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The aging microenvironment serves important roles in cancers. However, most

studies focus on circumscribed hot spots such as immunity and metabolism.

Thus, it is well ignored that the aging microenvironment contributes to the

proliferation of tumor. Herein, we established three prognosis-distinctive aging

microenvironment subtypes, including AME1, AME2, and AME3, based on

aging-related genes and characterized them with “Immune Exclusion,”

“Immune Infiltration,” and “Immune Intermediate” features separately. AME2-

subtype tumors were characterized by specific activation of immune cells and

weremost likely to be sensitive to immunotherapy. AME1-subtype tumors were

characterized by inhibition of immune cells with high proportion of Catenin

Beta 1 (CTNNB1) mutation, which was more likely to be insensitive to

immunotherapy. Furthermore, we found that CTNNB1 may inhibit the

expression of C-C Motif Chemokine Ligand 19 (CCL19), thus restraining

immune cells and attenuating the sensitivity to immunotherapy. Finally, we

also established a robust aging prognostic model to predict the prognosis of

patients with hepatocellular carcinoma. Overall, this research promotes a

comprehensive understanding about the aging microenvironment and

immunity in hepatocellular carcinoma and may provide potential therapeutic

targets for immunotherapy.
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Introduction

Aging is the single most robust risk factor for cancer

incidences, with more than 60% of cancers occurring in those

aged over 60. Cancer ranked first in the cause of death in people

aged 60–79 years (1). Aging also predicts cancer prognosis. Older

people have unfavorable outcomes when diagnosed with cancer (2,

3). The number of people aged over 60 is set to double by 2050

based on the World Health Organization, which puts forward

cancer as an increasingly major cause of death and attracts more

attention to understand the relationship between aging and cancer.

The mechanism behind the role of aging in the progression of

cancer is being investigated but largely remains unclear. Both

cancer and aging depend on the accumulation of cellular damage.

Consequently, many hallmarks are shared between cancer and

aging, including cellular senescence, microenvironmental changes,

and epigenetic reprogramming. One key point of the cancer-

inducing feature of aging is that aging can drastically change the

tumor microenvironment by affecting various normal cells, which

act to promote tumorigenesis and metastasis. Among the normal

cells, immune cells appear to be more susceptible in the process of

aging. For example, the immune system becomes dysregulated as

people age, including the decline of the function of effector

immune cells and overall immune and combined with the

activation and infiltration of immunosuppressive cell

populations (4). Despite the important relationship between the

aging microenvironment and cancer, the function of the aging

microenvironment in therapy response is often poorly

represented in clinical studies. To be specific, only 40% of

patients enrolled in cancer clinical trials are over 65 and less

than 10% are over 75 years of age (4). Aged mice have been

applied to preclinical immuno-oncology research to represent

declining immune cell function and kidney more faithfully (5, 6).

Yet, most preclinical studies used 8-week-old mice rather than

senior mice (4). Thus, it is largely unclear how the aging

microenvironment could affect immunotherapy efficacies.

The aggressiveness of cancers arising from different organs

appears to correlate differently with age. Thus, the aged local and

systemic environments both need to be studied. Among the

different organs, liver, as an important immune and metabolic

organ, is also greatly affected by aging in terms of its function

and structure, which involves the regulation of the development

of l iver hepatocellular carcinoma (LIHC) via l iver

microenvironment modulation (7).

Thus, understanding the function of the aging

microenvironment in cancers can provide meaningful insights

into immunological therapy regimens and the discovery of

potential therapeutic targets. Here, we established three pan-

cancer conserved subtypes and uncovered their features in

multiple omics. We focused on LIHC and found that the

mutation of Catenin Beta 1 (CTNNB1) may inhibit the

expression of C-C Motif Chemokine Ligand 19 (CCL19), thus
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restraining immune cells and attenuating the sensitivity to

immunotherapy. In addition, we also uncovered the

phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian

target of rapamycin (mTOR) signaling pathway, which can be

activated by multiple aging-related genes including EEF1E1 and

HDAC2 and may be a potential pathway for explaining how

aging-related genes affect liver tumor progression.
Methods

Acquisition of data

Transcriptome data and somatic mutation matrices of 14

types of cancer were collected from the University of California

Santa Cruz (UCSC) database (https://xena.ucsc.edu/) (8).

Meanwhile, corresponding clinical data were also obtained

(Supplementary Table S3). The list of 500 aging-related

messenger RNAs (mRNAs) was downloaded from the Aging

Atlas database (9) (https://ngdc.cncb.ac.cn/aging/index)

(Supplementary Table S1). To validate the conservatism of this

subtype, additional independent LIHC validation sets, GSE76427

(10), GSE14520 (11), and GSE54236 (12), containing 167, 43, and

161 samples, respectively, were obtained from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). In addition, we also downloaded single-cell

dataset, GSE149614 (13), to investigate the function of aging-

related genes in the tumor microenvironment. In order to verify

the expression of CCL19 in CTNNB1 mutation set and CTNNB1

wild-type set, we also downloaded the transcriptome data and

corresponding clinical information of GSE9829 (14). In addition,

to verify the credibility of the prognostic model, we downloaded

the transcriptome data and corresponding clinical information of

GSE20140 (15) from the GEO database.
Identification of recurrently
mutated genes

For the purpose of identifying recurrent driver genes, we

involved MutSig2CV (16), a tool that needs to be performed in

MATLAB. In this analysis, MutSig2CV performs three tests of

significance for each gene based on abundance (mutation rate),

cluster (physical co-location of mutations), and evolutionary

conservation. P value <0.05 and q value <0.05 were used as the

criteria for screening recurrently mutated genes.
Assessment of immune infiltrating cells

To delineate the association between subtypes and immunity,

we downloaded the infiltration estimation matrices of immune
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associated cells of patients with LIHC, which were calculated by

CIBERSORT (17), XCELL (18), TIMER (19), andMCPCOUNTER

(20) algorithms, respectively, from TIMER2.0 database.
Assessment of pathway activity by
using PROGENy

PROGENy (21), a method that can infer pathway activity

from gene expression by using core pathway-responsive genes,

which were computed by leveraging a large compendium of

publicly available perturbation experiments, was involved to

calculate the activity of various pathways of LIHC patients,

including the Androgen, Estrogen, epidermal growth factor

receptor(EGFR), Hypoxia, Janus kinase-signal transducers and

activators of transcription (JAK-STAT), mitogen-activated

protein kinases (MAPK), nuclear factor-kB (NFkB), PI3K,

protein 53 (p53), transforming growth factor b (TGFb), Tumor

necrosis factor a (TNFa), tumour necrosis factor related

apoptosis-inducing ligand (TRAIL), Vascular endothelial growth

factor (VEGF), and Wingless-Type (WNT) pathways.
Gene function enrichment analysis using
gene set enrichment analysis

