypothesis was
confirmed by the TRIMPOL-1 trial, in which the addition of
trimetazidine to the treatment regimen improved exercise
capacity and duration and reduced anginal attacks in diabetic
patients with chronic stable angina without influencing heart
rate or blood pressure.172 Subsequent studies have also
shown trimetazidine to improve heart function and overall
insulin sensitivity in patients with idiopathic dilated cardio-
myopathy.173,174 However, reports of side effects, such as
parkinsonian symptoms and restless leg syndrome, have
recently prompted the European Medicines Agency to restrict
use of trimetazidine-containing medicine in the treatment of
patients with angina to second-line, add-on therapy and to
discontinue its use in patients who develop movement
disorders.175

Ranolazine is an antianginal drug used in the United States
and some European countries for the treatment of chronic
stable angina, with the additional benefit of glycemic
control.231,232 Similar to trimetazidine, ranolazine have been
shown to suppress FA oxidation in rat cardiac and skeletal
muscle and result in a reciprocal increase in glucose
oxidation.233 Recent reports also implicate the ability of
ranolazine to inhibit the late inward sodium channel, which
prevents adverse increases in sodium-triggered calcium
overload that occur in failing cardiomyocytes.234 The MARISA
(Monotherapy Assessment of Ranolazine in Stable Angina)
and CARISA (Combination Assessment of Ranolazine in Stable
Angina) clinical trials demonstrated that ranolazine is an
effective antianginal therapy, alone or in combination with
other antianginal agents, by increasing the time to 1-mm ST-
segment depression, reducing the number of angina attacks,
and reducing nitroglycerin consumption in both diabetic and
nondiabetic patients.176,177 Subgroup analysis of the CARISA
trial also showed significant reduction of hemoglobin A1c in
diabetic patients treated with ranolazine, consistent with
increased systemic glucose clearance. Ranolazine also
decreased the incidence of ventricular tachycardia, supraven-
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tricular tachycardia, and ventricular pauses, likely because of
its ability to inhibit the late sodium current.235,236 Therefore,
ranolazine may be particularly effective in treating heart
disease in diabetic patients.

Reduction in FA-Induced Inhibition of Glucose
Oxidation
Dichloroacetate (DCA) promotes myocardial glucose oxidation
at the expense of FA oxidation by inhibiting the major negative
regulator of glucose oxidation, PDK.237 The PDH complex is
normally in its active dephosphorylated state to facilitate
glucose oxidation by directing pyruvate into the tricarboxylic
acid cycle. The main mechanism of long-term PDH complex
inactivation is its phosphorylation by PDK. Therefore, by
inhibiting PDK, DCA increases glucose oxidation. In perfused
working rat hearts, DCA enhanced postischemic recovery of
cardiac function by improving the coupling between glycolysis
and glucose oxidation.238 In addition, DCA restored contractile
performance in cardiomyocytes isolated from streptozotocin-
induced diabetic rats.239 Another PDK inhibitor, SDZ048-619,
increased PDH complex activity in the liver, kidney, and
skeletal and cardiac muscle of Zucker diabetic rats; however, it
did not lower blood glucose.240 Although clinical experience
with DCA is limited, DCA increased left ventricular stroke
volume and myocardial efficiency in 9 patients with coronary
artery disease.178 Further animal and human studies are
needed to better characterize the safety profile of PDK
inhibitors and their relevance in the treatment of cardiac
dysfunction in diabetic patients.

Conclusions
Despite considerable research efforts, we are yet to uncover
the precise mechanism by which molecular changes in
cardiac metabolism are linked to the gross pathology of the
diabetic heart. However, the major contribution of metabolic
inflexibility to this process is becoming well recognized,53 and
the model for the development of diabetic cardiomyopathy is
emerging. The inciting event appears to be the increased
reliance of the heart on lipid substrates. This may be a result
to reduced glucose availability, as found in T1DM, or
increased availability of FA in circulation in metabolic
syndrome and T2DM. Elevated levels of free FAs inside the
cardiomyocyte, while providing ample substrate for ATP
generation, also directly and indirectly affect multiple signal-
ing pathways, including inhibition of insulin signaling, sup-
pression of glycolysis, and activation of the PPARa
transcription factor, all of which lock the heart in a
metabolically rigid state. The diabetic heart thus can no
longer sufficiently increase its glucose utilization in response

to elevated workload requirements, making it more vulnerable
to external insults. Moreover, oxidation of fat brings about
myriad other maladaptive changes, including reduced effi-
ciency of ATP production and export, generation of toxic FA
intermediates, and accumulation of lipids inside the myocar-
dium. As a consequence of these changes, cardiac function
gradually declines, finally manifesting itself as diabetic
cardiomyopathy. The therapeutic strategies to reverse dia-
betic cardiomyopathy thus must be aimed at restoring the
lipid–glucose balance and preventing metabolic lockdown of
the diabetic heart.
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