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Abstract

Gliomas are the most frequent brain tumors. Among them, glioblastomas are malignant and largely resistant to available
treatments. Histopathology is the gold standard for classification and grading of brain tumors. However, brain tumor
heterogeneity is remarkable and histopathology procedures for glioma classification remain unsatisfactory for predicting
disease course as well as response to treatment. Proteins that tightly associate with cancer differentiation and progression,
can bear important prognostic information. Here, we describe the identification of protein clusters differentially expressed
in high-grade versus low-grade gliomas. Tissue samples from 25 high-grade tumors, 10 low-grade tumors and 5 normal
brain cortices were analyzed by 2D-PAGE and proteomic profiling by mass spectrometry. This led to identify 48 differentially
expressed protein markers between tumors and normal samples. Protein clustering by multivariate analyses (PCA and PLS-
DA) provided discrimination between pathological samples to an unprecedented extent, and revealed a unique network of
deranged proteins. We discovered a novel glioblastoma control module centered on four major network hubs: Huntingtin,
HNF4a, c-Myc and 14-3-3f. Immunohistochemistry, western blotting and unbiased proteome-wide meta-analysis revealed
altered expression of this glioblastoma control module in human glioma samples as compared with normal controls.
Moreover, the four-hub network was found to cross-talk with both p53 and EGFR pathways. In summary, the findings of this
study indicate the existence of a unifying signaling module controlling glioblastoma pathogenesis and malignant
progression, and suggest novel targets for development of diagnostic and therapeutic procedures.
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Introduction

In 2013, more than 23,000 individuals were expected to be

diagnosed with primary tumors of brain and central nervous

system and more than 14,000 deaths were expected in the US

alone [1]. The World Health Organization defines pilocytic

(Grade I) and diffuse (Grade II) astrocytomas as low-grade brain

tumors; anaplastic astrocytomas (Grade III) and glioblastomas

(Grade IV; also designated as glioblastoma multiforme, GBM) are

high-grade malignant tumors [2,3]. With an annual incidence of

2–3 per 100,000 in Europe and US, GBM is the most frequent

and aggressive form of brain tumor (60–70% of total malignant

gliomas), and is essentially incurable [3,4]. GBM consists of poorly

differentiated, highly invasive neoplastic astrocytes; histopatholog-

ical features include cellular polymorphism, nuclear atypia, mitotic

activity, vascular thrombosis, microvascular proliferation and

necrosis [5]. Regional heterogeneity of GBM frequently causes

diagnostic discrepancies ($20% of cases). Moreover, a high

percentage of gliomas, such as mixed oligoastrocytomas and

lower-grade gliomas, remain difficult to categorize reproducibly

due to considerable histological overlap. These factors can

compromise choice as well as effectiveness of therapeutic options

[6]. Histopathologic diagnosis can be further compromised when

only small biopsies are available. Additional molecular markers are

thus urgently needed to efficiently discriminate among patients

with distinct outcomes.

Loss of PTEN, amplification of EGFR and alterations of TP53,

PDGFRA and CDKN2A/P16 are frequently found to be

associated with GBM pathogenesis [5,7]. Primary GBMs develop

de novo after a short clinical history and without evidence of

precursor lesions, whereas ‘‘secondary’’ GBMs arise from pre-

existing diffuse or anaplastic astrocytomas. The signaling pathways

responsible for development and growth of primary versus

secondary GBM appeared as profoundly diverse, suggesting these
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two types of GBM to be different disease entities. Rather diverse

genetic signatures were further proposed in the attempt of

explaining GBM pathogenesis and heterogeneity [5,8–12]. How-

ever, the actual impact of genetic signatures for GBM diagnosis

and prognosis remains to be defined.

Genomic and transcriptomic data have provided key insight in

GBM pathophysiology [11–14]. Corresponding insight into GBM

proteomics [15] has not yet been achieved. Proteomic analysis of

low- and high-grade tumors has tried to fill this gap [16–20], but

analysis of specific protein markers has largely failed to provide a

comprehensive view of GBM pathology.

In this study, we set to identify significantly modulated protein

clusters that may bear functional impact and robustly explain

distinct, relevant GBM pathology components. Proteomic analysis

of human high-grade tumors, low-grade tumors and control tissue

samples from normal brain cortex was thus systematically

intersected through multivariate statistical procedures (principal

component analysis, PCA and partial least square-discriminant

analysis, PLS-DA). Using this approach, we were able to identify

protein clusters discriminating tumors from normal tissues as well

as high-grade from low-grade gliomas. Connectivity network

analysis then allowed to discover a GBM control module that

encompassed four major signaling hubs centered on Huntingtin,

HNF4a, 14-3-3f and c-Myc. This proteomic signature was shown

to underlie p53 and EGFR signaling, as an interconnected

network. The GBM control module is candidate to be used as

diagnostic biomarker and as target for therapeutic intervention. It

may also help drafting a unifying model for glioblastoma

appearance.

Materials and Methods

Patients and tissue specimens
Bioptic samples from low-grade and high-grade glioma patients

were frozen in liquid nitrogen and stored at 280uC at the Section

of Pathology ‘‘M. Malpighi’’ of the Bellaria Hospital, University of

Bologna, between 1990 and 2002. Corresponding formalin-fixed

paraffin embedded (FFPE) samples were stained with haematox-

ylin-eosin for routine histological diagnosis. The protocol of this

study was approved by the board of the Ministry of the University

and Research (‘‘Novel technologies for glioblastoma assessment’’,

FISR Neurobiotechnologies, Grant N 481). Informed consent was

previously obtained as indicated in Marucci et al. [21].

A total of 10 low-grade glial tumors (4 oligodendrogliomas, OL,

4 pilocytic astrocytomas, PA and 2 fibrillary astrocytoma, FA) and

25 GBMs were collected. All samples were re-staged and graded

by expert pathologists according to 2007 WHO central nervous

system tumor classification [2]. Control samples were tissues from

five normal cortices from different brain regions, as obtained at

autopsy from individuals deceased from diseases not involving the

brain.

Reagents and chemicals
All reagents and chemicals are purchased from Sigma-Adrich

(St. Louis, MO, USA), Bio-Rad Laboratories (Hercules, CA, USA)

and GE Healthcare (Little Chalfont, UK).

Brain tumor lysates
Frozen brain tumor specimens were thawed on ice and

resuspended in 2-DE lysis buffer (8 M urea, 40 mM Tris base,

65 mM DTT). Tumor lysates were briefly sonicated in Eppendorf

(Hamburg, Germany) tubes with three 10-sec bursts, in 4%

CHAPS. The lysates were centrifuged for 15 min at 12000 rpm to

remove cell debris. Lysate supernatants were then processed for

2D PAGE analysis (Two dimensional polyacrylamide gel electro-

phoresis).