In order to probe the biological pathways associated with

aging-related genes in the model, gene set enrichment analysis

(GSEA), a knowledge-based approach for interpreting genome-

wide expression profiles, was performed in the high-expression

and the low-expression groups compared with the median level

of gene expression (22).
Assessment of protein level by using the
Human Protein Atlas database

TheHuman Protein Atlas (23) (HPA; https://www.proteinatlas.

org/) database was used to explore the protein level of EEF1E1 and

HDAC2 in hepatocellular carcinoma and normal tissue samples. In

addition, we collected protein expression labeling information

(weak/moderate/high) from the HPA website of EEF1E1 and

HDAC2 in immunohistochemical figures and calculated the

significance between the number of normal tissue samples and

hepatocellular carcinoma samples in protein expression level by

using the chi-square test.
Single-cell data processing and
cluster annotation

Seurat v.3.0.0 (24) was involved for data normalization,

dimensionality reduction, and clustering using default
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parameters. In preprocessing, cells are filtered based on the

criteria of expressing a minimum of 200 genes. Also, cells that

had more than 20% expression on mitochondrial genes were also

removed. Cell clusters were annotated using singleR (25) with

classical cell signatures.
Western blotting analysis

The total cellular proteins from each group were extracted

using Radio Immunoprecipitation Assay (RIPA) lysis buffer with

1% phenylmethanesulfonyl fluoride (PMSF). Then, equal

amounts (20 mg) of protein determined by Bicinchoninic Acid

(BCA) protein assay kit (Thermo Fisher Scientific, Waltham,

MA, USA) were separated using 10% sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) gels. The

proteins were then transferred to polyvinylidene difluoride

(PVDF) membranes (0.45 mm, Solarbio, Beijing, China). The

membranes were blocked with 5% nonfat milk for 1 h at room

temperature and then incubated with primary antibodies at 4°C

for 12 h. The following antibodies were tested: Histone

Deacetylase 2(HDAC2), glyceraldehyde-3-phosphate

dehydrogenase(GAPDH) (1:1,000; Proteintech Group Inc.)

rabbit polyclonal antibodies. The secondary antibodies were

anti-mouse or anti-rabbit antibody and conjugated to

horseradish peroxidase (HRP) (1:4,000; Proteintech Group

Inc.). The secondary antibodies were used at a 1:4,000 dilution

and were incubated for approximately 1 h at room temperature.

The bands were visualized with Enhanced chemiluminescence

(ECL) reagents (Thermo Fisher Scientific) and developed by

Omega Lum G (Aplegen).
RNA extraction and Reverse transcription
quantitative PCR

Total RNA was extracted by TRIzol Reagent (Invitrogen)

from cells. Complementary DNA (cDNA) was obtained

from total RNA with PrimeScript™ RT reagent kit

(Takara Bio, Inc., Otsu, Japan). mRNA expression was

assessed by real-time quantitative PCR (RT-qPCR), which

was carried out in triplicate by a SYBR Premix Ex Taq™ kit

(Takara Bio) and ABI 7900HT Real-Time PCR system

(Applied Biosystems Life Technologies, Foster City, CA,

USA). The primers used are shown in Supplementary

Table S3.
Immunohistochemistry

Secondary liver cancer samples were collected, embedded,

and sectioned. Immunohistochemical staining was performed

according to standard protocol, and the primary antibody was
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anti-HDAC2 (1:100, Proteintech). The antibody catalog in the

Western blot and immunohistochemistry (IHC) analysis is

12922-3-AP (Proteintech Group Inc.). The staining scores

were calculated using the immunoreactive score (IRS) system.

The percentage of positive cells was scored as follows: no stained

cells = 0; <10% staining = 1; 10%–50% staining = 2; 51%–80%

staining = 3; and >80% staining = 4. The staining intensity was

scored as follows: no color reaction = 0; mild reaction = 1;

moderate reaction = 2; and intense reaction = 3. The IRS

scores = (scores of staining intensity) × (scores of percentage of

positive cells).
Statistical analysis

According to the aging-related genes that were

downloaded from the Aging Atlas database (9), we divided

LIHC patients into three groups by applying R package

“CancerSubtypes” (26). The survival rate of each subtype was

calculated by using the Kaplan–Meier (K-M) method, and the

log-rank test was used to assess the difference in survival

among the three subtypes with a criterion level of P < 0.05.

Wilcoxon test and Kruskal–Wallis test were involved to

estimate the subtype-specific differences and the mRNA

expression differences related to other factors. Briefly, when

clinical traits have two characteristics, Wilcoxon test was

involved to examine the significance. Meanwhile, Kruskal–

Wallis test was applied when the clinical features have more

than two characteristics. “Limma” (27) package was used to

calculate the marker genes of each subtype. Furthermore,

hierarchical cluster analysis was performed to classify the

validation set via the ward.D method. In addition, the

difference between the proportion of clinical factors and

subtypes was computed by the chi-square test. Search Tool

for the Retrieval of Interaction Gene (STRING) database was

applied to calculate the relationship between marker genes of

each subtype, and Cytoscape was involved to describe the

network of these genes. The relationships between the

expression of mRNAs and immune infiltrating cells were

calculated by Spearman’s correlation coefficient. Aging-

related mRNAs significantly associated with survival were

identified by using univariate Cox proportional hazards

regression. Then, least absolute shrinkage and selection

operator (LASSO) regression analysis and multivariate Cox

regression was applied to establish the aging-related prognosis

model based on aging-related genes. Multivariate Cox

regression was also used to assess the independence of the

model compared with other clinical factors such as Grade, T

stage, and Stage. Also, the credibility and predictive value of

our model were evaluated through time-related receiver

operating characteristic (ROC) curve. Moreover, waterfall

plot was created by using the maftools (28) package. All

statistical analyses were performed using R-version 4.1.1.
Frontiers in Immunology 04
Results

Liver cancer was characterized by a
unique aging microenvironment by pan-
cancer analysis and can be divided into
three subtypes

Principal component analysis (PCA) was applied to detect

the expression patterns of aging-related mRNAs in 14 types of

cancer containing LIHC from The Cancer Genome Atlas

(TCGA). Based on the first two principal components (PCs) of

PCA, LIHC was characterized by a unique expression pattern of

aging-related genes, which was completely segregated from other

cancer types (Figure 1A). Thus, patients with LIHC may have

unique expression patterns of aging-related genes. In order to

characterize the heterogeneity in patients with LIHC,

CancerSubtypes, a method of classing, was implied to identify

the molecular subtypes of LIHC patients. As a result, LIHC

patients were divided into three aging microenvironment (AME)

subtypes (AMEI [I = {1,2,3}]) with completely different

prognosis characteristics (Figure 1B, Supplementary Table S1).

