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Macrophages-derived high-mobility
group box-1 protein induces endothelial
progenitor cells pyroptosis

Menghao Zeng,1,2,4 Guibin Liang,1,2,4 Fangfang Yuan,1 Shanshan Yan,1 Jie Liu,1 and Zhihui He1,2,3,5,*

SUMMARY

Endothelial dysfunction is an important factor in the progress of sepsis. Endothelial progenitor cells
(EPCs) are the precursor cells of endothelial cells and play a crucial role in the prognosis and treatment
of sepsis. EPCs in the peripheral blood of patients with sepsis undergo pyroptosis, but the mechanism re-
mains much of unknown. Serum high-mobility group box-1 (HMGB1) is significantly elevated in patients
with sepsis, but whether it is related to EPCs pyroptosis is unknown. We used a cell model of sepsis
in vitro to isolate EPCs for better observation. By detecting the pyroptosis-related indicators of EPCs
and the level of release and acetylation of HMGB1 in inflammatory macrophages, it was found that
HMGB1 released by inflammatory macrophages combined with receptor for advanced glycation end
products (RAGE) is a key pathway to induce pyroptosis of EPCs.

INTRODUCTION

Sepsis is a life-threatening organ dysfunction caused by the host’s dysregulated response to infection.1 Endothelial dysfunction plays a major

role in the pathogenesis of sepsis.2 Endothelial progenitor cells (EPCs) are crucial as they are the precursors to vascular endothelial cells which

line the inner surface of blood vessels.3 During sepsis, EPCs are mobilized from bone marrow into peripheral circulation to repair the

damaged endothelium.4 Many studies have underscored the significance of EPCs in both the prognosis and treatment of sepsis.2,5–7 Mac-

rophages are pivotal immune cells which wield significant influence over the immune response during sepsis. They release abundant inflam-

matory mediators, including interleukin (IL)-6, tumor necrosis factor a, IL-1, high-mobility group box-1 (HMGB1).8–10 However, the impact of

macrophages on EPCs in sepsis remains rarely understood.

Programmed cell death, including apoptosis, necrosis, pyroptosis, necroptosis, and ferroptosis, participates in various pathophysiological

processes of sepsis.11–13 The research on pyroptosis in sepsis has attracted much attention in recent years. Pyroptosis, primarily mediated by

the Gasdermins (GSDMs) family, is characterized by a dependence on inflammatory caspase accompanied by the release of numerous pro-

inflammatory factors.14,15 Currently, research on pyroptosis mainly focuses on immune cells, with less study on EPCs.

HMGB1 is a ubiquitous nuclear and cytosolic protein.16 The extracellular HMGB1 is mainly released by monocytes and macrophages; it is

considered as a signal of tissue injury17 and even mediates lethality during endotoxemia or sepsis.18 Receptor for advanced glycation end

products (RAGE) is a signal transduction receptor. HMGB1 bound to RAGE could induce cell pyroptosis.19,20 EPCs express high level of

RAGE.21 The issue of whether HMGB1 released from inflammatory macrophages could induce circulating EPCs pyroptosis during sepsis

is still undisclosed.

Here, we analyzed blood samples from sepsis patients and incubated EPCs in vitro using supernatant from sepsis-associated inflammatory

macrophages to investigate whether HMGB1 released from inflammatory macrophages could induce EPCs pyroptosis.

RESULTS
The number of EPCs with FAM-FLICA-activated caspase-1 and PI double-positive staining and the level of HMGB1 in serum

were increased in sepsis patients

Activated caspase-1 plays an important role in mediating inflammation and pyroptosis.22 Pyroptosis was characterized by the coexistence of

active caspase-1 andpropidium iodide (PI) positivity.23We found that the number of EPCswith FAM-FLICA-activated caspase-1 (green) and PI

(red) double-positive staining from sepsis patients was significantly higher than that of healthy controls (p< 0.01) (Figures 1A and 1B). The level
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of HMGB1 in serum in sepsis patients was also higher than that in healthy controls (p < 0.05) (Figure 1C). These results suggested that EPCs in

the peripheral blood of sepsis patients undergo pyroptosis and the HMGB1 in serum may be involved in EPCs pyroptosis.

