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Abstract: Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking
the natural habitats’ features principally by competition for food and space and interspecies cross-
talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain
EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their
axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided
isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1),
H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported
under axenic conditions. Interestingly, actinosporins were previously induced when the axenic
culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-
acetyl-D-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery
of microbial metabolites yet to be discovered in the axenic fermentation with the potential that
could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated
angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding
affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new
antimalarial structural motif.

Keywords: Actinokineospora; Rhodococcus; co-culture; metabolomics; antimalarial; docking

1. Introduction

Exploring microbial forms of communication and utilising them in the production
of secondary metabolites is of benefit in the process of natural products drug discov-
ery [1]. Thus far, microbial secondary metabolites remain the major source for antimicrobial
agents [2–4]. However, gene sequencing of many microbial genome showed that several
species, mainly filamentous bacteria and fungi, apply a considerable part of their genes
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for secondary metabolism (10–15%) [5,6]. Remarkably, most microorganism genes are
silent and have no role during laboratory cultivation [7]. Robert Koch used cultures for
only one species of microorganism “axenic growth” to provide an apparent elucidation
for this phenomenon of silent genes [8]. Microorganism culture in laboratory included
macro- and micro-nutrients, constant temperature, adjusted pH, high water activity, and no
contact with other world microbes, and thus a significant part of microorganisms’ secondary
metabolites, mainly those responsible for interaction, communication, or involving in fights
with other species, are not found in microbial metabolites. Therefore, the new approach
of co-cultivation provides a massive chance to motivate the silent genes and increase the
opportunity to discover cryptic bioactive metabolites [1]. The fortune of “uncultivable”
diversity is represented as the “microbial dark matter”, the part of microorganisms that was
unable to be cultivated in the laboratory until now [1]. The first reported mixed culture
was in 1918; it was a coculture of Escherichia coli and Bacillus paratyphosus [9]. Up until now,
natural product discovery, biotechnology, and microbiology scientists work on the discovery
of coculture or mixed culture experiments to study the difference in the secondary metabo-
lites produced during these trials compared to “axenic growth” [1]. From the examples
for coculture and secondary metabolites production, mixed culture of Acremonium sp. and
Mycogonerosea that produced new lipoaminopeptides, the acremostatins A-C [10]. Coculture
of the marine-derived fungi Aspergillus fumigatus together with two desert bacterial isolates
yielded new compounds, namely, luteoride D and pseurotin G [11]. Furthermore, a new
N-methoxypyridone was discovered from a mixed fermentation of two endophytic fungi
Camporesia sambuci and Epicoccum sorghinum isolated from the fruit of Rhodomyrtus tomentosa
plant, collected on the Big Island in Hawaii [12]. New antifungal pulicatin derivatives H
and I were induced following coculturing of plant-derived bacterium Pantoea agglomerans
and the fungus Penicillium citrinum [13]. All these examples exemplify that co-cultivation
of microorganisms induces new secondary metabolites that can be recommended as an
appropriate way to produce diverse bioactive microbial metabolites.

Malaria was identified as a lethal disease caused by Plasmodium parasites, which
infect humans through the malaria vector Anopheles mosquitoes. To date, five species
of parasites have been identified as causatives of malaria in humans; two of them cause
serious infections—P. falciparum and P. vivax. Studying the malaria cases worldwide
revealed that 29 countries accounted for 95% of malaria cases. The majority of cases
(82%) and deaths (94%) were reported in the WHO African region, followed by the WHO
South-East Asia region (10% cases and 3% deaths) (https://www.who.int/publications/i/
item/9789240015791, accessed on 30 January 2021). Malaria management and suppression
require a complicated method. Up until now, two important antimalarial drugs are used
to control infection. These two bitter principle drugs are derived from plants: artemisinin
obtained from Artemisia annua L. (4th century, China), and quinine alkaloid obtained from
Cinchona sp. (17th century, South America) [14]. The WHO recommends artemisinin
combination therapy (ACT) as the first treatment plan in most malarial cases. However, in
2009, resistance to artemisinin combination therapy was reported. The emerging of drug
resistance led to increased malaria cases and an increase in mortality [15]. Thus, the WHO
endorsed using a combination of two drugs that work in different mechanisms to control
drug resistance. The latest reports from Southeast Asia and India [16] showed the limitation
of disease resistance to combination of artemisinin and other drugs as mefloquine and
piperaquine [17]. Lacking effective new generation of medicines against malarial invasion,
the number of new cases and deaths may rise. Thus, developing antimalarial therapeutics
is important to save a large number of lives.