AME2 patients had the highest survival rate, whereas patients in

AME3 subtype had the worst outcomes. To uncover the

characteristics of age in these subtypes, we defined patients

older than 65 as senility and those younger than 55 as youth.

Using the chi-square test, we found that patients in the AME1

subtype had the highest proportion of senility (Figure 1C).
The aging microenvironment subtypes
showing noteworthy differences in
immune features

For the purpose of characterizing the molecular basis of

these three aging microenvironment subtypes in LIHC, we

downloaded the infiltration estimation matrix of immune cells

in patients with LIHC, which were calculated by TIMER and

MCPCOUNTER and so on, from TIMER2.0 database (http://

timer.cistrome.org/). Using different algorithms, we found a

consistent result that in the AME1 subtype, almost all types of

immune infiltrating cells such as CD8 T cells, CD4 T cells, and

Natural Killer (NK) cells were significantly suppressed,

whereas samples in the AME2 subtype showed high

infiltration of immune cells (Figure 1D). Meanwhile, the

AME3 group was characterized by intermediate feature.

Thus, we characterized AME1 as “Immune Exclusion”

feature, AME2 as “Immune Infiltration” feature, and AME3

as “Immune Intermediate” feature, which were exactly

consistent with the results of previous studies (29).

Interestingly, the immune score, calculated by XCELL, also

significantly activated in the AME2 subtype (Figure 1E). Also,

immune infiltration cells, related to the inhibition of tumor

cells, including Macrophage, B cell, CD4 T cell, CD8 T cell, and
frontiersin.org
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NK cell, were significantly activated in the AME2 subtype

(Figure 1D). Also, the purity of tumor cells was significantly

decreased in AME2 (Figure 1F). Nevertheless, immune

infiltration cells, related to the proportion of tumor cells, just

like regulatory T cells (Tregs) and myeloid-derived suppressor

cells (MDSCs), were noteworthy suppressed in the AME2

subtype (Figures 1G, H). This result was consistent with the

highest survival rate of the AME2 subtype.
Catenin Beta 1 (CTNNB1) may be
responsible for the characteristics of
immune exclusion in patients with the
AME1 subtype

Somatic mutation, a molecular characteristic associated with

aging, has also been proven to be associated with immune cells

(30). By applying MutSig2CV, we identified 15 recurrently
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mutated genes (q < 0.05), 12 of which were found in at least

10 patient samples (Figure 2A, Supplementary Table S1). The

top putative candidate drivers from these patients with LIHC

were Tumor Protein P53 (TP53), AT-Rich Interaction Domain 2

(ARID2), BRCA1-Associated Protein 1 (BAP1), Albumin (ALB),

RB Transcriptional Corepressor 1 (RB1), Axis Inhibition Protein

1 (AXIN1), Kelch-Like ECH-Associated Protein 1 (KEAP1),

Bromodomain-Containing Protein 7 (BRD7), Ribosomal

Protein S6 Kinase A3 (RPS6KA3), Activin A Receptor Type

2A (ACVR2A) (Figure 2A). Specifically, the mutation proportion

of CTNNB1 was the highest in the AME1 subtype, the mutation

proportion of TP53 and BAP1 was the highest in the AME3

subtype, and the mutation proportion of ARID2 was the highest

in the AME2 subtype (Figure 2B).

Immune checkpoints, as primary immune therapeutic

targets, played important roles in the human immune system

and have been widely applied in clinical treatment, which has

achieved good clinical outcomes (29, 31). Therefore, we
B C

D

E

F

G

A

H

FIGURE 1

Identification of three prognosis-distinct aging microenvironment subtypes. (A) Principal Component Analysis (PCA) plot of 14 cancer types
from TCGA. Based on the first two PCs of PCA, LIHC was characterized by a unique expression pattern of aging-related genes, which was
completely different from those of other cancer types. (B) Kaplan–Meier estimates of overall survival of the three aging microenvironment
subtypes. AME2 patients had the highest survival rate, whereas patients in the AME3 subtype had the worst prognosis outcomes. (C) The
proportion of different ages of patients in the three subtypes. (D) Heatmap of immune features in subtypes, calculated by single sample gene set
enrichment analysis (ssGSEA), Tumor Immune Estimation Resource (TIMER), and Microenvironment Cell Populations-counter(MCPCOUNTER).
**** P<0.0001). (E) Boxplots of the immune score in the subtypes. (F) Boxplots of the purity of the tumor cells in the subtypes. (G) Boxplots of
the proportion of regulatory T cells (Tregs) in the subtypes. (H) Boxplots of the proportion of Myeloid-derived suppressor cells (MDSCs) in the
subtypes. Kruskal–Wallis test was performed in panels E–H, and P values are shown.
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investigated the expression characteristics of immune

checkpoints in these three subtypes. According to the

expression of immune checkpoints, we find that almost all

immune checkpoint expression levels were significantly higher

in the AME2 subtype than those in the other two subtypes,

containing Cytotoxic T Lymphocyte-Associated Protein 4

(CTLA4) , T-Cell Immunoglobulin Mucin 3 (TIM3) ,

Programmed Cell Death 1 (PD-1), Indoleamine 2,3-

Dioxygenase 1 (IDO1), Programmed Cell Death 1 Ligand 2

(PD-L2), T-Cell Immunoreceptor with Ig and ITIM domains

(TIGIT), and Programmed Cell Death 1 Ligand 1 (PD-L1)

(Figure 2C). However, the expression of PD-1/PD-L1 was

significantly restrained in the AME1 subtype, which was in

accordance with previous research. On the contrary, the

expression levels of PD1/PD-L1 and T cells in the AME2

subtype were significantly increased (Figures 2D, E). These
Frontiers in Immunology 06
results indicated that patients within the immune infiltration

subtype may most likely respond to immune checkpoint

inhibitors (ICIs), while those within the immune exclusion

subtype might have innate resistance to anti-PD1/PD-L1 or

similar therapies (32). In addition, we also explored the

association between the mutation of TP53 and CTNNB1 and

clinical factors including Stage, T, M, N, and status.