Septic mSN-induced EPCs pyroptosis required LPS

In order to investigate the effect of septic macrophages supernatant (mSN) on EPCs, EPCs were incubated with mSN alone or mSN plus

1 mg/mL Lipopolysaccharide (LPS) in vitro (Table 1). When EPCs were incubated with mSN alone, there was no morphological sign of cell

death and no activated markers related to pyroptosis. When incubated with mSN plus 1 mg/mL LPS, EPCs showed cell membrane rupture,

leakage of cellular contents, cellular swelling and deformation, and the appearance of necrotic vesicles in the group mSN-LpN+1 mg/mL LPS

(Figures 2A and 2D). At the same time, the uptake of PI (red) (Figure 2A) and FAM-FLICA-activated caspase-1 (green) (Figure 2B) and the for-

mation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) -speck (red arrows) (Figure 2C) in EPCs

were increased in the group mSN-LpN+1 mg/mL LPS. Additionally, the cleavage of GasderminD (GSDMD) and IL-1b (Figures 2E, S2A, and

S2C) in EPCs were observed in the group mSN-LpN+1 mg/mL LPS, but not in other groups. The level of lactic dehydrogenase (LDH)

(p < 0.0001) and IL-1b (p < 0.0001) in EPCs supernatant also increased in the group mSN-LpN+1 mg/mL LPS (Figures 2F and 2G). There

was no difference in the cleavage of GSDME in EPCs among these groups (Figures 2E and S2B). These results indicated that EPCs incubated

with mSN-LpN+1 mg/mL LPS suffered from pyroptosis by mediating the cleavage of GSDMD.

LpN increased the release and acetylation level of HMGB1 in macrophages

The concentration level of HMGB1 in mSN and the protein expression level of HMGB1 in macrophages were detected by ELISA and western

blot (WB), respectively. Results showed that both the concentration level of HMGB1 in mSN and the protein expression level of HMGB1 in

macrophages in the group mSN-LpN were significantly higher than those in other groups (p < 0.0001, p < 0.01) (Figures 3A–3C). The findings

demonstrated that HMGB1 was released from macrophages into the extracellular space only in the case of LpN intervention.

Figure 1. The number of EPCs with FAM-FLICA-activated caspase-1 and PI double-positive staining and the level of HMGB1 in serumwere increased in

sepsis patients

(A and B) EPCs with FAM-FLICA-activated caspase-1 and PI double-positive staining in sepsis patients and healthy controls. Scale bar: 100 mm.

(C) The level of HMGB1 in serum in sepsis patients and healthy controls. PI, propidium iodide; HMGB1, high-mobility group box-1. The data shown are

representative of three independent experiments. Data are represented as meanG SD. p values were determined using a two-tailed t test. *p < 0.05, **p < 0.01.
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Acetylation is the main form of HMGB1 exocytosis. The acetylation modification promotes HMGB1 transfer from nucleus to

cytoplasm, facilitating its further release into the extracellular space.24,25 Result of coimmunoprecipitation (coIP) showed that the acetylation

level of HMGB1 in macrophages was up-regulated in group LpN (p < 0.001) (Figures 3D and 3E). In addition, using an acetylase inhibitor to

pretreat macrophages before LpN intervention could reduce the acetylation level of HMGB1 in macrophages (p < 0.01) (Figures 3F and 3G).

EPCs pyroptosis relies on the release of HMGB1 from macrophages

In order to observe the impact of HMGB1 released from macrophages on EPCs pyroptosis, macrophages were treated with different con-

centrations (80, 160, 320 mg/mL) of glycyrrhizic acid (GA), direct inhibitor of HMGB1, for 2 h prior to LpN stimulation. Then EPCs were incu-

bated with GA-pretreated mSN-LpN+1 mg/mL LPS as before. As expected, the cleavage of GSDMD in EPCs (p < 0.05) (Figures 4A and S3A)

and the level of LDH (p < 0.05) (Figure 4B) in EPCs supernatant were decreased in a dose-dependent manner with the administration of GA.

Similar results were observed when EPCs were incubated with siHMGB1-pretreated mSN-LpN+1 mg/mL LPS (p < 0.05) (Figures 4C, 4D, and

S3B–S3D).

Purified rHMGB1 (dithiothreitol [DTT]-reductive form) plus 1 mg/mL LPS also induced the cleavage of GSDMD in EPCs (Figures 4E and S3E)

and the increased levels of LDH, IL-1b, and IL-1a in EPCs supernatant (p < 0.0001) (Figures 4F–4H).