In this work, we discuss the application of co-cultivation of two actinobacteria:
Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59 recovered from
Red Sea sponges as a strategy to stimulate silent genes and discover cryptic secondary
metabolites within both strains. Additionally, antimalarial-guided fractionation of the bac-
terial coculture extract led to the isolation and characterisation of a few active metabolites

https://www.who.int/publications/i/item/9789240015791
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against P. falciparum. A potential antimalarial target is proposed on the basis of molecular
docking experiments against a number of reported targets.

2. Results and Discussions
2.1. Identification of Red Sea Sponge-Associated Actinobacteria

Two Red sea sponge-associated actinobacteria were isolated and taxonomically iden-
tified. Actinokineospora spheciospongiae strain EG49 was previously characterised [18,19].
The other actinobacterial strain was taxonomically identified as Rhodococcus sp. UR59,
according to its morphology and its 16S rRNA genome sequence and phylogenetic analyses
(Figure 1).
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2.2. Metabolomics Analysis of the Coculture Extract of Actinokineospora spheciospongiae Strain
EG49 and Rhodococcus sp. UR59 Using LC–HRMS

The analysis of the metabolomics data (Table 1) revealed 34 microbial secondary
metabolites, of which 9 were detected from Actinokineospora spheciospongiae strain EG49
and the rest from Rhodococcus sp. UR59. Additionally, the analysis revealed the presence of
diverse microbial chemical classes, namely, 10 angucyclines, 7 peptides, 3 macrolides, 3 an-
thraquinones, 2 polyenes, 2 polyethers, 2 phenolics, and 1 glycolipid. The predicted formula
C16H18N2O4 was annotated as mitomycin-K [20,21], whereas C18H14O6 was dereplicated
as fluostatin-B, an inhibitor of dipeptidyl peptidase III that was previously isolated from
Streptomyces sp. TA-3391 [22]. Moreover, the predicted formulas C32H33O15 and C31H33O13
were dereplicated as actinosporin A and C, respectively, which were discovered from the
culture of Actinokineospora spheciospongiae strain EG49 [23,24]. The formula C21H18O8 was
dereplicated as daunomycinone, which was reported from Streptomyces coeruleorubid [25].
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The formulas C26H25O11 and C25H24O8 were dereplicated as atramycin A and B, re-
spectively. These isotetracenone metabolites were discovered from Streptomyces atratus
BY90 [26]. Additionally, the suggested molecular formula C18H12O5 was dereplicated
as lagumycin B, which was previously isolated from Micromonospora sp. [27], while the
formula C16H12O5 was dereplicated as the isoflavonoid kakkatin that was reported from
the soil-derived Streptomyces strain YIM GS3536. Moreover, it was discovered in an-
other terrestrial Streptomyces sp. GW39/1530 [28,29]. Furthermore, the molecular formula
C9H9NO3 was dereplicated as erbstatin, a simple dehydrotyrosine derivative isolated from
Streptomyces amnkusaensis [30,31]. Additionally, the molecular formula C36H48N2O8 was
dereplicated as ansatrienin A, previously detected in Streptomyces collinus [32]. Moreover,