Consequently, we found that there was no significant

association between TP53 and CTNNB1 mutation and clinical

factors (Supplementary Figures S1A, S1B). Moreover, we also

demonstrated the amino acid mutation sites of TP53 and

CTNNB1 (Supplementary Figures S1C, S1D). By applying chi-

square test, we found that the mutation rate of TP53 and

CTNNB1 had significant differences among the three subtypes

(P < 0.05), among which TP53 mutation rate was dramatically

increased in the AME3 subtype (Figure 2F), while the CTNNB1
B

C
D E

F

A

G

FIGURE 2

Identification of mutation characteristics and the expression of checkpoints in the different AME subtypes. (A) Waterfall plot of the top 12
recurrently mutated genes in LIHC, which was calculated by MutSig2CV. (B) The mutation number of the 12 genes in each subtype. The size of
the circle represents the proportion of mutated tumors in all LIHC tumors, and the distance of the gene to a subtype on a corner represents the
proportion of mutated tumors in that subtype. (C) Heatmap of the expression of immune checkpoints in the subtypes. ****P < 0.0001) (D) The
proportion of PD1+ and PD1- in the subtypes. (E) The proportion of PD-L1+ and PD-L1- in the subtypes. (F) The proportion of the mutation
number of TP53 in the subtypes. (G) The proportion of the mutation number of CTNNB1 in the subtypes.
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mutation rate was significantly increased in the AME1 subtype

(Figure 2G). In agreement with previous research, the effects of

PD-1/PD-L1 ICI therapy in LIHC patients with CTNNB1

mutation were very poor (32). This suggests that CTNNB1

may be responsible for the characteristics of immune exclusion

in patients with the AME1 subtype.
The aging microenvironment subtypes
are conserved across multiple cancers
and prognosticate better than other
subtyping methods

Many previous classification methods failed to classify

independent datasets other than the training datasets. We used

the aging-related gene signatures in a pipeline that could perform

pan-cancer classification. We designed our pipeline using

supervised clustering. This pipeline can be divided into five

steps: 1) mRNA expression profile between the AMEj (j={1,2,3})

group and other subtypes AMEm (m={1,2,3} & m!=j) and AMEk
(k={1,2,3} & (k!=j) & (k!=m)) was compared by using limma

package. 2) |LogFC| >0 and False discovery rate (FDR) <0.05 were

used as the criteria for screening differentially expressed aging-

related mRNAs. 3) Duplication genes that were specifically

upregulated in each subtype were removed from each group.

Then, the top 50 aging-related genes in each subtype were selected

as markers in each group according to their logFC. 4) Then,

samples were divided into three subtypes through hierarchical

clustering, among which “ward.D” was selected as the method.

We calculated each subtype’s markers using the pipeline

shown above (Supplementary Figures S2A-S2C, Supplementary

Table S1). Moreover, we also described the correlation between

these markers by applying Spearman correlation coefficient. As

shown in Supplementary Figure S2D, these markers can be

divided into three groups, which suggested that the markers of

each subtype were interrelated. Moreover, we also investigated

the protein–protein intersection network between these markers

by using STRING software (Supplementary Figure S2E). Then,

three independent validations of LIHC transcriptomic data

(GEO: GSE76427, GSE14520, GSE54236) were analyzed to

determine whether our subtypes were conserved. In

accordance with the classification characteristics of our

subtypes, the three groups of GEO samples were divided into

three subtypes: AME1, AME2, and AME3, indicating that the

expression signature based on the aging-related genes can be

applied to independent LIHC samples, among which the

immune signatures in the AME2 subtype were higher than

that in the AME1 and AME3 subtypes, and other features

such as the Epithelial–mesenchymal transition (EMT)

signature were not significant in the three subtypes

(Figures 3A–C, Supplementary Table S1). In addition, by

applying the pipeline, three additional types of tumors [Colon

adenocarcinoma (COAD), Breast invasive carcinoma (BRCA),
Frontiers in Immunology 07
Lung adenocarcinoma (LUAD] in TCGA were classified into the

three subtypes (Figure 3D, Supplementary Table S1), which had

significant correlation to overall survival (OS) (P < 0.05),

indicating that this classification pipeline can be broadly

applied at the pan-cancer level (Figure 3E).

We next compared our subtyping method with three other

classification methods including TME subtype (33), Immune-

Subtype (34), and iCluster (35) in TCGA-LIHC samples

(Figures 4A, C, E; Supplementary Table S1). The proportion of

C3 subtype is the largest in AME2, while the proportion of the C1

subtype is the largest in AME3. Accordingly, the C3 subtype has the

highest survival rate and the C1 subtype has the lowest survival rate,

which are consistent with the characteristics of the AME2 subtype

and AME3 subtype, respectively (Figures 4A, B). When analyzed

within the two subtypes separately, our AME classification model

exhibited more significant correlation with OS than that in the

Immune-Subtype method (Figures 1B, 4B). Consistent with the

previous results, the proportion of IE (Immune-Enriched Fibrotic)

subtype and IE/F (Immune-Enriched, Non-Fibrotic) subtype was

the highest in AME2, which further confirmed that AME2 is

characterized by immune infiltration. Meanwhile, the survival

rates of the IE subtype and IE/F subtype were significantly higher

than those of D (Depleted) subtype and F (Fibrotic) subtype

(Figure 4C). When compared to our AME classification model,

TME subtypes have poor survival segregation in LIHC (Figures 1B,

4D). Lastly, survival rates among iCluster subtypes were not

statistically different (Figure 4F).

Overall, our classification system using the aging

microenvironment-associated gene expression pattern across

various cancer types divided the AME into the three subtypes

that significantly correlated with OS in comparison with other

LIHC classification approaches including Immune-Subtype,

TME, and iCluster.
The mutation of CTNNB1 inhibits the
therapeutic effect of immune checkpoint
inhibitors by suppressing the expression
of CCL19

Previously, the hypothesis that LIHC “cold” tumors

defined by Wnt/CTNNB1 mutation are those refractory to

IC I s ha s be en confi rmed by P inyo l e t a l . ( 3 2 ) .

Immunotherapies in patients with “hot” tumors that were

characterized by the presence of tumor-infi l trating

lymphocytes (TILs) were more likely to be efficacious than

in patients with “cold” tumors (36–38). About 30% of

patients ’ enrichment in CTNNB1 mutation showed

exclusion of TILs (36, 37). Consequently, tumors within the

LIHC Immune Exclusion subtype might represent those with

innate resistance to anti-PD1/PD-L1 or similar therapies.

