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Mesenchymal stem cells derived
from adipose tissue accelerate
the progression of colon cancer
by inducing a MTCAF phenotype
via ICAM1/STAT3/AKT axis

Chunling Xue1†, Yang Gao2†, Zhao Sun2, Xuechun Li1,
Mingjia Zhang1, Ying Yang2, Qin Han1*, Chunmei Bai2*

and Robert Chunhua Zhao1*

1Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,
School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue
Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing,
China, 2Department of oncology, Peking Union Medical College Hospital, Chinese Academy of
Medical Science and Peking Union Medical College, Beijing, China
Previous studies have shown that the risk of colon cancer is greatly increased in

people with obesity, and fat content in colorectal cancer tissue is increased in

people with obesity. As an important part of tumor microenvironment,

adipose-derived mesenchymal stem cells (MSCs) are also another important

source of cancer-associated fibroblasts (CAFs), which may be one of the

important mechanisms of affecting tumor progression. However, the

mechanism is poorly defined. In the present study, CAFs were transformed

from MSCs [MSC-transformed CAFs (MTCAFs)] by co-culturing with HCT116

cells. Bioinformatics and Western blotting analysis indicated a positive

correlation between intercellular adhesion molecule-1(ICAM-1) and the

progression of colon cancer. In clinical colon cancer specimens, we found

that ICAM-1 was highly expressed and related to shorter disease-free survival,

which might act as an indication for the progression of clinical colon cancer.

Our data showed that ICAM-1 secreted fromMTCAFs could positively promote
Abbreviations:MSCs, mesenchymal stem cells; hADSCs, human adipose-derived mesenchymal stem cells;

CAFs, cancer-associated fibroblasts; MTCAF, MSC-transformed CAF; a-SMA, alpha–smooth muscle

actin; FAPA, fibroblast activation protein alpha; CRC, colorectal cancer; TME, tumor microenvironment;

IL-6, interleukin-6; CCL2, CC-chemokine ligand 2; SDF-1/CXCL-12, stromal cell-derived factor 1; ICAM-

1, Intercellular adhesion molecule-1; LFA-1, leukocyte-function associated antigen-1; DMEM, Dulbecco’s

Modified Eagle Medium; TEM, transmission electron microscopy; IHC, immunohistochemistry;

IF, immunofluorescence.
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the proliferation, migration, and invasion of colon cancer cells by activating

signal transducer and activator of transcription 3 (STAT3) and Serine/threonine-

protein kinase (AKT) signaling and that blocking ICAM-1 in MTCAFs reversed

these effects. We further verified that ICAM-1 secreted fromMTCAFs promoted

tumor progression in vivo. Taken together, ICAM-1 plays a critical role in

regulating tumor growth and metastasis, which could be a potential

therapeutic target in colon cancer.
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ICAM-1, progression, survival, cell trafficking, AKT and STAT3 signaling
Introduction
Mesenchymal stem cells (MSCs) are an important component

of the tumor microenvironment (TME). MSCs are also referred to

as “mesenchymal stromal cells”, which implies that MSCs have

characteristics associated with stem cells. Importantly, MSCs are a

population of adult multipotent cells that have the capacity of self-

renewal and can differentiate into osteoblasts, chondrocytes, and

adipocytes (1, 2). In addition, MSCs can be obtained from

different tissues including the bone marrow, adipose tissues,

placenta, or umbilical cord (1, 3). Several studies have

demonstrated that MSCs possess multilineage differentiation

potential (4) and can differentiate into cancer-associated

fibroblasts (CAFs) via co-culturing with cancer cells that can

secrete cytokines, growth factors, and CAF-specific proteins (5, 6).

Colorectal cancer is one of the most common malignancies

globally, with about 1.2 million new cases and 600,000 deaths per

year, accounting for the third highest incidence and the fourth

leading cancer-related morbidity (7, 8). Recent studies have

shown that cancer progression and metastasis are not only
02
associated with the properties of tumor cells but also depend

on the TME (9). The stroma of colon cancer forms a complex

ecosystem containing immune cells, endothelial cells, and CAFs,

with the latter characterized by overexpression of marker

proteins, including alpha–smooth muscle actin (a-SMA) and

fibroblast-activated protein (FAP) (10, 11); these provide a niche

for cancer cells to modulate tumor invasion and growth (12, 13).

Recent studies show that CAFs are actively involved in

tumorigenesis, and it can be anticipated that the molecular

characteristics of CAFs have an impact on the clinical

behavior of a tumor (14–16).

Intercellular adhesion molecule-1 (ICAM-1) is a 90-kDa cell

surface glycoprotein of the immunoglobulin superfamily, which

has been shown to be responsible for cancer metastasis (17, 18).