HMGB1-RAGE axis induces EPCs pyroptosis

It is well known that RAGE is a high-affinity receptor for HMGB1.26 HMGB1 internalization largely depends on RAGE.27 The result of immu-

nofluorescence showed that RAGE was highly expressed in EPCs (Figure 5A). Next, we pretreated EPCs with the RAGE inhibitor FPS-ZM1 (8,

16, 32 mM) and then incubated EPCs with mSN-LpN+1 mg/mL LPS. The results displayed that the cleavage of GSDMD in EPCs (Figures 5B

and S4) and the level of LDH (Figure 5C) in EPCs supernatant were down-regulated in a dose-dependent manner with the administration

of FPS-ZM1 (p < 0.05). The result of coIP assay exhibited that in the group mSN-LpN+1 mg/mL LPS, the binding of HMGB1 to RAGE was

increased compared with the group mSN-LpN (p < 0.001); this trend was consistent with what was seen in the cleavage of GSDMD in

EPCs (Figures 5D and 5E).

DISCUSSION

The present study showed that compared with healthy controls, the number of circulating EPCs with FAM-FLICA-activated caspase-1 and PI

double-positive staining and the level of HMGB1 in serum were increased in patients with sepsis. In vitro, EPCs were co-incubated with

mSN alone or mSN plus 1 mg/mL LPS; only EPCs in the group mSN-LpN+1 mg/mL LPS exhibited up-regulated uptake of PI and FAM-

FLICA-activated caspase-1, as well as the cleavage of GSDMD and the formation of ASC-speck in EPCs. Furthermore, EPCs in the group

mSN-LpN+1 mg/mL LPS showed the morphological characteristics of pyroptosis and released amount of LDH and IL-1b. These results indi-

cated that EPCs treated with mSN-LpN+1 mg/mL LPS suffered from pyroptosis by mediating the cleavage of GSDMD. In the macrophage

groups, compared with the group Ctrl, the acetylation level of HMGB1 and the release of HMGB1 from macrophages were up-regulated

in the group LpN. EPCs were incubated with mSN-LpN+1 mg/mL LPS after pretreatment with GA or siHMGB1; the cleavage of GSDMD in

EPCs and the level of LDH in EPCs supernatant were attenuated. Moreover, the release of LDH, IL-1a, and IL-1b from EPCs and the cleavage

of GSDMD in EPCs intervenedwith purified rHMGB1 plus 1 mg/mL LPS were increased. Comparedwith the groupmSN-LpN, the combination

of RAGE and HMGB1 on EPCs in the group mSN-LpN+1 mg/mL LPS was significantly up-regulated. These results suggested that HMGB1

released by macrophages could induce EPCs pyroptosis by binding to RAGE.

More and more evidences revealed that pyroptosis plays a key regulatory role in sepsis.28–30 The inflammasome triggers pyroptosis by

activating the caspase family.31 Activated caspases, such as activated caspase-1, caspase-3, and caspase-8, cleave its downstream GSDMs

family, such as GSDMD and GSDME, resulting in the release of inflammatory factors and the activation of inflammasome.32–34 Activated

caspase-1 combined with dead cell dyes (such as PI) is one of themarkers for pyroptosis.35 During sepsis, HMGB1 is released in the late stage

of inflammation and acts as an inflammatorymediator, mediating the tissue damage or cell death.36 There are threemain oxidation-reduction

reaction (REDOX) forms of HMGB1, including mercaptan (reduced), disulfide (oxidized), and peroxide. Among them, oxidized HMGB1, usu-

ally oxidized by hydrogen peroxide, can induce the production of pro-inflammatorymediators in cells. ReducedHMGB1, usually reducedwith

DTT, acts as a chemokine and can bind to RAGE to induce cells pyroptosis.19,37,38

Table 1. The interventions for EPCs related to experimental model and study participant details

1 2 3 4 5 6 7 8

mSN-Ctrl - - + - - + - -

mSN-Lp - - - + - - + -

mSN-LpN - - - - + - - +

LPS (1 mg/mL) - + - - - + + +

mSN-Ctrl, macrophages supernatant-control group; mSN-Lp, macrophages supernatant-LPS priming group; mSN-LpN, macrophages supernatant-LPS priming

plus nigericin group.
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Sepsis with systemic inflammation leads to extensive damage to the vascular endothelium.39 EPCs are heterogeneous cell population

which can specifically differentiate into endothelial cells.4 During sepsis, the considerable damage to endothelial cells prompts the mobili-

zation of EPCs from bone marrow into peripheral blood, where they contribute to vascular endothelium repair.40 The increased number and

functional integrity of EPCs in peripheral blood are important for the prognosis of sepsis.5,41 However, in sepsis, elevated levels of inflamma-

tory mediators, chemokines, reactive oxygen species, and other factors can impair EPCs function including mobilization, migration, and

signaling. These detrimental effects could lead to EPCs pool depletion or EPCs insufficiency or both.42,43 The uncoordinated development

between the quantity of EPCs and the ability to regenerate and clone formationmay be one of the reasons for the difficulty in recovering from

endothelial dysfunction in sepsis. Our results showed that circulating EPCs underwent pyroptosis, which may be one of the reasons for EPCs

impairment in sepsis.