Therefore, it is necessary for us to explore the causes of

immune checkpoint resistance in patients with CTNNB1
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FIGURE 4

Comparing the AME subtypes to other classification methods. (A–C) The proportion of other clusters in each aging microenvironment subtypes.
(D–F) Kaplan–Meier estimates of overall survival of patients with other classification methods (TME subtype, Immune subtypes, and iCluster).
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FIGURE 3

Validation of the conservation of subtypes in datasets from multiple types of cancer. (A–C) Heatmap of the features in different LIHC datasets from
GEO (GSE14520, GSE54236, GSE76427), showing that the different subtypes shared similar features. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001) (D) Heatmap of the features in different cancers from TCGA (BRCA, COAD, LUAD), showing that the different subtypes shared similar
features. (E) Kaplan–Meier estimates of patient overall survival categorized by the three AME subtypes in BRCA, COAD, and LUAD patients.
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mutation. To check whether the mutation of CTNNB1 can

affect the expression of immune checkpoints, we divided

LIHC patients into CTNNB1 mutated group and CTNNB1

wild-type group. Then, by applying Wilcoxon test, we find

that a large number of immune checkpoints were significantly

di fferent ia l ly expressed between these two groups

(Figure 5A). The same phenomenon was also verified in the

GSE9829 dataset (Figure 5B). As shown in Figure 2G, the

proportion of patients with CTNNB1 mutation in the AME1

subtype was significantly higher than that of the AME2

subtype and AME3 subtype. Thus, the mRNA expression

profile based on aging-related genes between the AME1 and

other subtypes AMEO (O={2,3}) was compared by using

limma package. |LogFC| >0.5 and FDR <0.05 were used as

the criteria for screening differentially expressed aging-

related mRNAs. Among the identified differentially

expressed mRNAs, 87 downregulated mRNAs and 26

upregulated mRNAs in the AME1 subtype were selected as

candidate markers (Supplementary Figure S2A). By applying

Spearman’s correlation coefficient, we finally screened 11

aging-related genes that have a strong relationship with the

activation of T or B cells (|Cor| >0.4 and P < 0.05), including

ZAP70, PIK3CD, PRKCQ, PRKCB, TNFSF13B, BTK, SYK,

TNFRSF13C, CAMK4, CCL19, and TNFRSF11A (Figure 5C).

Interestingly, the expression of these genes was significantly

restrained in the AME1 subtype. By using Wilcoxon test,

PRKCB was excluded because it was not significantly

differentially expressed between wild-type and mutated

CTNNB1 AME1 samples.

By comparing the correlation between the 10 screened genes

and immune checkpoints (PD-1/PD-L1) in the CTNNB1

mutated group and the wild type in AME1 patients

(Figures 5D, E), we found that the correlation between these

genes and immune checkpoints (PD-1/PD-L1) in the mutant

group notably increased (Supplementary Figures S3A, S3B).

Especially, the correlation of CCL19, TNFRSF11A, TNFSF13B,

and SYK with immune checkpoints (PD-1/PD-L1) in the

CTNNB1 mutant group was significantly higher than that in

the CTNNB1 wild type (Cormut-Corwild >0.1 and P < 0.05).

Interestingly, the correlation between CCL19 and PD-L1 was not

significant in the CTNNB1 wild type (r = 0.0435, P = 0.607),

whereas in the CTNNB1 mutant group, the correlation between

CCL19 and PD-L1 was significant (r = 0.254, P = 0.00339)

(Figures 5F, G). Then, we investigated the correlation between

the expression of these aging-related genes and CD8+ T cells

(Supplementary Figure S3C). Consistent with previous results,

the correlation between CCL19 and CD8+ T cells was

significantly higher in the mutant group than that in the

CTNNB1 wild-type group (rmut = 0.681, P < 0.001; rwild =

0.458, P < 0.001) (Figure 5H). Moreover, the expression of

CCL19 was significantly decreased in the CTNNB1 mutation
Frontiers in Immunology 09
group (Figure 5I). We also found the same tendency in the

external validation dataset: GSE9829 (Figure 5J). In addition,

qPCR analysis was employed to verify this tendency. We found

that the expression of CCL19 in CTNNB1 wild-type

hepatocellular carcinoma cells (HepG2 cells) is higher than

that in CTNNB1 mutant cells (Huh6 and SNU398 cells)

(Figure 5K, Supplementary Table S2). It has been reported

that CCL19, as a chemokine, can promote the release of

cytokines by CD8+ T cells by binding to its receptor CCR7,

thereby inhibiting the proliferation, migration, and invasion of

tumor cells (39). These results suggested that CTNNB1 mutation

may inhibit the activation of immune cells by inhibiting the

expression of CCL19, leading to the “immune cold” phenotype.

Moreover, the correlation between the expression of CCL19 and

immune checkpoints (PD-1/PD-L1) in patients with CTNNB1

mutation was significantly increased, which may also explain

why AME1 subtype patients are resistant to anti-PD1/PD-L1 or

similar therapies.
The specific activation of mTOR is
responsible for the poor prognosis of
AME3 subtypes

To explore the potential reasons for the poor prognosis in

patients with the AME3 subtype, we calculated the activity of 14

cancer-related signaling pathways, including the Androgen,

Estrogen, EGFR, Hypoxia, JAK-STAT, MAPK, NFkB, PI3K,
p53, TGFb, TNFa, TRAIL, VEGF, and WNT pathways, which

are available in the R package “PROGENy” (21) (Supplementary

Table S1). By Kruskal–Wallis test, we identified significant

differential expression among the three AME subtypes in all

14 pathways, among which the MAPK, PI3K, and VEGF

pathways were specifically activated in the AME3 subtype,

whereas the p53 pathway was specifically suppressed

(Figures 6A–D). The percentage of tumors that carry TP53

mutation as one of the suppressors of the p53 signaling

pathway (40) was significantly higher in the AME1 subtype

than those in the AME2 and AME3 subtypes (Figure 2G). As

expected, the p53 pathway was significantly suppressed in the

TP53 mutation group (Figure 6E). Meanwhile, mTOR, a

downstream molecule of the p53 pathway (41), was

significantly activated in the TP53 mutation group (Figure 6F).

These results suggested that the TP53 mutation may inhibit the

activity of the p53 pathway, which promotes the expression of

mTOR and then contributes to the proliferation, migration, and

invasion of tumor cells.

In addition, we found that the PI3K pathway, another

activator of mTOR, was specifically activated in the AME3

subtype (Figure 6B). To explore the reason for the specific

activation of the PI3K signaling pathway, we investigated the
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relationship between the INPP4B mutation and the PI3K

signaling pathway (42). As shown in Figure 6G, the activity of

the PI3K signaling pathway and the expression of mTOR were

significantly enhanced (Figure 6H), suggesting that the INPP4B

mutation may promote the activation of the PI3K signaling

pathway, thereby activating the expression of mTOR.