the formulas C25H47N5O4, C26H49N5O4, and C28H53N5O4 were dereplicated as cyclic
tetrapeptides rhodopeptin C1, C2, and B5, respectively, which were formerly reported in
Rhodococcus sp. [33,34]. The formula C32H48N6O9 was dereplicated as the peptide acti-
noramide B, which was detected in a marine bacterium highly corelated to the genus
Streptomyces [35]. Likewise, the formula C17H26O4 was dereplicated as cineromycin-B
antibiotic that showed significant MRSA inhibition, which was isolated from the actino-
mycetales strain INA 2770 [36]. The formula C19H27N5O7 was annotated as heterobactin
B, a siderophore discovered from Rhodococcus erythropolis IGTS8 [37], while the formula
C26H39NO5 was dereplicated as piericidin-F, which was reported from Streptomyces sp.
CHQ-64 [38]. Additionally, the formula C27H39NO7 was annotated as migrastatin, which
was reported as a tumour cell migration inhibitor and isolated from Streptomyces sp. MK929-
43F1 [39]. Moreover, the formula C24H46N6O8 was dereplicated as proferrioxamine-A1,
a siderophore isolated from Streptomyces xinghaiensis NRRL B-24674T [40]. Furthermore,
the formula C23H38O5 was dereplicated as the 16-membered lactone protylonolide, which
was identified as the metabolite of mycaminose idiotroph that has been obtained from
Streptomyces fradiae KA-427 [41]. Moreover, the formula C37H62O11 was dereplicated
as the polyether 26-deoxylaidlomycin isolated from Streptoverticillium olivoreticuli IMET
43,782 [42], while the suggested formula C35H58O10 was dereplicated as macrolide kai-
monolide B, which was discovered in Streptomyces sp. no. 4155 and shown to signifi-
cantly inhibit plant growth [43]. Furthermore, the formula C25H44O7 was dereplicated as
8,15-dideoxylankanolide, which was reported in Streptomyces rochei 7434AN4 [44]. The
molecular formula C34H60O10 was identified as the polyether antibiotic ferensimycin-A,
previously discovered in Streptomyces sp. no. 5057 [45]. Likewise, the formula C26H46N6O5
was identified as the cytotoxic peptide lucentamycin C, which was reported from a marine-
derived actinomycete Nocardiopsis lucentensis CNR-712 [46]. Finally, the formula C50H92O14
was dereplicated as glucolipsin-A, a glucokinase activator that has been isolated from
Streptomyces puvpuvogenisclevoticus [47].

It is worth noting that the compounds listed in Table 1 were traced in the LC–HRESIMS
analysis of the coculture extract. The producing strain for each compound was predicted
on the basis of literature. However, mitomycin-K, 8,15-dideoxylankanolide, piericidin-F,
migrastatin, kaimonolide B, rhodopeptin C1, rhodopeptin C2, and rhodopeptin B5 were
also traced in the axenic culture of Rhodococcus sp. UR59. Additionally, actinosporins A
and C, and UK-2B were also traced in the axenic culture of Actinokineospora spheciospongiae
strain EG49. All other reported metabolites in Table 1 were not traced in the axenic cultures
and were induced during the coculture fermentation.
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Table 1. Metabolomics analysis of the coculture extract of Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp.
UR59.

Rt
(min)

m/z
[M − H]−

m/z
[M + H]+

Molecular
Formula Tentative Identification Strain

EG49
Strain
UR59 Coculture Bioactivity Ref.