2D Electrophoresis
The first dimension was run over non-linear immobilized pH

gradients (3.5–10.0 NL IPG 18 cm) (Pharmacia-Hoeffer Biotech-

nology AB, CA, USA). Hydration was achieved overnight in the

reswelling cassette with 25 ml of a solution containing 8 M urea,

2% CHAPS (w/v), 10 mM DTE, 2% (v/v) pH 3.5–10 Ampho-

lites, bromophenol blue and 200 mg of protein extract [22]. Run

strips were equilibrated in 50 mM Tris-HCl pH 8.4, 6 M urea,

2% (w/v) DTE, 2% (w/v) SDS, 30% (v/v) glycerol for 12 min.

Sulphydrilic groups were blocked in 2.5% (w/v) iodoacetamide,

50 mM Tris-HCl pH 6.8, 6 M urea, 2% (w/v) SDS, 30% (v/v)

glycerol, bromophenol blue for 5 min.

The SDS–PAGE (Sodium dodecyl sulfate polyacrylamide gel

electrophoresis) dimension was run in a vertical gradient

acrylamide/PDA (9–16% T/2.6% C) slab gel. Sodium thiosulfate

was used as an additive to reduce background in the silver staining.

A constant current of 40 mA/gel was applied [23]. Gels were

removed from glass plates, washed in deionized water for 5

minutes, and stained with ammoniacal silver as described by [22].

Preparative gels were stained with the Protea silver stain kit

compatible with mass spectrometry analysis (Protea Bioscience,

Morgantown, WV, USA).

Image analysis
The GS-700 Densitometer Gel Doc (Bio-Rad Laboratories,

Hercules, CA, USA) was used as scanning device. Protein spots

were detected using ImageMaster 2-D Platinum software, version

6.0 (GE Healthcare, Little Chalfont, UK). Spot borders were

visually inspected and misidentification caused by confluent spots,

artifacts and low signal to noise ratio, were manually corrected.

Parameters like ‘‘saliency’’ (a measure of spot curvature) and ‘‘min

area’’ (lowest area threshold under which spots are considered

artefacts) were used to identify ‘true’ and ‘false’ protein spots.

Manual contour drawing was then applied in all cases of sub-

optimal spot auto-detection. This procedure was validated by

assessing total spot numbers and spot volume ratios before and

after background subtraction.

In order to optimize quantitative analysis of protein spots, the

volume of each candidate spot was normalized using 4 surround-

ing landmark spots localized in areas closeby to the spot of interest,

i.e. within corresponding background grey and with analogous

signal staining exposure. Landmarks ratios were used for first-level

normalization. Sums of landmark signals were then used for target

spot normalized quantification. Using these criteria, spot detection

and quantification were obtained, which minimized intensity

variations among the gels, as assessed by Mann-Whitney test (p,

0.05). Spots with more than 50% of data missing were not

included in subsequent analytical steps.

Expression data of each identified spot were plotted into a

frequency histogram to highlight main differences between

analyzed sets, to visualize subtypes within the same histopatho-

logical group and to assess valued distribution shapes. The

Shapiro-Wilk test was utilized to assess for normal (Gaussian)

distributions.

Mass spectrometry analysis
After tryptic in gel-digestion, overnight at 37uC [24], the

differentially expressed spots were excised from preparative gels

and analyzed by mass spectrometry (MS) to identify amino acid

sequences, using a Bruker Ultraflex III (Bruker, Bremen,

Germany) operating in reflectron mode. This instrument was
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equipped with a Nd:YAG smartbeam laser to acquire positive-ion

MALDI mass spectra over a mass range of m/z 800–4000.

Spectral processing and peak list generation were implemented by

Bruker flexAnalysis software (version 3.3, Bruker Daltonics) for

MS and MS/MS spectra. For each protein spot, the most intense

precursor ion signals in each MS spectrum were analyzed by MS/

MS fragmentation in LIFT mode. a-cyano-4-hydroxycinnamic

acid was used as matrix. Spot identifications were performed by

querying the Mascot database. Trypsin cut, carbamidomethyl (C)

as fixed, oxidation (M) as variable, a maximum of one missed

cleavage allowed, were imposed as modifications in the search

parameters. Peptide tolerance and MS/MS tolerance were set at

250 ppm and 0.5 Da respectively.

Univariate and multivariate statistical analysis
Univariate statistical analyses were performed with GraphPad

Prism (GraphPad Software Inc., La Jolla, Ca) and XLStat

(Addinsoft, Paris, France). Spearman’s correlation analysis was

performed using MetaboAnalyst 2.0 software (www.

metaboanalyst.ca) [25–27]. Multivariate statistical analysis and

data modeling were performed using MetaboAnalyst 2.0 (www.

metaboanalyst.ca) [25–27] and SIMCA 13 (Umetrics, Umea,

Sweden) [28] software packages.

Column-wise normalization was applied to provide Gaussian-

like distributions [25,29]. Analyses were then performed on

autoscaled data (mean-centered and divided by the standard

deviation of each variable) [30]. A diagnostic plot was utilized to

represent normalization procedures for normal distribution

assessments [29]. As examples, value intensities for e.g. APOA1,

PRDX2, ALDOC, CRYAB_b, TTHY are $3- fold higher than

others (e.g. NDUS1, QCR1, NFM, ACTB), thus inducing a

skewed distribution. After autoscaling normalization, box plots

have nearly same mean, standard deviation, and their distribution

better matches a Gaussian curve (Figure S1B right) (Kernel density

plot right-bottom) [31]. PCA was used as an unsupervised method

in order to find the directions of maximum covariance among our

protein spots without referring to class labels (tissue samples). This

allowed to visualize differences among samples, to detect clustering

and pick-up outliers.

PCA condenses datasets to obtain optimal dimensions that best

capture signal covariance. However, it fails providing working

hypotheses for some causal relations among data subsets [32].

Hence, we went on performing histopathology classification-

guided PLS-DA. As many supervised classification algorithms

tend to overfit the data [26,33], PLS-DA model validation was

performed as previously described [34]. Briefly, to define the

optimal number of PCs (principal components), ‘‘7-fold cross-

validation’’ (CV) was applied [35,36]. Using CV, the predictive

power of the model was verified. Two parameters were calculated

for evaluating the models: R2 (goodness of fit) and Q2 (goodness

of prediction). A model with Q2.0.5 was considered good, Q2.

0.9 excellent [37,38]. As cross-validation only assesses the

predictive power without a statistical validation, the performance

of PLS-DA models was also validated by a permutation test (200

times).

To help interpreting results from PLS-DA, we considered the

variable importance in the projection scores (VIP score) and

regression coefficients (CoeffCS). This allowed to evaluate

protein influence (including prediction performance) on the

model and identify the best descriptors of the differences among

the three groups. The VIP score is a weighted sum of squares of

the PLS loading weights taking into account the amount of

explained Y-variation in each dimension [25,26,39]. Since the

average of squared VIP scores equals 1, the ‘‘greater than 1’’

rule is generally used as a criterion to identify the most

significant variables [37,39]. PLS-DA CoeffCS express the

relation between the Y variables (classes) and all the terms in the

model and are used for interpreting the influence of the X

variables (proteins) on Y. VIP and CoeffCS values are

cumulatively calculated from all extracted PLS components.