Furthermore, we also computed the differentially expressed
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genes in these pathways including the MAPK, PI3K, VEGF,

and p53 pathways between AME3 and other subtypes

(Figure 6I). Collectively, we propose that specific activation of

mTOR is responsible for the poor prognosis of AME3 subtypes;

importantly, we uncovered several regulatory axes, including

TP53/p53/mTOR and INPP4B/PI3K/mTOR (Figure 6J),

providing clues for the treatment of the AME3 subtype.
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FIGURE 5

Identification of the function and the mechanism of CTNNB1 in the AME1 subtype. (A) Boxplots of the expression of immune checkpoints in the
CTNNB1-Mutation group and CTNNB1-Wild type group in TCGA LIHC samples. (B) Boxplots of the expression of immune checkpoints in the
CTNNB1-Mutation group and CTNNB1-Wild type group in the GSE9829 dataset (*P < 0.05; **P < 0.01; ***P < 0.001). (C) Spearman’s correlation
of immune checkpoints and the 11 aging-related genes. (D) Spearman’s correlation of PD-L1 and the 11 aging-related genes. (E) Spearman’s
correlation of PD1 and the 11 aging-related genes. (F) Spearman’s correlation of PD1 and CCL19 in the CTNNB1 mutation and CTNNB1 wild type
samples. (G) Spearman’s correlation of PD-L1 and CCL19 in the CTNNB1 mutation and CTNNB1 wild type samples. (H) Spearman’s correlation
of PD-L1 and CD8+ T cells in the CTNNB1 mutation and CTNNB1 wild type samples. (I) Boxplots of the expression of CCL19 in the CTNNB1-
Mutation group and CTNNB1-Wild type group in TCGA LIHC samples. (J) Boxplots of the expression of CCL19 in the CTNNB1-Mutation group
and CTNNB1-Wild type group in the GSE9829 dataset. (K) qPCR analysis of the expression of CCL19 in the CTNNB1 wild-type HepG2 cells and
CTNNB1 mutant Huh6 and SNU398 cells.
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Establishment and evaluation of an
aging-related gene signature in LIHC

In order to investigate the prognostic effects of these aging-

related mRNAs, we established aging-related genes by applying

LASSO and multiple Cox regression analysis. Different from the

traditional methods, we adopted multiple iterations (times = 500)

to avoid the contingency caused by the random error of LASSO

regression. This process can be divided into five steps: 1) Aging-

related genes associated with prognosis were screened out by

univariate Cox regression, and those with low variance were

removed (Var <5); 2) The selected aging-related genes were

dimensionally reduced by LASSO regression, repeated 500
Frontiers in Immunology 11
times, and the total number of occurrences of each gene was

counted; 3) Genes, total occurrences, number of more than 100

times were retained; 4) The model with the maximum AUC value

was selected as the final prognostic model through multiple

repetitions; 5) Calculate the prognostic signature for each sample.

Through this process, we finally selected 27 genes to

establish a model corresponding to the maximum AUC (5-

year AUC = 0.799) (Figures 7A, B), including AKT2, ATG101,

BMI1, BMP6, CCNA2, CD40LG, COQ7, CXCL8, DLAT, EEF1E1,

EIF4E, GCLM, HDAC1, HDAC2, HTRA2, IL7R, MAPT, MMP1,

PIK3R1, PON1, PPARGC1A, SOCS2, TFDP1, TRAF3, ZAP70,

UBB, and JUND. The results from the K-M analysis suggested

that patients with high risk have lower OS rate than patients with
B C D
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A

FIGURE 6

Identification of the differences in pathway activity among the three subtypes and their underlying mechanism. (A–D) The difference in pathway
activity calculated by PROGENy among the three subtypes. (E) Boxplots of the p53 pathway activity in the TP53-Mutation group and TP53-Wild
type group. (F) Boxplots of the mTOR pathway activity in the TP53-Mutation group and TP53-Wild type group. (G) Boxplots of the PI3K pathway
activity in the INPP4B-Mutation group and INPP4B-Wild type group. (H) Boxplots of the mTOR pathway activity in the INPP4B-Mutation group
and INPP4B-Wild type group. (I) Differentially expressed genes in the MAPK, PI3K, VEGF, and p53 pathways between AME3 and the other
subtypes. (J) Regulatory axes for specific activation of mTOR.
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low risk in LIHC patients in TCGA (P < 0.05) (Figure 7C). In

order to verify the advantage of this model, we applied these 29

genes to construct multiple models including Grading Boosting

(1-year AUC = 0.790; 3-year AUC = 0.814; 5-year AUC = 0.786),

Logistic Regression (1-year AUC = 0.810; 3-year AUC = 0.809;

5-year AUC = 0.785), K-Nearest Neighbor (1-year AUC = 0.774;

3-year AUC = 0.789; 5-year AUC = 0.741), Bayesian (1-year

AUC = 0.810; 3-year AUC = 0.808; 5-year AUC = 0.74),

Artificial Neutral Network (1-year AUC = 0.674; 3-year

AUC = 0.670; 5-year AUC = 0.606), and Decision Tree (1-year

AUC = 0.499; 3-year AUC = 0.426; 5-year AUC = 0.44), and we

found that our model has dominant credibility and predictive

value (Figure 7D). Univariate Cox regression results indicated

that our model was significantly correlated with prognosis, and

multivariate Cox regression results suggested that our model

could be used as an independent prognostic factor that was

independent from other clinical factors, including Stage, T, N,

and M (Figure 7E). In addition, a cross-platform validation from

GSE20140 was involved to verify the accuracy of the model.

A total of 20 genes were included in the list of 29 genes in the

GSE20140 validation set, and the risk model was established

through multivariate Cox regression. The ROC curve

prompted that this model had dominant credibility and

predictive value (1-year AUC = 0.848; 3-year AUC = 0.824; 5-

year AUC = 0.840) (Figure 7F). By constructing K-M

analysis, this model was proven to have a great prognostic

credibility (P < 0.05) (Figure 7G).
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We further investigated molecular events at single-cell

resolution by comparing high- and low-risk tumors

categorized by our aging gene-based model. We annotated

seven major cell types for 10 primary liver tumor tissues from

the GSE149614 dataset using biomarkers ACTA2 (Fibroblast

cells), CD68 (Myeloid cells), ALB (Hepatocyte cells), CD3D (T

cells), JCHAIN (Plasmablast cells), MS4A1 (B cells), and

PECAM1 (Endothelial cells) (Supplementary Figures S4A,

S4B). By applying the AUCell (43) algorithm, we calculated

the score of each cell through these 27 gene features that

comprised our model and determined HCC01T, HCC06T,

HCC07T, and HCC09T samples as high-risk samples and

HCC02T and HCC04T as low-risk samples (Supplementary

Figure S4C). To characterize intercellular interactions in high-

and low-risk groups, we inferred putative cell-to-cell interactions

based on ligand–receptor signaling using CellChat (44).

Interestingly, we observed globally enhanced intercellular

interactions for the low-risk group (Supplementary Figures

S4D, S4E). In addition, we found that CD46 signaling network

was strengthened in the low-risk group, which suggested that it

may play an important role in the process of inhibiting tumor

progression (Supplementary Figure S4F). These results

confirmed that aging-related genes play a crucial role in

affecting the tumor microenvironment.

