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Magnetic control of Goos-Hänchen 
shifts in a yttrium-iron-garnet film
Wenjing Yu1, Hua Sun1 & Lei Gao1,2

We investigate the Goos-Hänchen (GH) shifts reflected and transmitted by a yttrium-iron-garnet (YIG) 
film for both normal and oblique incidence. It is found that the nonreciprocity effect of the MO material 
does not only result in a nonvanishing reflected shift at normal incidence, but also leads to a slab-
thickness-independent term which breaks the symmetry between the reflected and transmitted shifts 
at oblique incidence. The asymptotic behaviors of the normal-incidence reflected shift are obtained 
in the vicinity of two characteristic frequencies corresponding to a minimum reflectivity and a total 
reflection, respectively. Moreover, the coexistence of two types of negative-reflected-shift (NRS) at 
oblique incidence is discussed. We show that the reversal of the shifts from positive to negative values 
can be realized by tuning the magnitude of applied magnetic field, the frequency of incident wave and 
the slab thickness as well as the incident angle. In addition, we further investigate two special cases 
for practical purposes: the reflected shift with a total reflection and the transmitted shift with a total 
transmission. Numerical simulations are also performed to verify our analytical results.

The GH effect refers to the lateral shift of an incident beam of finite width upon reflection from an interface which 
was first studied by Goos and Hänchen1,2 and theoretically explained by Artmann in terms of the stationary-phase 
approach in the late 1940s3. Since then, such effect has been very important with development of the laser beams 
and integrated optics4 and has significant impact on applications as well as for investigations of the fundamental 
problems in physics. And the studies have been extended from a simple dielectric interface to more complex 
structures or exotic materials such as metal-dielectric nanocomposites5,6, epsilon-near-zero metamaterials7, 
graphene8–10, PT-symmetric medium11, topological insulator12 etc.

The GH shift by magneto-optical (MO) materials13–18 is obtained by making use of ferromagnetic resonances 
of natural magnetic materials. Similar relation between GH effects and intrinsic resonances was also reported 
in nonmagnetic dielectric, such as GH shifts arising from phonon resonances in crystal quartz19. But what was 
found in MO materials is of particular interest because of the nonreciprocity in scattering coefficients originated 
from the broken time reversal symmetry20. As a result, a lateral shift for reflection will occur at the interface 
between the vacuum and an magnetic material arranged in the Voigt geometry even at normal incidence14,15, 
with both sign and magnitude controlled by the applied magnetic field. And the polarization-dependence of the 
GH shift by MO materials makes it possible to separate the incident radiation into beams of different polariza-
tions21. However, the details of the magnetic effects on GH shift are stilled obscure. Most studies only discussed 
the effects of a semi-infinite antiferromagnetic material—MnF2 at low temperature (T =​ 4.2 K), with a dispersion 
quite different from that of conventional MO materials adopted in applications. The role of material properties 
and geometric factors (such as finite slab thickness, incident angles etc.) remains unclarified in the magnetic con-
trol of GH shifts with MO materials.

Hence we are motivated to perform a theoretical investigation of the GH shifts reflected and transmitted by 
a MO slab made of yttrium-iron-garnet (YIG). As a ferrite well known for its high MO efficiency and low damp-
ing22–27, YIG has been extensively studied and broadly adopted in microwave28–30 and magneto-optics technolo-
gies31–33. The recent realization of one-way waveguides based on YIG photonic crystals sparks even more interest 
of the application of this traditional MO material in the field of subwavelength optics34,35. It was also shown 
that hyperbolic dispersion and negative refraction initially investigated in antiferromagnetic materials36 can be 
extended to and realized in conventional ferrites37. But the GH-shift effects due to a surface/slab of YIG have not 
been studied.
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In this paper we present a theoretical analysis of the lateral shifts of both the reflected beam and the transmit-
ted beam due to a magnetized YIG slab in the Voigt geometry. It is shown that the nonreciprocity effect caused 
by the MO material does not only result in a nonvanishing reflected shift at normal incidence, but also leads to 
a slab-thickness-independent term which breaks the symmetry between the reflected and transmitted shifts at 
oblique incidence. The asymptotic behaviors of the normal-incidence reflected shift are obtained in the vicinity of 
two characteristic frequencies (ωr and ωc) corresponding to a minimum reflectivity and a total reflection, respec-
tively. And the coexistence of two types of negative-reflected-shift (NRS) at oblique incidence is discussed. We 
also investigate two special cases for practical purposes: the reflected shift with a total reflection and the transmit-
ted shift with a total transmission. Analytical expressions of the shifts in these cases are obtained approximately, 
which is in good agreement with the results from numerical calculations.