2.47 303.1341 C16H18N2O4 Mitomycin-K - + + antitumor [20]
2.91 327.0866 C18H14O6 Fluostatin-B - - + antinociceptive [22]
2.94 657.1821 C32H33O15 Actinosporin A + - + anti-trypanosomal [23]
2.96 613.1926 C31H33O13 Actinosporin C + - + antioxidant [24]
2.99 399.1075 C21H18O8 Daunomycinone - - + - [48]
3.04 599.2125 C31H34O12 Actinosporin F - - + - [49]
3.08 469.1492 C25H24O9 Actinosporin E - - + - [49]
3.11 467.1336 C25H22O9 Actinosporin H - - + - [49]
3.15 513.1399 C26H25O11 Atramycin A - - + antitumor [26]
3.25 451.1389 C25H22O8 Actinosporin G - - + - [49]
3.30 309.0757 C18H12O5 Lagumycin B - - + anticancer [27]
3.76 178.0499 C9H9NO3 Erbstatin - - + anticancer [30]
3.81 635.3315 C36H48N2O8 Ansatrienin A - - + antifungal [32]
3.93 192.0655 C10H11NO3 Spoxazomicin C - - + anti-trypanosomal [50]
4.12 661.3568 C32H48N6O9 Actinoramide B - - + antimalarial [51]
4.17 293.1749 C17H26O4 Cineromycin-B - - + antibacterial [52]
4.54 438.1974 C19H27N5O7 Heterobactin B - - + siderophore [37]
6.41 451.1391 C25H24O8 Atramycin B - - + antitumor [26]
6.34 444.2744 C26H39NO5 Piericidin-F - + + anticancer [38]
6.91 488.2649 C27H39NO7 Migrastatin - + + anticancer [53]
7.24 547.3455 C24H46N6O8 Proferrioxamine-A1 - - + siderophore [40]
7.40 393.2640 C23H38O5 Protylonolide - - + antibiotic [41]
7.58 683.4347 C37H62O11 26-Deoxylaidlomycin - - + antibacterial [54]
7.76 482.3687 C25H47N5O4 Rhodopeptin C1 - + + Antifungal [33]

8.15 639.4084 C35H58O10 Kaimonolide B - + + plant growth
inhibitor [43]

9.09 496.3846 C26H49N5O4 Rhodopeptin C2 - + + antifungal [34]
9.14 524.4156 C28H53N5O4 Rhodopeptin B5 - + + antifungal [34]

9.80 315.0865 C17H14O6 Capillasterquinone B - - + NO production
inhibitor [55]

9.81 305.0810 C19H12O4 Tetrangulol - - + antibiotic [56]
9.98 457.3141 C25H44O7 8,15-Dideoxylankanolide - + + - [44]
10.22 527.2022 C27H31N2O9 UK-2B + - + antifungal [57]
11.01 629.4242 C34H60O10 Ferensimycin-A - - + antibiotic [45]
11.23 523.3601 C26H46N6O5 Lucentamycin C - - + anticancer [46]
11.28 917.6546 C50H92O14 Glucolipsin-A - - + glucokinase

activator [47]

2.3. Identification of the Isolated Compounds (1–8)

Chemical structures of the purified metabolites 1–8 from the coculture were assigned
on the basis of comparing the LC–HRESIMS analysis, 1D and 2D NMR spectral data, and op-
tical rotation measurements to the published literature (Figure 2). Accordingly, compounds
1–3 have been previously isolated from Actinokineospora spheciospongiae strain EG49 and
identified as the angucyclinone antibiotics actinosporin E, H, and G, respectively, through
the activation of their cryptic gene cluster by N-acetylglucosamine [50]. Compound 4 was
assigned as spoxazomicin C of the pyochelin family of antibiotics, which was previously iso-
lated from the culture broth of the endophyte Streptosporangium oxazolinicum K07-0460T [51].
In contrast, compound 5 was previously identified as the angucyclinone antibiotic tetran-
gulol, which was previously isolated from Streptomyces rimosus [58] and recently from
Amycolatopsis sp. HCa1 [59]. Compound 6 was previously discovered as capillasterquinone
B, an anthraquinone that was isolated from the crinoid Capillaster multiradiatus [57]. More-
over, compound 7 was identified as L-tryptophanamide. We propose it as an artefact as
it was not traced in the LC–MS analysis of either the axenic or the coculture extracts, and
thus it was probably generated during the fractionation and purification process. Finally,
compound 8 was isolated from Streptomyces sp. 517-02 [57] and identified as UK-2B, an
antifungal antibiotic with similarity in structure to antimycin A [60].
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Figure 2. Compounds isolated from the coculture of Actinokineospora spheciospongiae strain EG49 and
Rhodococcus sp. UR59.