Overall, aging-related genes have good efficacy in predicting

the prognosis of patients with LIHC, and they can serve as

regulators in the tumor microenvironment.
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FIGURE 7

Establishment and evaluation of an aging-related gene signature. (A) Multiple LASSO regression and Cox regression were used to define the
optimal model. (B) Time-dependent ROC curve analysis of the model in LIHC at 1, 3, and 5 years. (C) Kaplan–Meier estimates of overall survival
of patients with High Risk and Low Risk in TCGA LIHC samples. (D) The AUC of models established by multiple algorithms. (E) Univariate Cox
regression analysis for identifying our model was significantly correlated with prognosis, and multivariate Cox regression analysis for identifying
our model could be used as an independent prognostic factor. (F) Time-dependent ROC curve analysis of the validation data (GSE20140).
(G) Kaplan–Meier estimates of overall survival of patients with High Risk and Low Risk in the validation data (GSE20140).
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The activation of the PI3K/AKT/mTOR
signaling pathway is related to the
progression of liver cancer

In order to explore hub aging-related genes associated with

liver cancer disease progression, we first screened aging-related

genes that were significantly associated with survival in the

model. The results from the K-M analysis suggested that

CCNA2, EEF1E1, HDAC2, IL7R, and PON1 were significantly

associated with OS, progression-free survival, and disease-free

survival (P < 0.05, Figure 8A). To define the correlation between

five aging-related genes and clinical feature, Kruskal–Wallis test

was involved. The result suggested that EEF1E1 and HDAC2

were associated with the progression of tumors where they show

significant correlation with grade, stage, and T stage (P < 0.05;

Figures 8B, C), and the expression levels of EEF1E1 and HDAC2

were significantly higher in tumor tissue than in normal tissue

(Figure 8D). In addition, using qPCR, we found that the mRNA

expression of EEF1E1 and HDAC2 in hepatocellular carcinoma

cells (HepG2, Huh6, and SNU398) are higher than those in

normal hepatocytes (LO2) (Figure 8H, Supplementary Table S2).

Using the HPA database, we found that the protein

expression level of EEF1E1 and HDAC2 were higher in liver

cancer while lower in normal liver (Figures 8E–G). By using the

chi-square test, we found a significant difference in the protein

expression level of normal tissue samples and hepatocellular

carcinoma samples in the HPA database (Figure 8G). Using

qPCR and Western blotting, we found that the mRNA and

protein levels of HDAC2 in hepatocellular carcinoma cells

(HepG2, Huh6, and SNU398) are higher than those in normal

hepatocytes (LO2) (Figures 8H, I). We also found an mRNA

level increase in EEF1A1 expression in LIHC cancer cells

(Figure 8H). Interestingly, we also found that HDAC2 levels in

secondary liver cancer tissues are higher than those in normal

liver tissues, which further supports that HDAC2 plays an

important role in the progression of liver cancer (Figures 8J, K).

To explore the biological function of these aging-related

genes (EEF1E1 and HDAC2) in the progression of LIHC, we

performed GSEA based on TCGA cohort. Enrichment result

indicated that the PI3K/AKT/mTOR signaling pathway can be

activated by EEF1E1 and HDAC2 (P < 0.05, Figure 8L), which is

consistent with previous results. The PI3K/AKT/mTOR

pathway has been proven that it is aberrantly hyperactivated

in many types of cancer that has a strong relationship with poor

clinical prognosis. In the tumor microenvironment, the PI3K/

AKT/mTOR pathway plays an important role in promoting the

proliferation and metastasis of tumor while strongly inhibiting

the antitumor immune response (45).

Interestingly, this result indicated that the PI3K/AKT/

mTOR pathway may be a potential pathway that aging-related

genes converge on to liver tumor progression.
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Discussion

LIHC is the fifth leading cause of malignant cancer and the

third most common cause of cancer-related death worldwide

(1). Recent studies have shown that aging-related genes can serve

as a risk factor in LIHC and can be used to predict the prognosis

of patients (46, 47). However, the mechanism behind aging-

related genes affecting the prognosis of LIHC patients and the

effect of aging-related genes in immunotherapy are still unclear.

Here, we comprehensively characterized aging-related

clinical and molecular features in LIHC by an integrated

analysis of public datasets. Based on aging-related genes, we

established three prognosis-distinct aging subtypes in LIHC,

including “immune exclusion” AME1, “immune infiltration”

AME2, and the intermediate AME3 subtypes. We identified a

high level of CTNNB1 mutations in AME1, which by previous

knowledge causes insensitivity to immunotherapies. We

identified CCL19 as a potential key gene downstream of

CTNNB1 to convey the immunosuppressive effect. In addition,

we uncovered activation of the oncogenic PI3K/AKT/mTOR

pathway in AME3 by multiple aging-related genes including

EEF1E1 and HDAC2. Our finding suggested that the aging

microenvironment could promote liver tumor progression and

treatment sensitivity via modulating immune profiles and

oncogenic signaling, which potentially could lead to better

prognosis and treatment selection.

Our AME subtypes are characterized by the different levels of

immune cell infiltration, which is largely consistent with the

conventional immune subtypes, yet performed better in

prognosis. Among them, the AME2 subtype is characterized by

numerous TILs and high PD-L1 expression, which suggest that

the AME2 subtype belongs to the tumor microenvironment

immune type I (TMIT-I) with optimal benefit for ICIs (48). The

AME1 subtype was characterized by specific inhibition of immune

infiltrating cells. Almost all immune infiltrating cells were

suppressed. Meanwhile, the expression of immune checkpoints

was restrained in the AME1 subtype. To date, ICIs, such as

nivolumab (PD-1 inhibitor), have been approved by the Food

and Drug Administration (FDA) for the treatment of several

cancers (49, 50). Yet, the responses of patients to ICI therapies

vary greatly, with some patients achieving complete remission and

others showing continuous progression (51). Hence, our subtypes

could assist in decision-making for the ICI treatments of LIHC.