ICAM-1 is the most important ligand of leukocyte function–

associated antigen-1 (LFA-1), which is an aLb2 chain integrin

expressed on the surface of endothelial cells and modulates the

behavior of leukocytes by mediating their adhesion to other cells

through its interaction with cell-surface ligands (19). In addition,

the interaction between LFA-1 and ICAM-1 is involved in

inflammatory responses , inflammatory pathologies ,
GRAPHICAL ABSTRACT

Parsimony diagram for the progression of cancer by MTCAF-derived ICAM1. ICAM-1 secreted from MTCAFs enhances the migration and
invasion ability of colorectal cancer cells by activating the AKT and STAT3 pathway in cancer cells.
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autoimmune diseases, and many cancer processes (19). ICAM-1

expression is positively related with the activation of IL-6/AKT/

STAT3/NF-kB signaling pathways (20). However, the effect of

knocking down ICAM-1 on tumorigenesis is unknown. STAT3

is a well-known and significant mediator of malignant

progression in colorectal cancer, which is mainly activated by

IL-6 (21). IL-6 binds to soluble or membrane-bound IL-6

receptor (IL-6Ra) polypeptides, which stimulates the

activation of Janus kinases (JAKs), and the downstream

effectors, STAT3, Shp-2-Ras, and phosphatidylinositol 3′
kinase (PI3K)–Akt (22, 23). CAFs within the TME actively

contribute to sustained STAT3 activation in colorectal cancer

(21). In addition, activation of IL-6-STAT3 signaling contributes

fibroblasts to their conversion into CAFs in normal gastric

fibroblasts (21, 24), and IL-6 enhances the proliferation of

human colon carcinoma cells in vitro (25, 26).

Here, we sought to better understand the mechanism by

which CAFs promote cell migration and invasion in colorectal

cancer so as to implicate it as a potential target that could be

explored further for its clinical relevance in the treatment of

colorectal cancer.
Materials and methods

Cell culture

HCT116 cells were obtained from the Cell Resource Center,

Peking Union Medical College (which is the headquarters of the

National Infrastructure of Cell Line Resource, NSTI), which

were cultured in Dulbecco’s Modified Eagle Medium (DMEM)/

high glucose (11965092, Gibco, USA) supplemented with 10%

fetal bovine serum (FBS; 16140071, Gibco, USA) and penicillin

(100 IU)/streptomycin (100 µg/ml) at 37°C in a 5% CO2

incubator. Cells are available within 15 generations. The

extraction and culture methods of MSC refer to previous studies.
Isolation and culture of human adipose-
derived MSCs

We collected adult fat samples from plastic surgery hospitals

after obtaining informed consent from the donors. Using D-

Hanks’ buffer, the adipose tissue was washed twice with two

antibiotics (penicillin and streptomycin) and centrifuged at 800g

for 3 min. The upper layer was transferred to a new 50-ml

centrifuge tube. Then, 0.2% collagenase P (Life Technologies

Corporation) was added to the tubes containing the pelleted

tissue for enzymatic digestion followed by incubation at 37°C for

30 min. Subsequently, the digested adipose tissue was filtered

with a 100-µm cell strainer. The sample was centrifuged at

1,500g for 10 min. Next, 2 × 106 cells were seeded in T75 flasks

and incubated at 37°C and 5% CO2 in a cell incubator.
Frontiers in Oncology 03
Extraction of exosomes secreted by
HCT116 cells

DMEM (Life Technologies Corporation) was replaced with

human adipose-derived MSC (hAD-MSC) culture medium

without FBS, 36−48 h before exosome extraction. Supernatants

were harvested after culture and centrifuged at 3,000g for 10 min

to remove dead cells and cell debris. The sample was transferred

to the ultrafiltration apparatus (Life Technologies Corporation)

with a 100,000-kDa–molecular weight ultrafiltration membrane.

Exosomes were resuspended in D-Hanks’ buffer, and the

suspension was filtered with a 0.2-µm microporous membrane

filter, dispensed in 1.5-ml sterile microcentrifuge tubes, and

preserved at −80°C.
Identification of exosomes using
transmission electron microscopy

The purified exosomes were diluted and dropped onto a

copper mesh for 5 min for precipitation. Then, filter paper was

used to absorb excess liquid, and the sample was air dried.

Subsequently, 3% phosphotungstic acid in water was used to

counterstain the sample for 2 min. Finally, exosomes were

observed using a transmission electron microscope (Olympus,

Japan) and photographed.
Exosome uptake

1,1-Dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine

iodide (DiR; 1 µM) (Life Technologies Corporation) is a

lipophilic carbon cyanine dye that can bind lipoproteins in a

manner similar to phospholipids and is embedded in the

membrane of the biomass and oriented within the membrane.