The coefficients express how strongly the Y groups are

correlated to the systematic part of each X variable considering

all three components.

Gene ontology, networks and functional analyses
Gene Ontology (GO) analysis was performed using PANTHER

7.2 software (www.pantherdb.org/). The signaling hubs and

connectivity networks were obtained using Ingenuity Pathway

analysis (IPA, Ingenuity Systems, www.ingenuity.com) and

STRING 9.1 (string-db.org) package.

Western blotting
Expression levels of randomly selected proteins were analyzed

by Western blotting in order to validate the dataset identified by

proteomic analysis. Blots were incubated with the following

primary antibodies (Santa Cruz, Santa Cruz, CA): LDH-B (Q-

21) sc-133731 rabbit polyclonal; SOD-1 (V-17) sc-34015 goat

polyclonal; APOA-I (FL-267) sc-30089 rabbit polyclonal; Aldol-

ase C Antibody (N-14) sc-12065 goat polyclonal and PRXII

(9A1) sc-59660 mouse monoclonal. Signal intensities of the

bands were quantified with Image JA 1.46b, using a Kodak grey-

scale standards power curve (www.kodak.com) as reference.

Band intensity values were normalized versus red Ponceau

signals of transferred proteins on Western blot filters. Normal-

ized densitometry values between proteomic gel spots and

Western blot bands were correlated with the Spearman’s rank

correlation analysis, to obtain rho coefficients and corresponding

p values.

The expression profiles of hub proteins (Huntingtin, HNF4a, c-

Myc, 14-3-3f) were also determined on glioma tissue lysates.

Immunohistochemistry staining
Five mm sections from FFPE samples were stained overnight

using antibodies to Huntingtin (Millipore MAB2166; mouse

monoclonal, clone 1HU-4C8, 1:150), HNF4a (AbCam ab41898;

mouse monoclonal, clone K9218, 1:70), 14-3-3f (AbCam

ab51129; rabbit polyclonal, 1:50) and c-Myc (AbCam ab32072;

rabbit monoclonal, clone Y69, 1:100). Antigen retrieval was

performed using hot citrate buffer pH 6.0 (Huntingtin, HNF4a,

and 14-3-3f) or 1 mmol/L EDTA pH 8.0 (c-Myc). Antigen-

antibody reactions were visualized using a polymer-based detec-

tion system (EnVision Kit, Dako), using diaminobenzidine as

chromogen.

Immunohistochemistry data bank meta-analysis
Publicly available databases [40,41], containing high-resolution

IHC (Immunohistochemistry) images extending proteome-wide

were analyzed for patterns of expression of GBM-driving engines.

The Human Protein Atlas (v. 12, www.proteinatlas.org) provides

spatial distribution and expression data from 16621 proteins/

21984 antibodies in different normal human tissues and different

cancer types. The expression profiles of hub proteins were

generated for antibody staining parameters, intensity, and fraction

of positive cells in control versus glioma arrays. EGFR and p53

IHC staining were used as internal benchmark for performance

assessment and quantification standards.
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Figure 1. Gel analysis, spot detection and edge improvement. (A) Representative 2-DE gels from normal brain, low-grade and high-grade
gliomas. Proteins from normal and tumor brain tissues were processed as described in materials and methods. Protein spots were visualized by
ammoniacal silver staining. (B) 3-D representation of protein volume spots and comparison between automatic and manual procedures for definition
of protein spots and edges. Manual strategy is time-consuming but allows reducing the number of misidentifications and improving the
quantification of the same protein markers between different gels. (C) Normalization of density values of differentially expressed spots (green) by
using surrounding landmarks (red). (D) High-grade histotype tumors (green) showing a bimodal distribution of triosephosphate isomerase (TPIS1)
expression values. In low-grade tumors (blue) and control samples (red) the values appear to follow a typical Gaussian (normal) distribution.
doi:10.1371/journal.pone.0103030.g001

Table 1. Clinical data from tumor patients.

ID Age Site Histology OS (m)

High-grade

GB1 68 Fr de novo 0.5 (OD)

GB3.1 69 Te de novo 4.9

GB3.2 69 Te de novo 4.9

GB6 71 Pa de novo 14.2

GB9 33 Te de novo 18.6

GB10 67 Te de novo 1.6

GB12 73 Pa de novo 1.9

GB13 67 Pa de novo 10.4

GB15 59 Te de novo 9.1

GB18 53 Fr de novo 26.3

GB19 59 Fr-Te de novo 11.5

GB20 57 Fr de novo 13.2

GB26 34 Fr secondary 10.1

GB28 50 Fr de novo N/A

GB29 58 Fr de novo N/A

GB31 60 Fr de novo N/A

GB33 56 Fr de novo N/A

GB34 36 Fr de novo N/A

GB35 50 Fr de novo 14.2

GB36 69 Te de novo 1.0

GB39 67 Pa de novo 7.4

GB40 64 Te de novo 9.9

GB45 69 Te-Pa de novo 13.2

GB46 79 Fr de novo alive

GB47 73 Pa de novo 36.0

Low-grade

FA24 29 Pa de novo alive

FA34 34 Pa de novo 134

OL29 32 Fr de novo 105

OL30 60 Suprat de novo alive

OL31 60 Fr de novo alive

OL32 3 Fr de novo alive

PA21 7 Cereb de novo alive

PA22 20 Cereb de novo alive

PA28 26 Te de novo alive

PA33 41 Fr secondary 132

ID: sample code number; OS (m): overall survival (months); GB: glioblastoma mutiforme; OL: oligodendroglioma; FA: fibrillary astrocytoma; PA: pilocytic astrocytoma; Fr:
frontal lobe; Te: temporal lobe; Pa: parietal lobe; Suprat: supratentorial; Cereb: cerebellum; OD: dead from other disease.
doi:10.1371/journal.pone.0103030.t001
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Results

Proteomic analysis
Twenty-five high-grade GBMs, 10 low-grade gliomas and 5

tissue samples from normal brain cortex were analyzed by 2D

PAGE (Figure 1A). Clinical data from brain tumor patients are

summarized in Table 1 [21].

To improve quantification accuracy and allow robust statistical

analysis of 2D gel data [42], we optimized image processing, spot

detection and signal quantification procedures by applying

operator-guided background subtraction and spot contour opti-

mization (Figure 1B and S1A). These procedures allowed to

obtain 49615% increase of the detected signal (spot volume upon

spot contour optimization) (Table S1), and better spot detection

(+1662%), as compared with the basic/automatic procedure.