Figure 2. Septic mSN-induced EPCs pyroptosis required LPS

(A) EPCs morphological change and uptake of PI after incubated with mSN alone or mSN plus 1 mg/mL LPS. The group mSN-LpN+1 mg/mL LPS was expanded

and ruptured with prominent necrotic vesicles (red arrows), while other groups displayed no cell death characteristics. The uptake of PI (red) in the group

mSN-LpN+1 mg/mL LPS was much higher than that in other groups. Scale bar: 100 mm.

(B) Uptake of FAM-FLICA-activated caspase-1 (green) in EPCs after incubated with mSN alone or mSN plus 1 mg/mL LPS. Scale bar: 50 mm.

(C) The formation of ASC-speck (red arrows) in EPCs after incubated with mSN alone or mSN plus 1 mg/mL LPS. Scale bar: 100 mm.

(D) Electron microscopy images of EPCs in the group mSN-LpN and mSN-LpN+1 mg/mL LPS of EPCs. Scale bar: 10, 4, and 2 mm.

(E) The protein expression levels of GSDMD-FL, GSDMD-N, GSDME-FL, GSDME-N, pro-IL-1b, and cleaved-IL-1b in EPCs after incubated withmSN alone ormSN

plus 1 mg/mL LPS.

(F) The level of LDH in EPCs supernatant.

(G) The level of IL-1b in EPCs supernatant. mSN, macrophages supernatant; Ctrl, control; Lp, LPS priming (100 ng/mL); N, nigericin (10 mM); GSDMD-FL,

GasderminD-full length; GSDMD-N, GasderminD-N domain; GSDME-FL, GasderminE-full length; GSDME-N, GasderminE-N domain; SEM, scanning

electron microscope; TEM, transmission electron microscope; PI, propidium iodide; IL-1b, interleukin-1b; LDH, lactic dehydrogenase. The data shown are

representative of three independent experiments. Data are represented as mean G SD. p values were determined using ANOVA analysis, *p < 0.05,

**p < 0.01, ****p < 0.0001.

See also Figure S2.
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In sepsis, macrophages release varies of inflammatory cytokines including HMGB1.10 Acetylation is a common protein modification, and

post-translational acetylation of lysine residues in HMGB1 is a major mechanism for HMGB1 release from activated macrophages during

inflammation.44,45 Researches showed that HMGB1 was released into the circulation by necrotic cells and binds to LPS, inducing lysosomal

lysis and ultimately pyroptosis.46,47 However, the activation conditions for the release of HMGB1 by macrophages in vitro are still controver-

sial. Bonaldi et al. believed that LPS intervention alone could cause macrophages to release a large amount of HMGB1.48 However, Volchuk

et al. proposed that the release of HMGB1 requires LPS plus the second signal, like nigericin.8 Results of the present study showed that mac-

rophages release HMGB1 into the supernatant when intervened with LpN, while Lp alone could not induce the HMGB1 release. This result is

inconsistent with the finding of Bonaldi et al.48 but consistent with Volchuk et al.8 The reason for the different voices may be related to the

purity of LPS used by researchers. In the present study, ultrapure LPS was utilized; none of any contaminated bacterial proteins, lipids, or nu-

cleic acids could induce cell activation, so macrophages need to be stimulated by a second signal to release HMGB1.

The inflammasome activates caspase-1, in most cases, requiring ASC to catalyze proteolytic cleavage of GSDMs and drive pyroptosis.49

The inflammasome induces the assembly of ASC in the cytoplasm andpromotes ASC-speck released frompyroptotic cells and remains stable

for several days, which is considered to be a hallmark of inflammasome assembly.49–51 GSDMD is amember of theGSDMs family, and it is also

Figure 3. LpN increased the release and acetylation modification of HMGB1 in macrophages

(A) The concentration level of HMGB1 in mSN detected by ELISA.

(B and C) The protein expression level and statistical analysis of HMGB1 in macrophages detected by WB.

(D and E) The acetylation level and statistical analysis of HMGB1 in macrophages.