Diffusion movement can be used to observe cell-bound or

endocytic lipoproteins under a fluorescence microscope, and

this allows for semi-quantitative analysis (27). Purified exosomes

were exposed to 1 µM DiR for 10 min. After incubating with

MSCs for 10 h, the cells were washed with PBS three times, and

the nuclei were stained with Hoechst 33342 (10 µg/ml) for 15

min at room temperature and washed with Phosphate Buffered

Saline (PBS) three times. The cells were observed under a

fluorescence microscope (OLYMPUS) and photographed.
Cell–cell co-culture

A Transwell® chamber (0.4 µm) (Corning) was used to co-

culture the HCT116 cells with the hAD-MSCs at 1:1 ratio. The

cells were passaged when cell density is 90%. Cell–cell co-

culturing samples were collected at days 0, 3, 5, 7, and 9.
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siRNAs infection

Small interfering RNA (siRNAs) were used to knockdown

ICAM-1 mRNA and synthesized by GenePharma company

(China). The sequence of knocking down ICAM-1 is

GGCTGGAGCTGTTTGAGAACA. Specific operation of virus

infection was described as previous report (28).
Western blotting analysis

Proteins were extracted from cells using IP lysis buffer (87787,

Thermo Fisher Scientific) with a cocktail (4693116001, Roche,

Basel, Switzerland) and PhosSTOP (4906845001, Roche). The

proteins were denatured in SDS (Sigma-Aldrich) with loading

buffer and boiled for 10 min at 100°C. Sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) was used to

separate the proteins followed by the transfer of protein bands

onto polyvinylidene fluoride (PVDF)membranes (MerckMillipore,

Billerica, MA, USA). The membranes were then blocked with 5%

milk in Tris-buffered saline–Tween 20 followed by overnight

incubation at 4°C with primary antibodies. They were then

washed and incubated with appropriate secondary antibodies for

1 h at room temperature, and bands were visualized using the

enhanced chemiluminescence detection kit Life Technologies

Corporation. The ICAM-1 (5915, 1:1,000), IL-6 (12912, 1:1,000),

AKT (9272,1:1,000), Extracellularr regulated protein kinases (ERK)

(4695, 1:1,000), p-ERK1/2 (4370, 1:1,000), p-JNK (9251, 1:1,000),

anti-rabbit Horseradish Peroxidase labeled Anti-mouse IgG (IgG-

HRP) (14708,1:2,000), Phospho-Stat3 (Tyr705, 9145, 1:1,000), Stat3

(D3Z2G, 12640, 1:1,000), Jak2 (D2E12, 3230, 1:1,000), Phospho-

Jak2 (Tyr1007, 3771, 1:1,000), and anti-mouse IgG-HRP (14709,

1:2,000) antibodies were obtained from Cell Signaling Technology

(Danvers, MA, USA); IL-8 (500-M08, 1:1,000) and p-Akt (ser473,

66444-1-IG, 1:2,000) antibodies were purchased from ProteinTech

(Chicago, IL, USA).
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Real-time quantitative polymerase chain
reaction

RNA was extracted from cell samples using TRIzol (Thermo

Fisher Scientific). RNA was thawed in 30 ml of RNA free water

(Applygen) and reverse-transcribed (60 µl) according to the

protocol recommended for the TaKaRa M-MLV reverse

transcriptase (Takara). Amplification of the gene fragment was

performed. To amplify the ICMA1, IL-6, IL-8, and

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes,

one-step real-time quantitative polymerase chain reaction (RT-

PCR) was performed as follows: 95°C for 5 min, 95°C for 10 s,

60°C for 40 s, 40 cycles. Reactions were performed in triplicate,

and independent experiments were repeated three times. The

RT-PCR data were analyzed using StepOne Software 2.1, and

primers are presented in Table 1.
Enzyme-linked immunosorbent assay

The levels of soluble IL-6/8/TNFa in the supernatant of

primary MTCAFs and the supernatant were measured using an

enzyme-linked immunosorbent assay (ELISA) kit (Jiangsu

Meimian industrial Co., Ltd., TNFa: MM-0132M1, IL-6: MM-

0163M1, and IL-8:MM-0123M1), according to the

manufacturer’s instructions. The absorbance (450 nm) of each

sample was detected on a standard automatic microplate reader

(BioTek, USA).
Cell invasion and migration assay

Colorectal cancer cell migration and invasion assay was

conducted using 24-well Matrigel-coated Transwell inserts (BD

Biosciences, San Diego, CA, USA). Approximately 2 × 105 cells

were seeded in serum-free medium in the upper chamber. Next,
TABLE 1 Sequences for primers.

Items Direction Sequence

IL6 primer sense ACTCACCTCTTCAGAACGAATTG

reverse CCATCTTTGGAAGGTTCAGGTTG

IL8 primer sense ACTCCAAACCTTTCCACCCC

reverse TTCTCAGCCCTCTTCAAAAACTTC

GAPDH primer forward GGTCACCAGGGCTGCTTTTA

reverse GGATCTCGCTCCTGGAAGATG

ICAM1 primer forward ACGTTGGATGAGCACTCAAGGGGAGGTCAC

reverse ACGTTGGATGGCTACCACAGTGATGATGAC
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DMEM with FBS was added to the lower chamber, and after