The same Actinokineospora spheciospongiae strain EG49 was subjected to N-acetyl-D-
glucosamine (GluNAc)-mediated silent gene activation to produce new actinosporins
E–H, the same actinosporins E (1), G (3), and H (2) discussed here under coculture and
aglycone angucycline tetrangulol (5), which was not reported from the axenic culture
treated with GluNAc [50]. The amino sugar GluNAc is a signalling molecule that can induce
microbial secondary metabolism. It is present as a cell wall component in peptidoglycan
or chitin in the bacterial or fungal cell wall, respectively [60,61]. Having observed a
similar induction when Actinokineospora spheciospongiae strain EG49 was cocultured with
Rhodococcus sp. UR59, we can assume that Rhodococcus sp. UR59 directed the biosynthesis
of actinosporins in a similar way to GluNAc. This could be as exudation of GluNAc by
one of the species into the coculture environment to trigger antibiotic production more
likely from Rhodococcus sp. UR59 as defence molecules. The studies further support this
and demonstrated that GluNAc is secreted by bacteria under malnourished conditions to
signal antibiotic production against opposite competitors in the vicinity [62]. However,
this requires further studies on the coculture medium to identify excreted GluNAc or
compounds with similar signalling function.

2.4. Antimalarial Screening

Angucyclines are microbial secondary metabolites known as promising antimicro-
bial, anticancer, and antimalarial agents [63–65]. The core structure of angucyclines is
characterised by a benz[α]anthracene ring, an angular tetracycline ring system [60]. The
reported angucyclines can be categorised as aglycones such as saccharosporones A, B,
and C [60], and glycosylated angucyclines such as pseudonocardones A−C [63] and ur-
damycinone E, urdamycinone G, and dehydroxyaquayamycin isolated from fungal and
bacterial strains [62]. However, different antimalarial activity profiles between aglycones
and glycosylated angucyclines have not been explained.

The potential antiparasitic effectiveness of the angucycline scaffold and the promising anti-
malarial effect exhibited by the total extract of the coculture of Actinokineospora spheciospongiae
strain EG49 and Rhodococcus sp. UR59 (IC50 value of 0.13 µg/mL, Table 2) when screened
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against Plasmodium falciparum have encouraged us to perform large-scale coculture fer-
mentation. Large-scale fermentation followed by liquid–liquid fractionation and HPLC
purification of the active sub-fraction led to the isolation of eight metabolites. The anti-
malarial screening of the isolated compounds indicated that the angucycline glycosides 1–3
and aglycone 5 and the anthraquinone 6 exhibited antimalarial effect with IC50 values in the
range of 9–13.5 µg/mL in comparison to the IC50 value of the positive control chloroquine
(0.022 µg/mL). The activity of the compounds 1–3, 5, and 6 was further studied by docking
against a few known drug targets to suggest these compounds as potential leads to be
developed for enhanced activity. It worth noting that the isolated molecules did not show
the expected antimalarial activity, which could be attributed to either the synergistic effect
of microbial metabolites in the coculture extract or the presence of minor molecules that
were too scarce to be isolated even after large-scale fermentation.

Table 2. Antimalarial effect of the bacterial coculture derived metabolites.

Compound IC50 Values (µg/mL) 1

Coculture extract 0.13
1 12.6
2 13.6
3 11.2
4 >50
5 9.7
6 9.2
7 >50
8 >50

Chloroquine 0.022
1 Average of two independent runs.