(F andG) The acetylation level and statistical analysis of HMGB1 inmacrophages after using acetylase inhibitor to pretreat macrophages before LpN intervention.

mSN,macrophages supernatant; HMGB1, high-mobility group box-1; Ctrl, control; Lp, LPS (100 ng/mL); N, nigericin; IP, immunoprecipitation.WBwas performed

using ImageJ software for gray value analysis and b-actin as the standard. The data shown are representative of three independent experiments. Data are

represented as mean G SD. p values were determined using ANOVA analysis, ns means no significant, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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the earliest identified executive protein of pyroptosis.31,52 Full-length GSDMD cleaved into GSDMD-C and GSDMD-N domain by activated

caspase.53,54 The GSDMD-N domain exhibits a specific affinity for liposomes, allowing it to bind to the lipid cell membrane and form cell

pores, a process known as cell perforation. This mechanism is a crucial step in the onset of pyroptosis.14,55 Accordingly, the cleavage of

GSDMD is considered to be an important indicator of cell pyroptosis.14,56 In the present study, we utilized activated caspase-1 and PI double

staining, the formation of ASC, and the cleavage of GSDMD instead of GSDME combined with morphological changes and inflammatory

cytokine release levels in cells to detect septic EPCs pyroptosis.

Our earlier study has displayed that EPCs in peripheral blood of patients with sepsis had pyroptosis.57 In the present study, we also found

that the number of circulating EPCs with FAM-FLICA-activated caspase-1 and PI double staining in sepsis patients was much higher than that

in healthy controls. This result proved again that circulating EPCs in sepsis patients underwent pyroptosis. Besides, the level of HMGB1 in

serum in sepsis patients was significantly higher than that in healthy controls. Therefore, we want to investigate whether HMGB1 is associated

with EPCs pyroptosis in sepsis. In order to re-create the inflammatory environment surrounding EPCs in sepsis, EPCs were incubated with

mSN alone or mSN+1 mg/mL LPS. The results revealed that mSN alone failed to induce EPC pyroptosis unless a higher concentration of

1 mg/mL LPS was added. This may be due to the fact that the medium containing LpN had been discarded and replaced with endothelial

cell growth medium-2 (EGM-2) medium before the collection of mSN. The collected supernatant at this time contained only the secreta

frommacrophages. mSN- LpN added with additional high-dose 1 mg/mL LPS canmatch up with the inflammatory environment in which circu-

lating EPCs are exposed.

HMGB1 is composed of the A box, B box, and C tail domains. Among them, the B box plays the role of pro-inflammatory activity of

HMGB1.58,59 GA, a specific inhibitor of HMGB1, can directly bind to B box to inhibit the bioactivity and mitotic activity of HMGB1.60,61

RAGE has been implicated in the onset and progression of pathologies associated with aging, cellular stress, and inflammation.62 HMGB1

is known to be able to signal through RAGE.63,64 It has been shown that EPCs expressedmore RAGE in sepsis patients compared to the con-

trol groups and the level of RAGE was associated with patients survival.65 Our results also showed that RAGE was highly expressed in EPCs,

and the binding of HMGB1 to RAGE was significantly up-regulated in the conditions of EPCs pyroptosis. Pretreating macrophages with a

HMGB1 inhibitor or pretreating EPCs with a RAGE inhibitor before EPCs incubated by mSN-LpN+1 mg/mL LPS could reduce the level of py-

roptosis-related proteins in EPCs and alleviate EPCs pyroptosis. Together, these results suggested that EPCs pyroptosis in sepsis is mediated

by HMGB1/RAGE signaling.

Summarily, the present study demonstrated that macrophages treated by LpN released a large amount of HMGB1 which induced EPCs

pyroptosis by binding to the RAGE receptor on EPCs. Previous studies on pyroptosis of sepsis mainly focused on immune cells. The present

study aimed to investigate the biological characteristics of EPCs during sepsis, which may be one of the reason for the decline of vascular

endothelial repair function in sepsis. The results of the present study may provide a direction for the treatment of severe infections such

as sepsis. On the other hand, the study explored the impact of macrophages on EPCs in sepsis, which may be helpful for the in-depth study

of ‘‘crosstalk’’ between immune cells and non-immune cells.

Limitations of the study

There are some limitations in the present study. Firstly, the composition ofmSN interferedwith LpN is very complicated, and only the HMGB1/

RAGE pathway has been studied. The issue of whether there are other factors or pyroptosis signals involved in EPCs pyroptosis is uncertain

and requires further investigation. Secondly, other types of programmed cell death that play an important role in the pathogenesis of sepsis,

including apoptosis and necrotic apoptosis, were not covered in this study. All of these need in-depth investigation in the future.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Zhihui He, E-mail: hzh703@csu.edu.cn.