incubation at 37°C with 5% CO2 for 24–48 h, the non-filtered

cells were removed using a cotton swab and the migratory cells

were stained with 0.1% crystal violet solution. The invasive cells

attached to the bottom surface of the filter were quantified under

a light microscope (200×). The data are presented as the average

number of cells from randomly chosen fields. Each treatment

condition was assayed using triplicate filters, and all filters were

counted in five areas.
Wound healing

Using marker pen is to marker the 6-well plate with the

ruler, which draw horizontal lines evenly (0.5-1cm). Each hole

have to pass through at least 3 lines. Cell density is about 5*105

cells/pole. Next day, holding the head of the spear against the

ruler and trying to keep it to the horizontal line in order to

scratch. Wash the cells three times with PBS, remove the

suspending cells, and add serum-free medium. Putting it into

an incubator at 37°C with 5%CO2. Sampling at different hours

and taking photos.
Patients and samples

This is a retrospective cohort study. Colorectal cancers were

obtained with informed consent from patients in Peking Union

Medical College Hospital (Beijing, China) during January 2014

to December 2016. All specimens were collected using the

protocols approved by the Ethics Committee of Peking Union

Medical College Hospital. All patients were R0 resected and

pathologically diagnosed with CRC.
Immunohistochemistry

The resected tissue samples were fixed with formaldehyde,

embedded in paraffin, and prepared into 4-m-thick sections. The

slides were then dewaxed and hydrated. Next, we decreased the

peroxidase activity by treating with 3% H2O2. The sections were

blocked by using 10% normal goat serum and incubated with

appropriate primary antibody overnight at 4°C. Then, PBS

diluted secondary antibody at 1:100 was added followed by

incubation at room temperature for 2 h. All immunostained

sections were then lightly restained with hematoxylin. The

results of immunohistochemistry (IHC) were evaluated by two

pathologists independently. If the results were inconsistent, the

final result would be judged by the third pathologist. The

membrane staining of cells >5% was defined as ICAM-1 positive.
Frontiers in Oncology 05
Agilent expression profiling gene chip

The total RNA of the sample was quantified by NanoDrop

ND-2000 (Thermo Scientific), and then, the RNA integrity was

checked by Agilent Bioanalyzer 2100 (Agilent Technologies).

After passing the RNA quality inspection, the labeling of the

sample, the hybridization of the chip, and the elution refer to the

standard process of the chip. First, total RNA is reverse-

transcribed into double-stranded cDNA and then cRNA

labeled with Cyanine-3-CTP (Cy3) is synthesized. The labeled

cRNA is hybridized with the chip, and the original image is

obtained by scanning with Agilent Scanner G2505C (Agilent

Technologies) after elution.
Animal experiments

All mice were maintained and manipulated according to the

guidelines established by the Medical Research Animal Ethics

Committee of Peking Union Medical University. The samples

were randomly assigned. A mixture of 5 × 106 HCT116 cells

were re-suspended with 1 × 106 cells or PBS (5:1) in 100 ml of
PBS and subcutaneously injected into 6-week-old female

athymic nude mice (BALB/C). Tumor formation was

examined after 7 days. We detected the tumor size every three

days, recorded the data, and finally calculated the volume (1/2

*the long side*the short side squared). When tumor volume

reached 1–1.5 cm, the animals were sacrificed. Tissues were

collected and sectioned followed by some sections being fixed

with 10% buffered formalin for IHC analysis, whereas the others

were preserved at −80°C for Western blotting.
Writing statement

Participants have provided written informed consent to take

part in the study.
Statistical analysis

All data are expressed as means ± SD from at least three

independent experiments. The statistics were analyzed by SPSS

25.0 statistical software (IBM, Armonk, USA). The relationship

between the expression of ICAM-1 and disease-free survival

(DFS) was evaluated by the Kaplan–Meier method. DFS was

defined as the time from complete resection of tumor to disease

recurrence. Statistical analysis was performed using two-tailed t-

tests and one-way ANOVA. P < 0.05 was considered statistically

significant. Each experiment was repeated at least three times to

obtain a P-value and to control for systematic errors.
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Results

Exosomes derived from HCT116 (H-Exos)
induce the differentiation of MSCs into
MTCAFs

Previous studies have shown that MSCs can differentiate into

CAFs (4, 29). First, we applied H-Exos to induce MSCs differentiate

into CAFs, which is named MTCAFs, and we found that MTCAFs

have the higher CAF-specific gene expression (a-SMA and FAPA)