Most spot variation was not detectable across all samples;

therefore, protein spots were marked as ‘‘differential’’ if expression

changes could be observed in at least one tumor sample versus all

control samples. The statistical distributions were found to be not-

normal and often bimodal for most protein spots (Figure 1D).

Forty-eight protein markers were identified by MS (Table 2,
Figure S2, Supplemental Material S1), and their expression

levels were quantified upon the image optimization procedures

described above (Figure S3A and Table S2A,B). For enhancing

quantification robustness, the density value of each candidate spot

was normalized versus 4 surrounding landmarks (Figure 1C,

Table S2A) as described in Materials and Methods section. This

allowed to obtain robust quantification, through compensating for

local staining dishomogeneities.

GO analysis was performed, revealing the largest protein classes

to have metabolic (26 proteins), structural (9) molecule binding (6)

and antioxidant (4) activities (Figure 2A, top). Dual/multiple

activities accounted for redundant/over-represented functions.

Most detected proteins were hydrolases (10), oxidoreductases (10),

components/interactors of the cytoskeleton (8), transfer/carrier

proteins (5) and transferases (4). (Figure 2A, bottom).

Spearman’s correlation analysis
Negative or positive correlations were globally revealed by

Spearman’s correlation analysis (Figure 2B). Highest positive

correlations (Figure 2C, red) were found to occur between HBA

and HBD; CN37 and TBA1B; CN37 and LDHB; ALDOC and

ESTD; CN37 and DEST; CN37 and RAN; ALDOC and NFM;

TBA1B and DEST. Highest negative correlations (Figure 2C,
blue) were observed between UCHL1 and HBD, and between

UCHL1 and HCD2 (Table S3).

PCA analysis
The proteomic matrix was processed by scaling protein

expression values in order to reduce potential systematic bias

and make the variables comparable in magnitude to each other

[25,27], as indicated. The data scaling results and normalization

procedures, are summarized graphically in the Figure S1B. The

horizontal box plots represent the distributions of individual

variables, the bottom curves show the global data distribution

based on kernel density estimation (Figure S1B).

Then, we went on to utilize PCA as an unsupervised

multivariate method for analyzing the dataset and identifying

the best discriminators among sample classes. PCA score plots

were generated (Figure 3A), where each axis represented a PC

identifying linear combinations of the most tightly interconnected

Figure 2. Classification of identified spots and correlation analysis. (A) GO pie charts show PANTHER classifications made according to the
associated Molecular function (top) and Protein class (bottom). (B) Graphical representation of Spearman’s correlation matrix. Heatmap shows
Spearman’s correlation between differentially expressed protein spots. Each column and row defines an individual variable. Positive correlation values
are in red, and negative correlation values are in blue. Hierarchical clustering was applied to both dimensions. (C) Positive (rho $0.5) and negative
(rho #20.5) correlations are listed in red and blue, respectively.
doi:10.1371/journal.pone.0103030.g002
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proteins/signaling networks [32,43]. Samples with similar protein

expression profiles/PC scores clustered together with striking

fitness. PC1 (score vector t1) was found to discriminate controls

from tumors; PC2 (score vector t2) separated low-grade from high-

grade gliomas (Figure 3A, left). Seven major discriminators

between control and tumor samples were found: expression levels

of APOA1, PRDX3_a and CLIC1 were higher in tumors than in

normal brain cortex, whereas significantly lower levels of NFM,

CN37, NDUS1 and MDHC were found in tumors as compared

with normal tissues (component PC1, Figure 3A, right).
Thirteen major discriminators between low- and high-grade

tumor samples were found: expression levels of HCD2, HBA

and HBD were strongly up-regulated in high-grade gliomas,

whereas CRYAB_b, IPYR, TPIS, PEA15, PSD13, GFAP,

PHP14, 6PGL, KCRB, IDH3A had higher expression in low-

grade than high-grade tumors (component PC2, Figure 3A,
right). PCA analysis also revealed that UCHL1 have a high

discriminating power of this marker when control/low-grade

samples were compared with high-grade tumors. Global sets of

protein marker with higher (Figure S3B,C) and lower discrim-

inating power (Figure S3D) were identified.

PLS-DA analysis
To verify the strength of the unsupervised PCA analysis, and to

further build on it, we analyzed the dataset on the basis of known

classes (controls vs high-grade tumors vs low-grade tumors) using a

supervised PLS-DA method [37,38,44,45]. This model was found

to have strong goodness of fit (cumulative R2Y = 0.890) and

prediction power (cumulative Q2 = 0.813) (Figures 4 A,B). The

separation between normal brain tissues, low-grade and high-

grade gliomas yielded a staggering clear discrimination

(Figure 3B). Most significant separations were explained by a

three-component model, where principal components PC1, PC2

and PC3 represented 15.1%, 13.7% and 10% of the total variance

in the protein spot-matrix, respectively (Figure 4). Permutation

tests were carried out in order to validate the PLS-DA model [37]:

as shown in Figure S4A, the original model was found to have

higher R2 and Q2 values than the permuted models, and negative

Q2 values were obtained for all three permuted groups tested.

A PLS-DA loading plot was generated in order to find major

discriminants between the groups analyzed (Figures 3C). Eleven

major discriminators between control and tumor samples were

identified: APOA1, CLIC1 and PRDX3_a were over-expressed,

whereas NFM, CN37, NDUS1, MDHC, ALDOC, STMN1,

PEBP1 and DDAH1 were down-regulated in tumors as compared

Figure 3. PCA and PLS-DA models. (A, left) PCA score plot showing separation between control samples, low-grade and high-grade tumors. (A,
right) PCA loading plot showing the proteins (variables) responsible for discrimination between the groups. (B) PLS-DA score plot showing separation
between control samples, low-grade and high-grade tumors. (C) Overlapping of PCA correlation groups (as shown in Figure 3A, right panel) to the
PLS-DA weight plot in order to enhance the discriminating power of identified markers. Colored ovals and solid circles represent PLS-DA and PCA
protein clusters, respectively. Color code: red, controls; blue, low-grade tumors; green, high-grade tumors; magenta, low and high-grade tumors;
yellow, low-grade tumors and controls.
doi:10.1371/journal.pone.0103030.g003
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with control samples. Twelve major discriminators between low-

and high-grade gliomas were identified: HCD2, HBA and HBD

were up-regulated in high-grade gliomas, whereas expression

levels of CRYAB_b, IPYR, TPIS, PEA15, PSD13, GFAP,

IDH3A, 6PGL and PHP14 were found to be higher in low-grade

than in high-grade tumors. The regression coefficients calculated

for PLS-DA outcomes confirmed the power of the identified

clusters in distinguishing among sample classes (Figure S4B).

Next, we calculated the VIP score for each protein in our dataset.