Materials availability

This study did not generate new unique reagents.

Figure 4. EPCs pyroptosis relies on the release of HMGB1 from macrophages

(A) The protein expression level of GSDMD-N in EPCs when incubated with GA-pretreated mSN-LpN+1 mg/mL LPS.

(B) The level of LDH in EPCs supernatant when incubated with GA-pretreated mSN-LpN+1 mg/mL LPS.

(C) The protein expression level of GSDMD-N in EPCs when incubated with siHMGB1-pretreated mSN-LpN+1 mg/mL LPS.

(D) The level of LDH in EPCs supernatant when incubated with siHMGB1-pretreated mSN-LpN+1 mg/mL LPS.

(E–H) The level of GSDMD-N in EPCs and the level of LDH, IL-1b, and IL-1a in EPCs supernatant when EPCs were treated with purified rHMGB1 plus 1 mg/mL LPS.

mSN,macrophages supernatant; Ctrl, control; Lp, LPS priming (100 ng/mL); N, nigericin (10 mM);GSDMD-FL, GasderminD-full length; GSDMD-N, GasderminD-N

domain; GA, glycyrrhizic acid; DTT, dithiothreitol; rHMGB1, recombinant high-mobility group box-1; IL-1b, interleukin-1b; IL-1a, interleukin-1a; LDH, lactic

dehydrogenase. WB was performed using ImageJ software for gray value analysis and b-actin as the standard. The data shown are representative of three

independent experiments. Data are represented as mean G SD. p values were determined using ANOVA analysis, *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.

See also Figure S3.
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Data and code availability

� All data generated or analyzed during this study are included in this published article and supplemental information.
� No new code was generated in this study.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Figure 5. HMGB1-RAGE axis induces EPCs pyroptosis

(A) The expression level of RAGE in EPCs. Scale bar: 100 mm.

(B) The protein expression level of GSDMD-N in EPCs when pretreated with FPS-ZM1 before incubated with mSN-LpN+1 mg/mL LPS.

(C) The level of LDH in EPCs supernatant when pretreated with FPS-ZM1 before incubated with mSN-LpN+1 mg/mL LPS.

(D and E) Representative images and statistical analysis of coIP result. RAGE, receptor for advanced glycation end products; HMGB1, high-mobility group box-1;

DAPI, 40,6-diamidino-2-phenylindole; mSN, macrophages supernatant; Ctrl, control; Lp, LPS priming (100 ng/mL); N, nigericin (10 mM); GSDMD-FL, GasderminD-

full length; GSDMD-N, GasderminD-N domain; IP, immunoprecipitation; LDH, lactic dehydrogenase. WB was performed using ImageJ software for gray value

analysis and b-actin as the standard. The data shown are representative of three independent experiments. Data are represented as meanG SD. p values were

determined using a two-tailed t test and ANOVA analysis, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S4.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical samples

Seventeen patients were recruited from the Third Xiangya Hospital of Central South University andmet the diagnostic criteria for sepsis.66 Six

healthy subjects were recruited as the control. Written informed consent of each subject has been obtained for this study (NO. Q24809). All

included patients were between 18 and 80 years of age, and they had not received other surgical interventions prior to enrollment. The gen-

ders of the patients were comparable. All patients were Asians.

Animals

8-weeks old male C57BL/6 mice were purchased from Hunan SJA Laboratory Animal Co. ltd (Changsha, China). All animals were feeded in

specific pathogen free conditions under constant temperature and humidity control in the Department of Experimental Animals, Central

South University. All animal experiments are conducted in accordance with the Institutional Animal Care and Use Committee of Central South

University (CSU-2022-0047).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-RAGE Santa cruz Cat# sc-365154; RRID:AB_10707685

Mouse monoclonal anti- Ac-lysine Santa cruz Cat# sc-32268; RRID:AB_627898

Goat polyclonal anti-IL-1b R&D Systems Cat# AF-401-NA; RRID:AB_416684

Rabbit monoclonal anti-ASC Cell SignalingTechnology Cat# 67824; RRID:AB_2799736

Mouse monoclonal anti-b-actin Cell SignalingTechnology Cat# 3700; RRID:AB_2242334

Rabbit monoclonal anti- GSDMD Abcam Cat# ab209845; RRID:AB_2783550

Rabbit monoclonal anti-HMGB1 Abcam Cat# ab79823; RRID:AB_1603373

Rabbit monoclonal anti-GSDME Abcam Cat# ab215191; RRID:AB_2737000

Biological samples

Peripheral blood of sepsis patients and healthy controls Department of Critical Care Medicine,