(Figure 1A). The characteristics of H-Exos are presented in
Frontiers in Oncology 06
Supplementary Figure 1. Next, we evaluated the transcriptomic

alterations and identified activated proteins in MTCAFs compared

with MSCs; MTCAFs was kept into a transcriptionally active state,

which was demonstrated by an increased number of upregulated

genes (Figure 1B). Meanwhile, clustering identified upregulation of

gene markers related to cell secreted inflammatory factors and

immune regulation inMTCAFs compared withMSCs (Figures 1C,

D). To be similar to the physiologic al conditions, we applied the co-

culturing system, and we found that the co-culturing effect with

HCT116 cells and MSCs is the same as that in exosomes secreted

from HCT116 cells with MSCs (Figure 1E). Western blotting
A B

D

E F G

I

H

C

FIGURE 1

Transcriptome analysis of MSCs treated with H-Exos. (A) Detection of genes associated with MTCAF using Western blotting with the situation of
MSCs with H-Exos at days 0, 3, 5, and 7. (B) Heat map showing the differentially expressed genes (DEGs) in HCT116-exos–treated MSCs (CAF1-
3) and control MSCs (MSC1-3). (C) DEGs associated with inflammatory factors. (D) DEGs associated with immune regulation. (E) Detection of
genes associated with MTCAF using Western blotting with the situation of co-culturing with HCT116 cells and MSCs at days 0, 3, 5, and 7. (F)
Detection of genes associated with inflammatory factors using Western blotting. (G) Detection of genes associated with angiogenesis using
Western blotting. (H) The expression of ICAM-1 was measured at days 0, 1, 3, and 7 by expression profiling gene chip (I) The expression of
ICAM-1 using Western blotting at days 0, 1, 3, and 7.
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analysis showed an increase in the inflammatory and angiogenesis

proteins from transcriptome analysis results (Figures 1F, G). In

addition, the Agilent expression profiling gene chip results showed

that ICAM-1 expression increased gradually during MSCs

differentiation, and Western blotting analysis showed the same

effect (Figures 1H, I). In conclusion, HCT116 cells can promote the

differentiation of MSCs intoMTCAFs and screen key gene ICAM-1

during the differentiation process.
ICAM-1 might act as an indication for the
progression of clinical colon cancer

To explore the correlations between ICAM-1 expression and

progression and prognosis of patients with colon cancer, we

collected patients samples with colon cancer from Oncomine

Database, which includes paracarcinoma tissue and colorectal

cancer tissue. The Oncomine analysis showed that a-SMA,

ICAM-1, and LFA-1 exhibited a higher expression in

colorectal cancer compared with colon tissue (Figures 2A–C),

and ICAM-1 was positively correlated with a-SMA and LFA-1

(Figures 2D, E). To further clarify the function of these genes,

we used clinical specimens for further analysis. The expression of

ICAM-1 and a-SMA in tumor tissue of patients with stage I, II,

and III CRC were obtained by using immunofluorescent

staining. The result showed that ICAM-1 and a-SMA were co-

expressed in clinical samples (Figure 2F). Next, we enrolled 72

patients (n = 72), 38 samples showed ICAM-1 positive, and 34

samples showed ICAM-1 negative (Figure 2G). On basis of this,

we analyze the relationship between ICAM-1 expression and

patient survival, and the result showed that the DFS of patients

with positive ICAM-1 expression was significantly shorter than

that of ICAM-1–negative patients [(28.06 ± 1.47) months vs.

(38.87 ± 3.35) months, P = 0.013] (Figure 2H). These results

suggest that ICAM-1 is inversely associated with survival in

patients with colorectal cancer.
ICAM-1 is critical for the migration and
homing abilities of MTCAFs

To further validate the function of ICAM-1 in the process of

MSC differentiating into MTCAFs, we detected the invasion and

migration abilities of MTCAFs, and the results showed that

MTCAFs with ICAM-1 knockdown presented with significantly

decreased abilities of migration (Figures 3A, B) and invasion

(Figures 3C, D) compared with MTCAFs, which means that the

ICAM-1 may play an important role in the MTCAFs. To further

understand the situation of MTCAF homing, we built a nude

mouse xenograft tumor model (mice, n = 10). HCT116 cells

were subcutaneously co-implanted with MSCs (S1), MSCs with

ICAM-1 knockdown (S2) and PBS (NC) at a ratio of 5:1. We
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next detected the abilities of distant migration by in vivo

fluorescence image, and we found that homing to the lungs in

S1 group was more stronger than that in S2 group (Figure 3E).

To determine which cells migrate to the lungs, we next detected

the CAF-specific marker genes (a-SMA and FAPA) by

immunofluorescence staining, and the results showed that

MTCAFs migrate to the lung in the S1 group compared with

the other two groups (Figure 3F). These results show that the

ICAM-1 gene mediates the movement of MTCAFs, which may

influence the progression of colon cancer cells.
ICAM-1 regulates the inflammatory
secretion of MTCAFs and mediates the
inflammatory microenvironment

In our study, the transcriptomic analysis indicated that H-Exos

activated different signals including TNFa and IL6 signaling

pathways in MTCAFs (Figure 4A). Among the inflammatory

factors, Western blotting analysis revealed that the expression of IL-

6 and IL-8 was decreased, whereas MTCAFs were knocked down

by ICAM-1 (Figure 4B). This result was further verified by ELISA

to detect ICAM-1, IL-6, and IL-8 concentration of serum on day 7

(Figure 4C). In addition, by accessing immune cell infiltration in

vivo, we showed that the number of F4/80 macrophages was lower

in tumors in S2 group compared with S1 group (Figures 4D, E).