Out of 48 variables analyzed as potential predictors, the following

18 descriptors were found to significantly contribute to the

classification model (VIP score $1): HBD, UCHL1, HBA,

STMN1, HCD2, ALDOC, NFM, IPYR, NDUS1, MDHC,

DDAH1, PSD13, APOA1, 6PGL, PEBP1, TTHY, ACTY,

IDH3A (Figure 4D).

In order to improve the discriminating power of the identified

protein markers, we went on to intersect PCA and PLS-DA

loading plots and find the shared proteins/best discriminators for

each condition (Figure 3C). HBA, HBD and HCD2 positively

correlated with high-grade gliomas; GFAP, PHP14, 6PGL,

PSD13, PEA15, TPIS, CRYAB_b, IPYR and IDH3A correlated

with low-grade tumors; on the other hand, NFM, CN37, NDUS1

and MDHC negatively correlated with tumor samples. APOA1,

PRDX3_a and CLIC1 were the best discriminators between

tumors and negative controls.

Validation of proteomic profiles
The proteomic landscape of human gliomas was then validated

by protein immunoblotting, quantifying the expression levels of

randomly-selected spots. Protein markers (APO-A1, SOD1,

PRDXII, LDHB, ALDOC) were randomly selected (,10%)

among the 48 differentially expressed proteins and analyzed.

Western blot chemiluminescence images were acquired at sub-

saturation levels and quantified with ImageJ. Silver staining

density quantified as above and Western blot signals were then

subjected to Spearman’s correlation analysis. Paired signal analysis

supported the accuracy of proteomic profiles: APOA1 (r= 0.550,

pvalue = 0.015), SOD1 (r= 0.517, pvalue = 0.025), LDHB

(r= 0.517, pvalue = 0.044), PRDXII upper band (r= 20.086,

pvalue = 0.387), PRDXII lower band (r= 0.030; pvalue = 0.458),

ALDOC (r= 0.771, pvalue = 0.051). Table S4 presents in extenso

Figure 4. PLS-DA cross-validation, performance and protein VIP scores. (A–B) Bar plot showing the performance measures (R2Ycum and
Q2cum) using different number of components. The selected performance measure Q2 shows the three-component model performs as the best one.
R2X: portion of the variation of X explained by specified PC; R2X(cum) Cumulative explained portion of X set variation; Eigenvalue: number of
variables (K) times R2X; R2Y: portion of the Y set variation modeled by the PC; R2Y(cum): cumulative modeled variation of Y set; Q2: overall cross-
validated R2 for the specific PC; Limit: threshold cross-validation for the specific PC; Q2(cum): cumulative Q2 up to the specified component, is a model
predictive power according to cross validation. Unlike R2X(cum), Q2(cum) is not additive. (C) 3-D score plot. The samples are represented in the 3-D
score plot, the first three components (PC1, PC2, PC3) are reported accounting 15.1%, 13.7% and 10% of total variation respectively. (D) Proteins able
to discriminate between controls, low-grade tumors and high-grade tumors, ordered by VIP score. VIP scores $1 are significant (above the red line)
and indicate important X variables (proteins) that predict Y responses (tissue samples).
doi:10.1371/journal.pone.0103030.g004
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Western blotting data, densitometry, normalization procedure

details, scatter plots and elliptic confidence intervals.

Pathway analysis
The discriminating performance of the protein clusters identi-

fied by unsupervised analysis, and the tight correspondence

between PCA and PLS-DA clusters suggested deep, intersected

biological relevance. Hence, we went on to explore the existence of

a ‘‘GBM control module’’ connecting the discriminating protein

clusters through physical and functional interactions. In order to

reveal these cross-talks we carried out bioinformatic network

detection followed by data meta-analysis. The top-score network

(Fisher’s exact test: p = 1x102104) was found to contain 46 out of

the 48 proteins identified by proteomics (Figure 5 and Table
S5A). Most members were found to play key roles in neurological

diseases (28), genetic disorders (34), skeletal and muscle diseases

(22), and cancer (25). The five top score pathways of this network

included proteins involved in mitochondrial function (HCD2,

PRDX3, NDUS1, PRDX5 and QCR1), pentose phosphate

pathway (6PGL, ALDOC, TKT); glycolysis/gluconeogenesis

(HCD2, TPIS, LDHB and ALDOC), inositol metabolism (TPIS

and ALDOC) and oxidative phosphorylation (NDUS1, ATP5H,

QCR1 and IPYR).

Strikingly, most proteins of the identified network were then

found to converge on four major hubs: Hungtintin (HTT, 16

edges), Hepatocyte nuclear factor 4a (HNF4A, 10 edges), 14-3-3f
(YWHAZ, 9 edges) and c-Myc (MYC, 9 edges) (Figure 5).

Remarkably, major discriminators identified by PCA and PLS-DA

analyses were found to interact with Huntingtin (10), HNF4a (5),

c-Myc (4) and 14-3-3f (3) (Table S6).

We then went on to assess the relevance of the GBM control

module versus known molecular pathways involved in GBM

biogenesis, via IPA and STRING platforms algorithms (Tables
S5B). To our surprise, the four hubs we had identified were found

to converge on both major players of glioma development and

progression: epidermal growth factor receptor (EGFR) and p53.

Bridging proteins between network hubs and EGFR/p53 were as

follows: UCHL1, TPI1 and SH3BGRL to EGFR; ACTB,

CRYAB, STMN1, NME1, Tubulin, GFAP, UBE2N, PPA1 and

UCHL1 to p53 (Table S5B).

Contrary to a wide-held belief, proteins and mRNA levels

correlate poorly in most cellular systems [46–48], differential

protein/mRNA stability playing a major role in this discordant

Figure 5. Pathway analysis. Graphical representation of the protein network retrieved using the Ingenuity Pathway Analysis Tool. Proteins are
represented as nodes, the biological relationships between the nodes are represented as lines. Proteins identified by PCA and PLS-DA analysis and
indicated as discriminant among controls, low-grade and high-grade tumors are in highlighted blue. Most proteins differentially expressed in gliomas
are closely connected in the network through four major hubs: Huntingtin, HNF4a, 14-3-3f (YWHAZ) and c-Myc. Four external edges: differentially
expressed proteins identified by MS (red) and direct interactors with the four major hubs (blue bridges and strengthened contours).
doi:10.1371/journal.pone.0103030.g005
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scenario [49,50]. Nevertheless, identification of transcription

factor-driven differential gene expression landscapes provides

insight into tumor-driving gene networks [51]. Hence, we went

on to identify upstream transcription factors potentially involved in

a coordinated regulation of proteins taking part to the GBM

control module. Using stringent criteria for the analysis (P values

,0.005, interactions $5), we discovered that 9 transcription

factors (HTT, MYC, HNF4A, TP53, ESRRA, NFE2L2,
PPARGC1A, MYCN, ESR1) interacted with 33 out of 48

differentially expressed proteins. Importantly, these transcription

factors were also found to interact with/regulate expression of 18

of the best discriminators identified by PCA and PLS-DA (Table
S5C). Of major relevance, all transcription factors identified as

central hubs (Huntingtin, c-Myc, HNF4a) of the GBM control

module, together with p53, stood-up as major drivers of the

expression of the vast majority of the components of the module.