2.5. Docking Analysis

Compounds (1–3, 5, 6) that showed inhibitory activity against P. falciparum were sub-
jected to molecular docking experiments against a number of reported malaria targets, e.g.,
NADH:ubiquinone oxidoreductase (PDB: 5JWA), Kelch protein (PDB: 4YY8), P. falciparum
protein kinase (PDB: 1V0P), NADH dehydrogenase 2 (PDB:4PD4), and lysyl-tRNA syn-
thetase (PDB:6AGT). They achieved the best scores (binding energy −8.5 to −9.1 kcal/mol)
against the later target, lysyl-tRNA synthetase (PfKRS1). Moreover, they exhibited binding
mode inside the active site compared to the co-crystalised ligand [66]. As shown in Table 3
and Figure 3, these compounds exhibited multiple interactions with several amino acids
inside the enzyme’s active site, where ARG-330, HIS-338, GLU-500, ARG-559, and PHE-342
were the most common interacting ones. Hence, this attractive scaffold can be utilised in
the future design of antimalarial therapeutics targeting PfKRS1 (Table 3). Antimalarial
effect of the bacterial coculture derived metabolites.

Table 3. Binding scores and interacting amino acid residues with compounds 1–3, 5, and 6 inside the lysyl-tRNA synthetase
(PfKRS1)’s active site.

Compound Binding Energy
(kcal/mol) H-Bonding Hydrophobic Interactions

1 −8.9 ARG-330 ALA-446, GLU-500, LYS-607
2 −8.3 ASP-450, SER-454, MET-475 ARG-330, HIS-338, ASP-450, GLU-458, GLU-500
3 −10.3 GLU-493 ARG-330, PHE-342, ASP-450, ARG-559
5 −9.1 GLU-500, THR-337 ARG-330, HIS-338, PHE-342, ARG-559
6 −9.0 ARG-330, ASN-339 ARG-330, HIS-338, PHE-342, GLU-500, ARG-559, LYS-607

Co-crystalised ligand −9.5 ASN-339, GLY-556 ARG-330, HIS-338, PHE-342
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3. Materials and Methods
3.1. General Experimental

Extract purification was conducted by preparative Agilent 1100 series HPLC equipped
with gradient pump and DAD using a reversed-phase Sunfire (C18, 5 µm, 10 × 250 mm,
serial no. 226130200125). All 1D and 2D NMR spectral data were acquired using a JEOL
ECZ-R500 NMR spectrometer equipped with a Royal 5 mm combined broadband and
inverse probe. Thermo LTQ Orbitrap coupled to an HPLC system was utilised to acquire
HRESIMS data using capillary temperature of 260 ◦C, capillary voltage of 45 V, sheath gas
flow rate of 40–50 arbitrary units, auxiliary gas flow rate of 10–20 arbitrary units, spray
voltage of 4.5 kV, and mass range of 100–2000 amu (maximal resolution of 60,000). Optical
rotations and UV spectra acquisition were acquired using a Perkin-Elmer 343 polarimeter
and Perkin-Elmer Lambda2 UV–VIS spectrometer, respectively.

3.2. Actinomycetes Isolation

Callyspongia sp. was collected from Hurghada (Red Sea, Egypt) at a depth of 5 m and
latitude 27◦17′01.0′ ′ N and longitude 33◦46′21.0′ ′ E. The sponge specimen was identified
by Prof. El-Sayd Abed El-Aziz (Department of Invertebrates Lab., National Institute of
Oceanography and Fisheries, Egypt). The sponge was transported in a plastic bag in
seawater to the laboratory and washed thoroughly with sterile seawater. The surface
sterilised specimen was cut into pieces of ≈1 cm3, followed by vigorous homogenising
with 10 volumes of sterile seawater in a pre-sterilised mortar. Serially diluted supernatant
(10−1, 10−2, 10−3) was subsequently plated on to the sterile agar plates. For the isolation of
different actinomycetes, we used M1, ISP2, and marine agar (MA) media were used [18].
The isolation of slow-growing actinomycetes was performed by supplementing all media
with filtered 25 µg/mL nalidixic acid, 25 µg/mL nystatin, and 100 µg/mL cycloheximide.
The inoculated plates were stored in an incubator for 6–8 weeks at 30 ◦C. Subculturing
of distinct colony morphotypes resulted in pure strains. Rhodococcus sp. UR59 was cul-
tured on ISP2 medium and preserved in 20% glycerol at −80 ◦C. On the other hand,
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Actinokineospora spheciospongiae strain EG49 was previously recovered and identified from
the Red Sea sponge Spheciospongia vagabunda [18].