Some studies suggest that the inflammatory factors, IL-6, IL-8, and

TNFa, are major regulators of tumor stroma interaction in the

cancer microenvironment (32–35). We examined their expression

levels in mice serum by ELISA (n = 5) and found increased levels of

IL-6 and IL-8 (Figures 4F, G). In conclusion, MTCAFs with

ICAM-1 are able to mediates the inflammatory microenvironment.
MTCAFs regulate colon cancer cell
invasion and migration via secreting
ICAM-1

In our study, we further explored the effect of MTCAF-

derived ICAM-1 on the HCT116 cells, and we found that

migration abilities (Figures 5A, B) and invasion abilities

(Figures 5C, D) of HCT116 cells were obviously weakened at

day 7 when MTCAFs were knocked down. We next analyzed

whether MTCAFs with ICAM-1 knockdown affected the tumor

progression and immune environment by using a nude mouse

xenograft tumor model (mice, n = 10). HCT116 cells were

subcutaneously co-implanted with MSCs (S1), ICAM-1

knockdown MSCs (S2), or PBS (NC) at a ratio of 5:1. Mice in

S1 group promoted the growth of tumor compared with the

other two groups in vivo (Figures 5E, F). Next, we assessed the

tumor weight by excising the tumor from mice, and the results

were similar to those observed for tumor growth (Figures 5G,
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FIGURE 2

ICAM-1 expression has a poor prognosis in patients. (A–C) The expression analysis in relation to ICAM-1, a-SMA, and LFA-1 from Oncomine
Database, respectively. (D, E) cBioPortal Database indicated the correlation between ICAM-1 and a-SMA or LFA-1. (F) Colon cancer tissues
specimens consisting of patients with stage I, II, and III CRC were immunofluorescent staining with antibody against ICAM-1 (red), a-SMA
(green), and nucleus (blue). (G) The enrolled 72 patients were divided into two groups including only mesenchymal ICAM-1 positive (30) and
mesenchymal ICAM1 negative (31). (H) Kaplan–Meier curves for DFS of mesenchymal ICAM-1 expression. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3

Knockdown ICAM-1 in MTCAFs attenuates their migration and homing abilities. (A, B) Transwell migration assays to evaluate the MTCAF
migratory capacity were performed and are represented. The left side shows a representative microscopic image of the crystal violet staining.
The right shows the quantitative results. (C, D) Transwell migration assays to evaluate the MTCAF invasion capacity were also performed and are
represented. The left side shows a representative microscopic image of the crystal violet staining. The right shows the quantitative results. (E) In
vivo fluorescence image showing the effect of combined MSC transplantation on tumor metastasis. Three groups of mice were transplanted
with HCT-116 5 × 106 cells, HCT-116 5 × 106 cells + MSC 1 × 106 cells, and HCT-116 5 × 106 cells + MSC with ICAM1 knocking down 1 × 106

cells. The MSC cell lines carried GFP. (F) MTCAF density was measured using immunofluorescence staining in mice lung tissues by staining a-
SMA and GFP transfected in MSCs.
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H). Meanwhile, Ki67 staining was performed, and the results

showed that the proliferation capacity of the S1 group was

significantly higher than NC group, whereas knocking down

ICAM-1 significantly decreased the ability of proliferation

(Figures 5I, J). We found that HCT116 cells can also migrate

into the lungs in S1 group but not in S2 group and NC group

(Figure 5K). These results show that ICAM-1 mediates

progression of colon cancer cells.
Frontiers in Oncology 10
ICAM-1 secreted from MTCAFs mediates
the STAT3 and AKT signaling pathway in
colon cancer cells

LFA-1 has been reported to be the most important ICAM-1

receptor (31). In our study, wound healing assay confirmed that

ICAM-1 secreted by MTCAFs regulates migration of HCT116 cells

by interacting with LFA-1 expressed on HCT116 cells (Figure 6A).
A B

D

E F G

C

FIGURE 4

ICAM-1 mediates the inflammatory microenvironment. (A) Go enrichment analysis showed that inflammatory signaling pathways in MTCAF were
significantly activated with the situation of H-Exos stimulation. (B) The expression of IL6 and IL8 was detected by Western blotting (WB) in
MTCAFs or MTCAFs with knocking down ICAM1 at days 0, 3, 5, and 7. (C) ELISA detection detected the ICAM1, IL6, and IL8 expression from
cellular supernatant with ICAM1 or without ICAM1. (D, E) Macrophage infiltration into tumor tissues was examined using immunohistochemistry
for the detection of the F4/80. Representative images of F4/80 stainings for each group are shown (magnification, × 400). Panel (E) shows the
quantitative results. (F, G) IL-6 and IL-8 from mice serum levels were evaluated using ELISA in the three different groups (n = 5). *p < 0.05,
**p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.837781
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue et al. 10.3389/fonc.2022.837781
A
B