Validation of hub expression in tumors
A prediction of our model was that the four hubs of the GBM

control module should be broadly expressed. Hence, we assessed

their expression in human glioma samples by protein immuno-

blotting. 14-3-3f, HNF4a and Huntingtin were widely expressed

in glioma samples. Expression of HNF4a was higher in tumors

samples than controls; Huntingtin and c-Myc were found to be

overexpressed in high-grade gliomas (Figure 6). Moreover, we

analyzed the expression of the four hubs in tissue samples by IHC

(Figure 7 and S5). In high-grade gliomas 14-3-3f and HNF4a
were strongly expressed in nuclear and cytoplasmatic compart-

ments (Figure 7A, Figure 7C). On the other hand, specific

nuclear accumulation was observed in low-grade samples

(Figure 7B, Figure 7D). c-Myc was specifically expressed in

the nucleus of the glioma samples, with a trend toward an up-

regulation from low- to high-grade tumors(Figure 7G,

Figure 7H).

Four hubs expression meta-analysis
The findings above suggested broad expression of the four hubs

of the GBM control module. We verified this prediction by

performing a proteome-wide profiling of IHC expression patterns

(Human Protein Atlas; www.proteinatlas.org) for Huntingtin,

HNF4a, 14-3-3f and c-Myc. HNF4a level in normal glial cell

showed low levels of staining, with moderate intensity in ,25% of

the cells. In analyzed gliomas 5/10 had a corresponding

expression profile as compared to controls; 2/10 presented an

increase of expression (medium staining, moderate intensity and

percent reactive cells of 75–25%), 3/10 presented lower expression

(,25% of cells) compared with control samples. Hungtintin level

in normal glial cell showed low expression (low staining, moderate

intensity and percentage ,25%) in IHC array stained with mouse

mAb. In glioma tissue arrays 0/12 have the same expression

profiles compared to controls. Strikingly, 12/12 presented a global

increase of expression or a substantial increase of positive cells. A

second IHC array set (12 samples) stained with rabbit polyclonal

antibody was analyzed confirming this evidence. Consistent with

our findings, c-Myc expression in normal glial cells was not

detectable by IHC. Rabbit polyclonal antibody targeting the C-

terminal portion of c-Myc led to positive staining on 4/11 tumors

samples. The mouse mAb gave positive staining in 11/12

astrocytoma samples. 14-3-3f presented strong staining levels in

normal glial cell (high staining, strong intensity, percentages

between 75%–25%). Three out of 10 array samples presented the

same staining patterns as controls. The remaining 7/10 samples

showed a prevalence of positive cells of .75%. p53 and EGFR

expression patterns were analyzed as internal benchmarks of the

robustness of analysis and were shown to possess expected

expression profiles and prevalence of expression findings (Table
S7).

Discussion

Proteomic profiling of human GBM allowed to discover

differentially expressed protein clusters, that were shown to craft

Figure 6. Network hubs expression in glioma samples - Western blot analysis. 14-3-3f, HNF4a Huntingtin and c-Myc protein expression
levels in tumor and control samples, as determined by Western blotting. GB: glioblastoma mutiforme; OL: oligodendroglioma; PA: pilocytic
astrocytoma; FA: fibrillary astrocytoma. Control sample (CTR) was tissue from normal cortex. HG: high-grade tumors. LG: low-grade tumors.
doi:10.1371/journal.pone.0103030.g006
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Figure 7. Network hubs expression in glioma samples - IHC analysis. Expression of 14-3-3f (A, B), HNF4a (C, D), Huntingtin (E, F) and c-Myc
(G, H), as determined by IHC staining of glioblastoma samples (left column) and low-grade tumors (right column). Representative samples are shown.
Scale bars = 20 mm. Nuclei were counterstained with hematoxylin (in blue).
doi:10.1371/journal.pone.0103030.g007

Glioblastoma-Associated Proteomic Clusters

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e103030



a tightly interconnected control network. This was recapitulated

into a four-hub control module, as centered on Huntingtin,

HNF4a, c-Myc and 14-3-3f. This was able to stringently

discriminate between high-grade GBMs, low-grade tumors and

normal tissues. The proteomic clusters included tumor upregu-

lated (PRDX3, APOA1, CLIC1) and downregulated (NFM,

NDUS1, MDHC, ALDOC, STMN1, PEBP1, DDAH1, CN37)

proteins. Major discriminator between high-grade and low-grade

tumors included CRYAB, IPYR, TPIS, PEA15, PSD13, GFAP,

IDH3A, 6PGL, PHP14, KCRB as overexpressed in low-grade

gliomas; HCD2, HBA, HBD as overexpressed in high-grade

GBM. UCHL1 expression showed a positive correlation with

normal brain tissue and low-grade tumor, and a negative

correlation with high-grade tumors.

Huntingtin, whose mutations are responsible for the neurode-

generative disorders of Huntington’s disease, is found in neurites

and at synapses, has anti-apoptotic functions and is neuroprotec-

tive in brain cells exposed to apoptotic stimuli, such as serum

deprivation, mitochondrial toxins or death-inducing genes [52].

Notably, pathogenic Huntingtin affects the expression, redox state,

disulfide bonding of antioxidant proteins identified here, among

them SODC, and PRDX2, together with PRDXI [53], thus

supporting a shared functional link. Taken together, our findings

provide first evidence of function of Huntingtin in brain tumors,

thus paving novel avenues of investigation on GBM pathophys-

iology.

HNF4a is a modulator of cell proliferation [54–56] through the

cell cycle inhibitor p21 [57] and the transmembrane glycoprotein

Trop-2 [51]. A tight interplay/feedback loop occurs between

HNF4a and c-Myc. Both HNF4a and c-Myc proteins compete for

control of the P21/CDKN1A gene transcription [57], and deletion

of HNF4A in hepatocellular carcinoma cells results in significant

up-regulation of c-Myc and enhanced cell proliferation rates [58].

Essentially no evidence for expression and function of HNF4a in

brain tumors was available before this study, again opening novel

avenues for investigation on GBM pathophysiology.

Deregulation of MYC is a frequent driver of cancer [59]. c-Myc

has been reported to bind a large number of genes [60] and

regulates cell proliferation by affecting cell-cycle checkpoint genes,

CDK inhibitors and cyclins [61]. c-Myc also plays a major role in

regulating metabolic genes required for energy production [62,63]

and ribosomal biogenesis. mTORC2 controls glycolytic metabo-

lism by regulating c-Myc cellular levels and ultimately determines

overall survival of GBM patients [64]. This evidence is consistent

with our GO analysis showing that major targets of our analysis,

such as ALDOC, TPIS, IPYR, 6PGL, HCD2, IDH3A, NDUS1,

MDHC are involved in metabolism (e.g. glycolysis, inositol

metabolism and oxidative phosphorylation) and cancer-related

metabolic reprogramming, including the Warburg effect [65–69].