3.3. Molecular Identification and Phylogenetic Analysis

With reference to Hentschel et al., we carried out 16S rRNA gene amplification, cloning,
and sequencing using 27F and 1492RRNA as universal primers [18]. By using the Pintail
programme, we identified chimeric sequences [67]. The sequence’s genus level affiliation
was validated using the Project Classifier of the Ribosomal Database. All the sequences
were classified at the genus level by the RDP Classifier (g 16srrna, f allran) and confirmed
with the SILVA Incremental Aligner (SINA) [68]. Using the SINA Web Aligner, an alignment
was determined again (variability profile: bacteria). The Gap-only position with trimALL
was eliminated (-noallgaps). The best fitting model was initially calculated for phylogenetic
tree construction with the Model Generator. To produce the phylogenetic tree, we applied
RAxML (-f a-m GTRGAMMA-x 12345-p 12345 -# 1000) and the estimated model with
1000 bootstrap resamples. With Interactive Tree of Life (ITOL) [69], visualisation was
achieved. The BLAST with the accession number MW453143 was deposited at Genebank.

3.4. Co-Cultivation and Extract Preparation

Rhodococcus sp. UR59 and Actinokineospora spheciospongiae strain EG49 were cultivated
on liquid media M1 and ISP2 as axenic and cocultures. A total of 20 mL of 3-day-old
culture of Rhodococcus sp. was used for large scale fermentation. Rhodococcus sp. UR59 was
transferred to 20 × 2 L Erlenmeyer flasks containing 1 L of ISP2 medium pre-inoculated
with 20 mL of 4-day-old Actinokineospora spheciospongiae strain EG49 and left for 7 days at
25 ◦C and 180 rpm in a shaker incubator. After fermentation, the culture was filtered, and
the supernatant was extracted twice with ethyl acetate (1.5 L each) followed by evaporation
under vacuum to provide the ethyl acetate extract (850 mg).

3.5. Metabolic Profiling

For mass spectrometry analysis, the dry ethyl acetate extracts from different microbial
and coculture samples were dissolved in MeOH at 1 mg/mL and subjected to metabolic
analysis using LC–HRESIMS according to Abdelmohsen et al. [23]. An Acquity UPLC
system coupled to a Synapt G2 HDMS qTOF hybrid mass spectrometer (Waters, Milford,
CT, USA) was used to acquire the HRMS data using capillary temperature at 320 ◦C,
spray voltage at 4.5 kV, and mass range of m/z 150–1500; both positive and negative ESI
modes were applied. The MS was processed using MZmine 2.20 on the basis of the
defined parameters [23]. The chromatogram builder and chromatogram deconvolution
were detected and followed by mass ion peaks. The isotopes were differentiated by grouper
isotopic peaks and the missing peaks were depicted using the gap-filling peak finder. Then,
molecular formula prediction and peak identification were conducted from the processed
positive and negative ionisation mode datasets. Finally, the peaks were dereplicated against
the Dictionary of Natural Products (DNP) database.

3.6. Metabolites Isolation

The crude co-fermentation ethyl acetate (EtOAc) (850 mg) was chromatographed on
Sephadex LH-20 (32–64 µm, 100 × 25 mm) column using an 80:20 MeOH/H2O eluent
in order to obtain 5 fractions (Fr.1–Fr.6). The third bioactive fraction (300 mg) was then
chromatographed using silica gel column with a gradient elution starting at DCM/EtOAc
(100:0 to 0:100) then 100% MeOH to obtain 8 sub-fractions. The active subfractions 4 and
5 were combined (85 mg) and further subjected to semi preparative HPLC purification
(Sunfire, C18, 5 µm, 10× 250 mm) with a gradient of 20%–100% CH3CN in H2O over 30 min
and 10 min at 100% CH3CN at 1.5 mL/min flow rate to yield compound 7 (tR 9.6 min,
7.5 mg), 2 (tR 10.7 min, 4.5 mg), 3 (tR 11.2 min, 2.5 mg), 4 (tR 15.2 min, 2.8 mg), 5 (tR 18.3 min,
2.1 mg), 1 (tR 24.6 min, 3.2 mg), 6 (tR 27.2 min, 3.8 mg), and 8 (tR 31.3 min, 1.5 mg).
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3.7. Antimalarial Screening