D

E
F G

I

H

J

K

C

FIGURE 5

ICAM-1 from MTCAFs influences the progression of colon cancer cells. (A, B) Transwell migration assays to evaluate the HCT116 cells migration
capacity were also performed. Panel (A) indicates a representative microscopic image of the crystal violet staining. Panel (B) shows the
quantitative results. (C, D) Transwell assays to evaluate the HCT116 cells invasion capacity were also performed. Panel (C) indicates a
representative microscopic image of the crystal violet staining. Panel (D) shows the quantitative results. (E) Representative photographs of
HCT116 tumors generated in nude mice eco-implanted with MSCs (S1), MSCs after ICAM-1 silencing (S2), or PBS (NC) at a ratio of 5:1. (F) The
quantitative data referent to (E). (G) The weight (g) of tumors were discorded. (H) The quantitative data referent to (G). (I, J) The expression of
Ki67 in tumor tissue of mice in S1, S2, and NC groups was detected by immunohistochemistry. (J) The quantitative data. (K) MSCs and HCT116
density were measured using immunofluorescence staining in mice lung tissue (CK20, red, represents colorectal cancer cells; a-SMA, pink,
represents MTCAFs; green, fluorescent protein carried by MSCs; and Hoechst3342, blue, represents the nucleus. *p < 0.05, **p < 0.01, and
***p < 0.001.
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FIGURE 6

MTCAF-derived ICAM-1 mediates STAT3 and Akt signaling pathways in colon cancer cells. (A) The migration ability of HCT116 cells was
detected by wound healing in two different treatment groups including MSC co-culturing with HCT116 cells or HCT116 cells with LFA inhibitor
(44 nM) groups. (B) Western blotting assay was used to detect the phosphorylation of AKT and STAT3 in HCT116 cells when HCT116 cells and
MSCs were co-cultured at days 0, 3, 5, and 7. GAPDH was used as the control group. (C) Western blotting was used to detect AKT and STAT3
signaling pathway in HCT116 cells with co-culturing with MSCs or MSCs knocking down ICAM-1. GAPDH was used as the control group. (D)
Invasive ability of HCT116 cells was measured using the Transwell assay. The left shows the microscopic image of the crystal violet staining
[group A represents the HCT116 and MSC co-culture group, group B represents the HCT116 and MSC co-culture group with AKT inhibitor (10
10 mM) group, and group C represents the HCT116 and MSC co-culture group with STAT3 inhibitor (2.14 mM) group). (E) The microscopic image
of the crystal violet staining. (F) The wound healing was used to detect migration ability of HCT116 cells at different time (group A represents the
HCT116 and MSC co-culture group, group B represents the HCT116 and MSC co-culture group with AKT inhibitor group, and group C
represents the HCT116 and MSC co-culture group with STAT3 inhibitor group). **p < 0.01 and ***p < 0.001.
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Western blotting results showed that JAK, STAT3, and AKT were

also activated in HCT116 cells co-cultured with MTCAFs after day

3 (Figure 6B), whereas MTCAFs were knocked down by ICAM-1,

and the phosphorylation of JAK, STAT3, and AKT in HCT116 cells

was significantly decreased (Figure 6C). Next, we detected the

migration and invasion ability of HCT116 cells in different

treatment groups, including HCT116 and MSC co-culture group

(group A), HCT116 and MSC co-culture plus STAT3 inhibitor

group (group B), and HCT116 and MSC co-culture plus AKT

inhibitor group (group C). Transwell results showed that HCT116

cell invasion was significantly reduced in groups B and C compared

with group A (Figures 6D, E). Wound healing test results showed

that the migration ability of HCT116 cells in groups B and C was

significantly weakened compared with group A (Figure 6F). Finally,

immunohistochemistry demonstrated that MTCAFs can activate

AKT and STAT3 signaling pathways in tumor tissues in nude

xenograft tumor models (Supplementary Figure 2). These results

suggest that MTCAF-derived ICAM-1 promotes the progression of

colon cancer cells by binding LFA-1 to activate STAT3 and AKT

signaling pathways.
Discussion

It has been well established that CAFs promotes various

tumor progression, and CAFs originate in a variety of cells

including MSCs, endotheliocyte, and epithelial cell (36). In our

study, we mainly use MSC-derived CAFs (MTCAFs).

Mechanistically, this mainly contributed to the matrix

deposition and remodeling, interactions with cancer cells via

extensive reciprocal signaling, and crosstalk with infiltrating

immune cells (30, 37–39). Although recent studies have found

that CAFs attribute to the progression of colon cancer (40, 41),

the origin and role of CAFs incolon cancer and its mechanism

have needed to be fully elucidated. Here, we confirm that MSC-

derived CAFs promote the growth, migration, and invasion of

colon cancer cells and testify the critical role of CAFs in the

microenvironment of colon cancer.