Xiangya Third Hospital

N/A

Chemicals, peptides, and recombinant proteins

Recombinant Human HMGB1 protein, CF R&D Systems Cat# 1690-HMB-050

Critical commercial assays

LDH Cytotoxicity Assay Kit Beyotime Cat# C0017

IL-1 alpha Mouse Uncoated ELISA Kit eBioscience Cat# 88-5019-22

IL-1 beta Mouse Uncoated ELISA Kit eBioscience Cat# 88-7013A-86

Mouse HMGB-1(Highmobility group protein B1) ELISA Kit elabscience Cat# E-EL-M0676

BCA kit Thermo Scientific Cat# 23227

FAM-FLICA-activated caspase-1 detection kit Amyjet Scientific Cat# CT-97

Experimental models: Cell lines

Immortalized bone marrow-derived macrophages (iBMDM) Lab stock N/A

Oligonucleotides

siRNA sequences for mouse HMGB1 (sense50-3’:

CAAGGCUCGUUAUGAAAGATT, antisense50-30

UCUUUCAUAACGAGCCUUGTT)

This paper N/A

Software and algorithms

Graphpad Prism 9.5 GraphPad Software https://www.graphpad.com/

ImageJ N/A https://imagej.net/
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Serum preparation

Fasting peripheral blood samples were taken and centrifuged within 1 hour (h) at 7003g for 10 minutes (min). The supernatant was collected

and stored at �80�C.

Isolation, culture, and identification of EPCs

EPCs were derived from mouse bone marrow or human peripheral blood as previously described.67,68 In brief, mononuclear cells were iso-

lated from the bone marrow of C57BL/6 mice aged 8 weeks or human peripheral blood and seeded in culture plates incubated with EGM-2

complete medium (CC-3162, LONZA, Switzerland). Every 3–4 days, we replaced the old medium with fresh medium and removed the cells

those unattached to the wall. Cells were harvested on the 7-10th day of culture.

EPCs were identified by double staining with 1,1 0-dioctadecyl-3, 3, 3’, 3- tetramethyl indocarbocyanine perchlorate-labeled acetylated

low-density lipoprotein (DiI-Ac-LDL, L3483, Thermo, USA) and fluorescein isothiocyanate-labeled ulex europaeus agglutinin-1 (FITC-UEA-

1, L9006, Sigma, USA), and cells with double-positive staining was defined as EPCs (Figure S1).

Macrophages preparation and intervention

Healthy male C57BL/6 mice with 8 weeks old were injected with 3mL sterile 3% thioglycollate broth intraperitoneally to elicit peritoneal mac-

rophages. 72 h later, cells were collected by lavage of the peritoneal cavity with 15mL of RPMI medium 1640 (GIBCO, USA). After being

washed, cells were resuspended in RPMI medium 1640 supplemented with 10% fetal bovine serum and antibiotics (GIBCO, USA).

Peritoneal macrophages (2 3106 cells per well) plated in 6-well plates were intervened with ultrapure LPS priming (Lp, 100 ng/mL) for 4 h

alone or Lp for 3 h and then plus nigericin (Nig (N), 10 mM) for 1h (LpN). As thus, macrophages were divided into group control (Ctrl), group Lp
and group LpN. Macrophages supernatant (mSN) in each group was collected and centrifuged at 4003g for 5 min and prepared for the sub-

sequent EPCs incubation.

EPCs intervention and groups

EPCs were cultured with each group of mSN or mSN plus 1 mg/mL of ultrapure LPS. Therefore, EPCs were divided into eight groups: Blank,

1 mg/mL LPS, mSN-Ctrl, mSN-Lp, mSN-LpN, mSN-Ctrl+1 mg/mL LPS, mSN-Lp+1 mg/mL LPS andmSN-LpN+1 mg/mL LPS (Table 1). After being

cultured for 2 h, EPCs were lysed to obtain total protein which was quantified and subsequently used for western blot analysis.

METHOD DETAILS

PI staining

Each group of EPCs were washed with PBS for 3 times, PI dye with a v/v ratio of 1:4000 was added, and the cells were incubated at 37�C for

20 min and observed under fluorescence microscope (Nikon Ti2-U, Japan).