Our findings support a major involvement of 14-3-3f in the

progression of GBM [70], in agreement with previous studies

showing that 14-3-3f expression levels were a prognostic factor in

GBM [71]. 14-3-3f is involved in oral squamous cell [72], stomach

[73], breast [74] and papillomavirus-induced carcinomas [75].

Major targets identified in our analysis, such as GFAP, CRYAB

and TPIS, are major interactors of 14-3-3f and are powerful

discriminators of low-grade astrocytoma.

Glioma development is frequently associated with mutations of

the isocitrate dehydrogenase IDH1 and IDH2 genes [76,77],

whereas mutations of IDH3 have never been observed in GBM

[78]. Our analysis discovered IDH3A quantitative variations in

low-grade samples versus high-grade tumors. This provided

support for a novel model of interference of IDH proteins in

GBM progression, through differential expression of a wild-type

protein. Of interest, IDH3A was found to be a specific target for

p53-dependent phosphorylation [79], further supporting the

functional relevance of the GBM control module.

Remarkably, three of the four hubs of the GBM control module

(Huntingtin, HNF4a, c-Myc) are transcription factors. Transcrip-

tion factor network analysis then highlighted all three of them as

major regulators of the expression of most proteins of the GBM

control module, supporting a joint driving role in GBM

development. A functional role of the newly discovered four-hub

control module in GBM appearance and progression further

required vast, coordinate expression in tumor cases.

Strikingly, analysis of the transcription factors steering the GBM

control module led to the discovery that these tightly interrelate

with p53. Notably, p53 can regulate Huntingtin’s expression at the

transcriptional level [80], thus suggesting a cooperation of these

signaling pathways not only in neurological diseases, but also in

development and progression of brain tumors. p53 plays a critical

role as modulator of the HNF4a/c-Myc feedback loop, since it

binds c-Myc [81] as well as HNF4a [82], and inhibits the activity

of HNF4a via recruitment of histone deacetylase [82]. Addition-

ally, ATM-dependent activation of p53 involves dephosphoryla-

tion and association with 14-3-3 [83].

GBM type II are linked to mutations of TP53, whereas GBM

type I are thought to be driven by EGFR amplification/

disregulation [5,7]. Notably, overexpression of Huntingtin inter-

acting protein 1 (HIP1) has been shown to correlate with increased

EGFR levels [84]. HIP1 physically associates with EGFR and

maintains its levels in brain tumors [84]. It was recently reported

that EGFR induces expression of the oncogenic miRNA miR-7

through a Ras/ERK/Myc pathway, and that c-Myc binds to the

miR-7 promoter, enhancing its activity [85]. The 14-3-3f protein

was reported to directly bind EGFR upon stimulation with EGF

[86]. Recently, downregulation of PEPB1/RKIP (Raf kinase

inhibitor protein) was shown to be associated with poor outcome

and malignant progression [87]. PEPB1 inhibits RTKs signaling

blocking Raf/MEK/ERK cascade. We found PEPB1/RKIP

downregulated in low-grade and high-grade tumors, extending

previous indications [20]. Taken together, our findings indicate

deep intertwining of the GBM control module also with EGFR

signaling pathway.

In summary, using multitiered proteomic profiling, we discov-

ered previously unidentified hubs (centered on Huntingtin,

HNF4a, c-Myc and 14-3-3f; these then attract p53 and EGFR)

as major signaling drivers in the pathogenesis of brain tumors. Our

findings thus support the unexpected existence of a unique GBM

control module, helping providing a much needed unifying model

for GBM appearance and progression. Future studies should be

undertaken to validate a diagnostic/prognostic role of the GBM

control module. This may also provide better tools for classifica-

tion and clinical evaluation of GBM, for more effective procedures

for tumor diagnosis, prognosis and patients cure.

Supporting Information

Figure S1 Signal versus noise in spot detection. (A) The

gel images were subjected to automatic spot detection setting the

same parameters: the number of detected spots was increased in

the gray adjusted image (right) as compared with the original one

(left). (B) Data normalization view. Box plots and kernel density

plots show the distribution of protein concentration before (left)

and after (right) autoscaling (mean-centered and divided by the

standard deviation of each variable) as described in the text.

(TIF)
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Figure S2 Protein Identification by mass spectrometry.
(A) Red circles indicate spots excised on preparative gels and

subjected to in-gel tryptic digestion, followed by MS and MS/MS

spectrometry analysis for protein identification. Gels and samples

were processed as described in materials and methods section. (B)

Examples of mass spectra from identified proteins. Numbers on X

axis represent precise m/z values of detected peptide ion signals.

The peak masses were used to identify the proteins. For each

protein spot the strongest peaks were analyzed by MS/MS

fragmentation in LIFT mode. a-cyano-4-hydroxycinnamic acid

was used as matrix. (top) P02511, Alpha-crystallin B chain

(CRYAB). (middle) P50213 Isocitrate dehydrogenase NAD

subunit alpha, mitochondrial (IDH3A). (bottom) P10768, S-

formylglutathione hydrolase (ESTD).

(TIF)

Figure S3 Differential spot expression analysis. (A)

Differentially expressed proteins spots as quantified by image

analysis (Materials and Methods) (B–D) Examples of and proteins

with multimodal distribution in glioblastomas, low-grade astrocy-

tomas and control samples; protein with higher (APOA1, NFM) or

lower discriminating power (TTHY) are shown.

(TIF)

Figures S4 PLS-DA model permutation test plots and
coefficient scores of proteins from the PLS-DA analysis.
Permutation tests for: High-grade tumors (left), low-grade tumors

(middle) and controls (right). Permutation tests were performed by

comparing goodness of fit and prediction (R2 and Q2 values) of the

original model with the goodness of fit and prediction of several

models based on data in which the order of the Y observations

were randomly permuted. The two intercepts can be considered as

measures of degrees of overfit and overprediction. The correlation

coefficients of original and permuted data are reported on the x

axis; 200 random permutations were carried out. The values of R2

and Q2 are reported on the y axis. The two circles on the in the

upper right (r= 1) correspond to the values of R2 (green circles)

and Q2 (blue circles) of the original data. The other circles

represent permutation results. The low values of intercepts show

that the model has a statistical significance (not over-fitting). (B)

Coefficient scores were utilized to provide an estimate of the

protein changes in the various groups. Larger coefficient scores

(positive or negative) indicate stronger correlations with proteomic

group profile classification. The highest positive (black boxes) or

negative (red boxes) discriminating coefficient scores of high-grade

tumors (left) were exemplified by translation to low-grade tumors

(middle) and controls (right).