Recent reports have shown that CAFs can secrete various

cytokines such as growth factor, inflammatory factors, and

chemokine, which can stimulate diverse signaling pathways

and biological functions of different cancers (10). Previous

studies have shown that several cytokines in CAFs were

increased, which contribute to the progression of various

cancer including IL8, IL6, and TGF-b1 (10, 42–44). In our

work, we identified a novel cytokine, ICAM-1, which is a

transmembrane molecule stabilizing cell–cell and cell-

ex trace l lu la r matr ix in te rac t ions and fac i l i t a t ing

transendothelial transmigration (45, 46). MTCAF-derived

ICAM-1 has double roles: It not only regulates the growth and

migration of MTCAFs by mediating the expression of IL6 and

IL8 in MTCAFs but also can promote the proliferation and
Frontiers in Oncology 13
invasion of cancer cells. Previous study has shown that the

prognosis of the patients with ICAM-1–negative tumors was

significantly poorer than that of those with ICAM-1–positive

tumors (47). This result is not contradictory with our result. We

consider that this difference between our results and the previous

reports may be due to ICAM-1 derived from MTCAFs. Our

results further verified this hypothesis. We found that ICAM-1

expression was high in fibroblasts (i.e., mesenchymal cells of

tumor tissue) of tumor tissue in patients with different clinical

stages, which negatively correlated with patient survival,

consistent with our results in vivo and in vitro.

One of the critical problems is the molecular mechanism of

ICAM-1 derived from MTCAFs action on colon cancer cells in

our study. It has been found that CAFs can be activated by some

cytokines in TME, such as IL6, IL8, and Fibroblast growth factor

2 (FGF2) (43, 48), which further activates various pathways

including IL6-STAT3 and AKT signaling pathways (43, 49).

Interestingly, these pathways have been also shown to regulate

ICAM-1 expression (20). Therefore, we found that MTCAF-

derived ICAM-1 promotes the progression by activating the

STAT3 and AKT signaling in colon cancer cells. However, this

specific question needs further study.

Most studies have demonstrated that ICAM-1 regulates

cancer metastasis via the binding receptor, LFA-1, which can

activate numerous pathways (50–52). ICAM‐1–induced tumor

COX‐2 impaired the antitumor activity via binding LFA-1

during hepatic metastasis (52) . The expression of

inflammatory cytokines, such as IL-1b, TNFa, IL-6, and IFN-

g, tightly regulates ICAM-1 expression (53, 54). In addition, the

ICAM-1/LFA-1 pathway regulates important cell–cell

interactions including leukocyte adhesion and migration,

especially the killing of tumor cells by natural killer cells and

cytotoxic T lymphocytes (CTLs) (55, 56). At present, various

tumor cells have been shown to highly express ICAM-1 that is

known to be a potent ligand for LFA-1 on CTLs. Most studies

have revealed that ICAM-1 plays an important role in the

progress and metastasis of many cancers (21, 57–59).

However, the function of ICAM-1 in CAFs has not been

revealed in the TME of colorectal cancer. In our study, we

found that ICAM-1 derived from MTCAFs promotes the

migration and invasion of colorectal cancer cells by binding

LFA-1 receptor of colon cancer, subsequently activating AKT

and STAT3 in HCT116 cells. The possible mechanism is that

MTCAFs activate the AKT and STAT3 signaling pathways in

colon cancer cells via the ICAM-1/LFA-1axis.

Although we confirmed the important role of MTCAF-

derived ICAM-1 in colorectal cancer, there are still many

limitations, such as stage IV patients were not included in our

study. One reason for lacking of stage IV patients was that those

patients rarely underwent surgery in the past years. We can

enroll larger sample capacity to further explore the correlation

between ICAM-1 and clinical features in this should be

the future.
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Conclusion

In summary, we found that ICAM-1 secreted from CAFs

enhances the migration and invasion ability of colorectal cancer

cells by activating the AKT and STAT3 pathway in cancer cells

(Figure 6). Our results provide a better cognition of how CAFs

work in the TME in colorectal cancer. MTCAF-derived ICAM-1

may play an important role in promoting cancer metastasis and can

serve as a predictive and prognostic biomarker in colorectal cancer.
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SUPPLEMENTARY FIGURE 1

Characterisation of exosomes derived from HCT116 cells (HCT116-exos)

and in vitro uptake assay results. (A) Themorphology of HCT116-exos was

assessed using electron microscopy. (B) HSP70, HSP90, and CD63
expression in HCT116cells and HCT116-exos was analyzed using

Western blotting. (C) HCT116-exos size distribution was evaluated by
NTA analysis. (D) Uptake of DiR-labelled HCT116-exos by MSCs was also

evaluated after 10h.

SUPPLEMENTARY FIGURE 2

Knocking down ICAM-1 from MTCAFs attenuates STAT3 and AKT
signaling in vivo. (E) (A/B)AKT and STAT3 signaling pathways were

measured using immunohistochemical staining in mice tumor tissues.
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