Previous studies have shown that approximately 30% of LIHC

patients can be defined as “Immune Exclusion class,”

characterized by CTNNB1 mutation and insensitive to ICIs such

as anti-PD1/PD-L1 or similar therapies (36, 37). We found that

the frequency ofCTNNB1mutation was significantly higher in the

AME1 subtype than that in the other two subtypes. It has been

proven that LIHC patients with CTNNB1 mutation may be

insensitive to immunotherapy (32). However, the mechanism
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FIGURE 8

Identification of aging-related gene hubs associated with liver cancer disease progression. (A) Five aging-related genes were selected by using
Kaplan–Meier estimates of overall survival, progression-free survival, and disease-free survival. (B, C) Two aging-related gene hubs were
selected by using the correlation between aging-related genes and clinical feature. (D) The expression level of HDAC2 and EEF1E1 in adjacent
normal liver and LIHC samples. (E, F) The protein expression level of HDAC2 and EEF1E1 using the HPA database. (G) Chi-square test of the
significance between the number of normal tissue samples and hepatocellular carcinoma samples in protein expression level of HDAC2 and
EEFIE1. (H) qPCR analysis of EEF1E1 or HDAC2 expression in the hepatocyte line LO2 and hepatocellular carcinoma cell lines HepG2, Huh6, and
SNU398. The experiment was performed three times with consistent results; representative results from one set of experiments are shown.
**P < 0.01; ***P < 0.001.(I) Immunoblot analysis of HDAC2 levels in the hepatocyte line LO2 and hepatocellular carcinoma cell lines HepG2,
Huh6, and SNU398. Experiment was performed three times with consistent results; representative image is shown. (J) IHC analysis of HDAC2 in
normal liver tissues and secondary liver cancer tissues. (K) HDAC2 staining score in normal liver tissues and secondary liver cancer tissues.
(L) GSEA was employed to explore the biological function of these aging-related genes (HDAC2 and EEF1E1) in the progression of LIHC.
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behind this phenomenon is still unclear. An increasing number of

studies have found that certain key factors influence the

progression of tumors in an age-dependent manner, for

example, AKR1B10, which is highly expressed in liver cancer

tissues and is positively correlated with the level of alpha

fetoprotein and the proportion of liver cell steatosis, was

identified as a crucial gene in the increase of carcinogenesis with

age (52, 53). Hence, it is of great significance to study the role of

aging-related genes in tumor progression. In our study, we found

that the expression of CCL19 was significantly decreased in the

CTNNB1mutant group. CCL19 was reported previously to recruit

Dendritic cells (DCs) and T cells in paracancerous tissues to

tumor tissues (54). In addition, in mouse CAR-T cells, IL-7 and

CCL19 expressions have been demonstrated to improve T-cell

infiltration and Chimeric Antigen Receptor T (CAR-T) cell

survival in mouse tumors (55). It has been uncovered that

compared with conventional CD19 CAR-T cells, the

combination of IL7 and CCL19 can promote the infiltration,

accumulation, and survival of CAR-T cells in lymphoma tissues,

further enhancing the antitumor effect of conventional CAR-T

cells (54). This suggested that CTNNB1 mutation may inhibit the

expression of immune checkpoints and affect the immune

response of patients by inhibiting the expression of CCL19 (39),

which will provide a potential target for immunotherapy.

Interestingly, the MAPK, PI3K, and VEGF pathways were

activated in poor prognostic subtype AME3 and may contribute

to tumorigenesis. However, the p53 pathway was specifically

restrained in the AME3 subtype. Inactivation of the transcription

factor p53, through either direct mutation or aberrations in one of

its many regulatory pathways, is a hallmark of almost every tumor

(56). In addition, in the tumor microenvironment, the PI3K

pathway plays an important role in promoting the proliferation

and metastasis of tumor while strongly inhibiting the antitumor

immune response (45). We identified INPP4B as an upstream

regulator of the PI3K and p53 pathways. INPP4B is a tumor

suppressor gene that inhibits the PI3K signaling pathway (42).

We found that the PI3K pathway activity was activated in the

INPP4B mutant group. However, the mutation frequency of

INPP4B in AME3 subtype was not significantly different from

that of the other two subtypes, which may be influenced by the

small mutant number (size = 2). In addition, we found that TP53,

the most commonly mutated gene in human cancer (57), mutated

at a significantly higher frequency in the AME3 subgroup than in

the AME1 and AME2 subtypes. Meanwhile, the p53 pathway was

significantly inhibited in the TP53 mutant group. mTOR, as a

common downstream regulator of the p53 pathway and PI3K

pathway (4, 40), was significantly activated in the TP53 mutation

group and INPP4B mutation group. Therefore, our study suggests

that TP53 and INPP4B may influence the expression of mTOR by

influencing the PI3K and p53 pathways. Consequently, the

activation of two oncogenic axes, TP53/p53/mTOR, INPP4B/

PI3K/mTOR, may explain the reason why the AME3 subtype

had the worst survival. These results will help clinicians in
Frontiers in Immunology 15
ranking the tumor and therapies with more information.

Specifically, clinicians can assign patients to specific AME

subtypes based on their immune and mutation characteristics.

For example, if a patient was assigned to the AME1 subtype,

clinicians need to be aware that these patients are not suitable for

immunotherapy. Furthermore, if a patient has a high-frequency

mutation rate of TP53 or INPP4B, then clinicians need to notice

whether this patient is accompanied by specific activation of the

expression of mTOR, which is usually the worst case.

To verify the conservation of our subtypes, we classified

multiple external LIHC validation sets using supervised

clustering and verified the classification method in multiple

cancers. In a previous study, it has been uncovered that an

increased senescence score was associated with increasing age

and higher malignancy and is somewhat associated with poor

prognosis (46). In addition, the tumor microenvironment

associated features have been employed to establish prognostic

models with good results (58). Hence, we also established a

robust aging-related model based on age-related genes to predict

the prognosis of LIHC patients. The gene selection process in

our model adopts multiple iterations (times = 500) to improve

the contingency in the gene selection process and avoid the

random error of LASSO regression; furthermore, the modeling

method was selected from a variety of methods based on

credibility and predictive values. Our model predicted survival

with an AUC >0.799, which is superior to the previous LASSO

regression-based prognostic model in LIHC (AUC <0.78) (47).

We also explore hub aging-related genes and potential

pathways associated with liver cancer disease progression. We

defined five hub aging-related genes including CCNA2, EEF1E1,

HDAC2, IL7R, and PON1 by using K-M analysis and found that

EEF1E1 and HDAC2 were associated with the progression of

tumors where they showed significant correlation with Grade,

Stage, and T stage. EEF1E1A is a novel LIHC prognosis predictor

and associated with immune infiltration (59). A recent study

showed that HDAC2 can bind to miR-503-5p and target

CXCL10, thus promoting the progression of esophageal

squamous cell carcinoma (60). These hub genes were further

shown to correlate positively with the PI3K/AKT/mTOR signal

pathway molecules. The PI3K/AKT/mTOR pathway is commonly

hyperactivated in many types of cancer and correlates with poor

clinical prognosis (45). Consistent with previous conclusions, the

activation of the PI3K/AKT/mTOR pathway may be downstream

of the hub genes that we identified in our study to promote the

disease progression of LIHC patients.

In conclusion, we developed an effective strategy for

classifying LIHC from a new perspective and revealed the link

between the aging microenvironment and tumor immunity as

well as tumor mutations. Meanwhile, the mechanism of CTNNB1

mutation affecting immune insensitivity in LIHC patients was also

uncovered. These results provide clues for predicting the

prognosis of LIHC and potential therapeutic targets, which may

contribute to the diagnosis and treatment of LIHC.
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