LDH release assay

Level of LDH in cell culture supernatant was determined using LDH Cytotoxicity Assay Kit (C0017, Beyotime) according to the manufacturer’s

instructions. Briefly, EPCs supernatant was collected and centrifuged at 4003g for 5 min. Then, 120 mL supernatant was mixed with 60 mL LDH

working reagent and incubated in dark at room temperature for 30 min. The absorbance was measured at 490 nm.

ELISA assay

Levels of IL-1b, IL-1a andHMGB1 in cell culture supernatant andHMGB1 in serumwere determined using quantitative ELISA kits according to

the manufacturer’s instructions. In short, EPCs supernatant or serum in sepsis patients were collected and added to the pre-coated well

plates. Thewell plates were incubated at room temperature for 2 h and cleanedwithwashing solution for 3 times. Then the detection antibody

and HRP-antibody were added to the well plates successively and the well plates were incubated for 1 h and 30 min respectively. After being

washed, the luminescent solution and termination solution were added to the well plates. The absorbance was measured at 450 nm.

WB

Samples were separated by 10–15% SDS-PAGE and transferred onto PVDF membranes (Millipore). Antibodies to mouse RAGE (sc-365154,

Santa cruz, USA), Ac-lysine (sc-32268, Santa cruz, USA), GSDME (ab215191, Abcam, UK), IL-1b (AF-401-NA, R&D Systems, USA), GSDMD

(ab209845, Abcam, UK) were used at 1:1000 dilution; anti-mouse HMGB1(ab79823, Abcam, UK) was used at 1:5000 dilution.

ASC-speck detection

EPCs in each group were fixed in 4% paraformaldehyde for 15 min followed by permeabilization with 0.1% Triton X-100 for 10 min. The slices

were blockedwith PBS containing 3%bovine serum albumin (BSA) for 1 h, followed by anti-ASC antibody (67824, CST, USA) andDAPI (C0065,

Solarbio, China) staining. Cells were visualized by fluorescence microscope.
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coIP

After being cultured, EPCs was lysed in IP buffer (#9803, CST, USA) containing protease inhibitor cocktail for 30 min to obtain total proteins.

Proteins were then incubated with anti-RAGE or anti-Ac-lysine antibody overnight at 4�C with rotation. The next day, we added 20 mL pre-

washed protein A/G agarose beads (sc-2003, Santa cruz, USA) into the samples. 3 h later, the samples were washed five times with IP buffer.

After being extensively washed with a diluted lysis buffer, the lysates was used for WB analysis.

RNA interference assay

Immortalized bone marrow-derived macrophages (iBMDMs) were seeded in 6-well plates (1 3 106 cells per well), then transfected with siRNA

using Lipofectamine RNAiMAX (13778075, Thermo, USA) according to the manufacturer’s instructions. The siRNA sequences for mouse

HMGB1 (sense50-3’: CAAGGCUCGUUAUGAAAGATT, antisense50-30 UCUUUCAUAACGAGCCUUGTT) and the negative control (sense50-3’:
UUCUCCGAACGUGUCACGUTT, antisense50-3’: ACGUGACACGUU. CGGAGAATT) were chemically synthesized by SuZhou GenePharme

Co., Ldt., China.

Immunofluorescence

The expression of RAGE on EPCs was detected by immunofluorescence. The slices were washed with PBS and fixed with 4% paraformalde-

hyde for 30 min. Then the slices were sealed by 3% BSA for 1 h, followed by anti-RAGE and DAPI staining. Cells were visualized by fluores-

cence microscope.

FAM-FLICA-activated caspase-1 and PI double staining

Mononuclear cells were isolated from the peripheral blood or mice bone marrow and cultured with growth stimulating and differentiation

factors. After culture on days 7–10, the cells reached 80% fusion and were harvested for subsequent treatment.

EPCs were seeded in 48-well (2.53106 cells per well) culture plates, and then cells were tested for intracellular FAM-FLICA-activated

caspase-1 and PI staining according to the manufacturer’s instructions. In short, 13 FLICA buffer was added to the medium and incubated

at 37�C. 1 h later, cells were washedwith washing buffer 3 times and then stainedwith Hoechst 33342 for 5min. Next, cells were stainedwith PI

for 5 min and then fixed for 30 min and visualized by fluorescence microscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

Each experiment was repeated at least three times. Data were analyzed using GraphPad Prism 9.5 (GraphPad Software, USA), and all data

were expressed as mean G standard deviation (SD). WB was performed using ImageJ software for gray value analysis. ANOVA analysis

was used to compare the mean of the normal distribution data among groups, and two-tailed Student’s t test was used to compare the dif-

ference of the mean between the two groups. Differences were considered significant when *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,

p < 0.0001.
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