The Malstat assay was used as mentioned earlier to assess the compounds’ antimalarial
effect [70,71]. The compounds were dissolved in DMSO (Sigma Aldrich, Taufkirchen,
Germany) at concentrations ranging from 50 µg/mL to 0.4 µg/mL, and synchronised
P. falciparum 3D7 ring stage cultures were placed in duplicate at a parasite level of 1% in
96-well plates (200 µL/well). Chloroquine (CQ; Sigma Aldrich, Taufkirchen, Germany)
was used as a positive control. The P. falciparum 3D7 parasite was cultured with the
compounds at 37 ◦C in 5% O2, 5% CO2, and 90% N2 for 72 h. After this, 20 µL was
transferred to 100 µL of the Malstat reagent (0.1% Triton X-100, 1 g of L-lactate, 0.33 g
Tris, and 33 mg of APAD (3-acetylpyridine adenine dinucleotide; Taufkirchen, Germany))
dissolved in 100 mL of distilled water (pH 9.0) in a 96-well microtiter plate. The plasmodial
lactate dehydrogenase (LDH) activity was then evaluated by adding to the Malstat reaction
20 µL of a 1:1 mixture of diaphorase (1 mg/mL) and nitro blue tetrazolium (NBT). The
optical densities were estimated at 630 nM, and the IC50 values were determined using the
GraphPad Prism software version 5 from variable-slope sigmoidal dose–response curves
(GraphPad Software Inc., La Jolla, CA, USA).

3.8. Molecular Docking

Docking analysis was carried out using the Discovery Studio 2.5 software (Accel-
rys Inc., San Diego, CA, USA). Completely automatic docking tool using “Dock ligands
(CDOCKER)” procedure operating on Intel Core i32370 CPU @ 2.4 GHz 2.4 GHz, RAM
Memory 2 GB under the Windows 10.0 system. Furthermore, these docked compounds
were assembled using a software Chem 3D ultra 12.0 (Cambridge Soft Corporation, USA
(2010)), and then sent to the Discovery Studio 2.5 software. From this, an automatic protein
formulation procedure was conducted through the MMFF94 forcefield with the binding
site sphere recognised by the software. The receptor was recorded as “input receptor
molecule” in the CDOCKER protocol explorer. Establishing this, the test compounds were
subjected to force fields to obtain the minimum energy structure. These poses were ranked
and studied thoroughly, showing the best ligand–HDAC interactions from the calculations
and 2D and 3D examinations [72,73].

4. Conclusions

Microbial coculture continues to prove its efficiency in triggering the production
of cryptic microbial secondary metabolites. Mixed cultivation of two Red Sea-derived
actinobacteria, namely, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp.
UR59, resulted in the induction of several non-traced metabolites in their axenic cultures.
Interestingly, actinosporins E–H were reported to be induced when the axenic culture of
the Actinokineospora spheciospongiae strain EG49 was treated with the signalling molecule
GluNAc. Such induction was comparable to that made by the Rhodococcus sp. UR59 in
the coculture environment, providing the effectiveness of co-cultivation in the discov-
ery of microbial metabolites yet to be discovered in the axenic fermentation with the
potential that could be comparable to adding signalling molecules in the fermentation
flask. Additionally, the induced actinosporins exhibited a promising antimalarial effect
that is likely to be through the inhibition of P. falciparum lysyl-tRNA synthetase, which
requires further investigation as an interesting structural motif for the development of new
antimalarial therapeutics.
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