(TIF)

Figure S5 IHC staining in positive control samples.
Expression of the 4-hub proteins in positive control tissue sections.

(A) Expression of Huntingtin in small bowel. (B) Expression of

HNF4a in small bowel. (C) Expression of 14-3-3f in breast cancer.

(D) Expression of c-Myc in colon cancer. Scale bars = 20 mm.

Nuclei were counterstained with hematoxylin (in blue).

(TIF)

Table S1 Inter-gel spot volume quantification variance
analysis. Three replica gels of a reference protein lysate from

high-grade brain tumor were utilized for inter-gel variance

analysis. Ten randomly chosen spot volumes were quantified

using Image Master Platinum 6.0; basic/automated procedure was

compared with operator-guided contour drawing. The bar graph

shows the gain-of-signal (expressed as percent of variation)

detected using operator-guided contour drawing versus basic/

automated analysis. P = 0.037 (comparison among means in

manual vs basic/automated procedures). SD, standard deviation.
a: values from basic-automated quantification procedure. b: values

from operator-guided quantification procedure. c: values from

operator-guided quantification procedure have been normalized

on values from basic-automated procedure, and expressed as

percent of variation.

(XLSX)

Table S2 Table S2A: Differentially expressed proteins in tumor

samples versus normal brain. 2D-gels (5 Control samples, 10 Low-

Grade and 25 High-Grade tumors) were processed and quantified

as described. Density values from differentially-expressed protein

spots were determined. Density normalization on local land-

marking was performed as described in the main text. Table S2B:

Protein level distributions in normal brain cortex and tumor

samples. Box and scatter plots of protein markers defined by

proteomics analysis. The graphs show normalized density values.

The boxes encompass values from the first quartile (bottom) to the

third quartile (top) for the three category (CTR = control;

LG = Low-Grade; HG = Hi-Grade). Red horizontal line, median

value. Red cross, average value. Each black dot represents an

individual sample.

(XLSX)

Table S3 Spearman correlation matrix. Spearman’s cor-

relation matrix of all marker proteins identified by MS analysis.

Numeric values of Spearman’s correlation coefficients (r) between

variables are reported. Each column and row show individual

variables. Global correlation analyses are presented in Figure 3.

(XLSX)

Table S4 Validation of proteomic target proteins by
immunoblotting analysis. Immunoblot analysis (second

column) versus silver normalized density values (first column).

Five proteins (,10%) were randomly selected among the 48

differentially expressed proteins and analyzed in tumor samples.

Density values from blots were quantified as described in Materials

and Methods, as normalized on red Ponceau signal. Silver staining

density and Western blot signals were subjected to Spearman’s

correlation analysis; correlation coefficients (rho) and p-values are

reported. Scatter plots for the two variables with confidence

ellipses were generated. Representative blots from APOA1,

SOD1, LDHB, PRDXII (upper and lower bands) ALDOC are

shown.

(XLSX)

Table S5 Table S5A: Ingenuity Pathway Analysis. The

significance values for canonical pathways and other biological

functions were calculated using the right-tailed Fisher’s exact test

by comparing the number of user-specified proteins that

participate in a given function or pathway, relative to the total

number of occurrences of these proteins in all pathway or

functional annotations stored in the Ingenuity pathway knowledge

base (IPKB). a: The degree of interaction between differentially

expressed markers was compared with that expected by chance. A

p-value = 16102104 was computed by a hypergeometric test.

Table S5B: Supervised pathway analysis. Interaction of EGFR (A)

and p53 (B) with network proteins, as determined by IPA analysis.

(C) Pathway analysis, as performed by STRING 9.1, of the four

major hubs (HTT, HNF4A, Myc, YWHAZ) cross-interacting with

p53 and EGFR. Table S5C: Transcription factor pathway

analysis. Transcription Factor Analysis, as performed by IPA

Upstream Regulator Analysis Tool. Using stringent cut-offs for

interaction significance (p value ,0.005); a threshold value for

interaction with $5 target proteins was applied. Nine transcription

factors (HTT, MYC, HNF4A, TP53, ESRRA, NFE2L2,
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PPARGC1A, MYCN, ESR1) were shown to modulate 33 out of

48 differentially expressed proteins. Color codes correspond to

those of discriminating proteins by PCA and PLS-DA analysis

(Figure 4). Proteins that positively correlate with controls are in

red; with low-grade tumors are in blue, with both high-grade and

low-grade are in magenta. Correlation of UCHL1 with low-

grade/control group is in yellow.

(XLSX)

Table S6 Table S6A: Discriminator proteins from PCA/PLS-

DA clusters mapping on network hubs - HTT. Table S6B:

Discriminator proteins from PCA/PLS-DA clusters mapping on

network hubs - HNF4A. Table S6C: Discriminator proteins from

PCA/PLS-DA clusters mapping on network hubs - Myc. Table

S6D: Discriminator proteins from PCA/PLS-DA clusters mapping

on network hubs - YWHAZ (14-3-3 zeta protein). Protein

members from the four discriminator clusters, as defined by

PCA and PLS-DA analysis, were mapped on the IPA network

(highlighted in blue).

(XLSX)

Table S7 Table S7A: Immunohistochemistry proteome profiling

meta-analysis - Huntingtin. Representative examples of IHC-

stained sections of glioma samples. Specific staining for the

huntingtin protein is identifiable as brown spots. Nuclei are

counterstained with hematoxylin (in blue). Table S7B: Immuno-

histochemistry proteome profiling meta-analysi - HNF4A. Repre-

sentative examples of IHC-stained sections of glioma samples.

Specific staining for the HNF4a protein is identifiable as brown

spots. Nuclei are counterstained with hematoxylin (in blue). Table

S7C: Immunohistochemistry proteome profiling meta-analysis - c-

Myc. Representative examples of IHC-stained sections of glioma

samples. Specific staining for the c-Myc protein is identifiable as

brown spots. Nuclei are counterstained with hematoxylin (in blue).

Table S7D: Immunohistochemistry proteome profiling meta-

analysis - YWHAZ (14-3-3f protein). Representative examples of

IHC-stained sections of glioma samples. Specific staining for

YWHAZ (14-3-3f protein) is identifiable as brown spots. Nuclei

are counterstained with hematoxylin (in blue). Table S7E:

Immunohistochemistry proteome profiling meta-analysis - EGFR.

Representative examples of IHC-stained sections of glioma

samples. Specific staining for the EGFR protein is identifiable as

brown spots. Nuclei are counterstained with hematoxylin (in blue).

Table S7F: Immunohistochemistry proteome profiling meta-

analysis - p53. Representative examples of IHC-stained sections

of glioma samples. Specific staining for the p53 protein is

identifiable as brown spots. Nuclei are counterstained with

hematoxylin (in blue).

(XLSX)

Supplemental Material S1

(DOC)
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