Results
General formulas.  Consider a YIG film of thickness d surrounded by a non-magnetic background medium 
of (ε1, μ1) as shown in Fig. 1. For simplicity we set the background medium in Region 1&3 as the vacuum. The 
magnetic permeability of YIG magnetized along the z-axis is of the tensor form
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where the digonal and off-diagonal permeabilities follow the typical dispersion of ferrites in the microwave region
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Here ω is the frequency of the incident light, ω0, ωm are the magnetic resonance frequencies given by

ω πγ= h2 , (3a)0 0

ω πγ= m2 (3b)m s

with h0 and ms denoting the applied magnetic field and the saturated magnetization, respectively. The material 
parameters of YIG are chosen as: γ =​ 2.8 ×​ 10−3 GHz/Oe, ms =​ 1800 Gauss, ε =​ 14.535. The damping factor α is 
quite small and neglected in the following analytic derivations and calculations. However, later in the numerical 
simulations, we have considered the influence of the realistic damping of YIG material.

To find the GH shifts due to such a YIG slab, we start by considering an s-polarized plane wave of angular 
frequency ω incident from Region 1 at an angle θ. Then the x component of the wave vectors in layers 1, 3 and 2 
are given by
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Figure 1.  Schematic diagram of the structure in the presence of an external field h0. The incident plane wave is 
polarized along the z-direction and propagates along 

→
k .
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with

θ=k k sin (5)y 0

Here ε is the dielectric constant of YIG and μeff is its effective permeability given by14

µ µ µ µ= −( )/ , (6)eff r i r
2 2

and k0 =​ ω/c is the wave number of the incident radiation in the background vacuum. Note that μeff is only used 
to calculate the “effective” wave vector k2x in the MO slab, not to replace the slab by an isotropic one. Then the 
electric fields and the magnetic fields in layers 1, 2 and 3 can be expressed as
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Based on the boundary conditions = + =
E Elz l z x x( 1)
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(l =​ 1, 2), we obtain the reflection and 

transmission coefficients as
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with µ= − −A k k igk ,eff x x y1 2  µ= + +B k k igkeff x x y1 2  and g =​ μi/μr is the MO Voigt constant of YIG.
When an electromagnetic beam of finite width illuminates the slab at an incident angle θ0, the lateral shifts of 

the reflected and transmitted beams can be obtained by the stationary phase method3
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where θ=k k siny
o

0 0 and ϕr, ϕt are the phase angles of the reflection and transmission coefficients for plane 
waves, respectively. Note here the lateral shift of the transmitted beam is measured in the same way as that of the 
reflected beam38.

For a transparent YIG slab, μeff and k2x are both real when the weak absorption of YIG is neglected (i.e. the 
damping factor α is assumed to be zero). Then the reflected shift derived from Eq. (10–11) includes two parts:

ϕ ϕ
= − −

= =

d d
dk

d
dk

(12)
r

y k k y k k

(1) (2)

y y y y
0 0

where ϕ(1) =​ Arg(AB*) while ϕ(2) is the phase angle of the complex variable
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The transmitted shift is only determined by the ky-dependence of ϕ(2):
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When g =​ 0, we have µ= − ≡A k k Ar x x1 2 0, µ= + ≡B k k Br x x1 2 0. The results of the lateral shifts are 
reduced to the case of a nonmagneto slab as investigated in ref. 38. The first term in Eq. (12) will vanish since A0 
and B0 are both real and symmetric reflected and transmitted shifts will appear. Based on the formulas Eq. (12)-
(14), we will discuss the behaviors of the shifts at normal incidence and at oblique incidence, respectively, for a 
MO slab with g ≠​ 0, in the following sections.

Normal incidence.  When g ≠​ 0, a θ-dependent imaginary part is added to A or B so that

= − = +A A igk B B igk, (15)e y e y0 0

here A0e and B0e are real parameters for an “effective” slab where the MO permeability tensor is replaced by the 
magnetic-field-controlled scalar μeff. Since − = −A B A B ,e e
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the shift term from ϕ(2) is expected to behave like that of the effective slab when the incident angle approaches 
zero and finally vanishes at normal incidence.

The first term of Eq. (12) is independent of the slab thickness and contributes a non-vanishing reflected shift 
at normal incidence:
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By combining Eq. (16) with Eq. (2a) and (2b), we obtain the dependence of dr
n( ) on frequency and magnetic 

field in the form
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Here, ≡ =ω
ω

H h
mm s

0 0  is a dimensionless magnetic field reduced by the saturated magnetization of the MO slab. In 
vicinity of the discontinuity point ω βω≡c m (This discontinuity in the frequency spectrum occurs exactly at the 
reflection minimum, corresponding to μeff =​ ε)15, the abrupt transition of dr

n( ) from negative to positive can be 
approximated by

λ
πβ ε η

≈
−

d
2 ( 1) (19)r

n( ) 0

where η ≡ ω ω
ω
− c

c
 describes a small deviation from ωc. Note that the expression of ϕ(1) is identical to that by a 

semi-infinite MO material in refs 14,15. So Eq. (16–19) are also applied to the case of d →​ ∞​, i.e. a semi-infinite 
YIG interface.

Figure 2(a) shows the approximated frequency dependence of dr
n( ) based on Eq. (19) for h0 =​ 2580Oe, 2680Oe 

and 2680Oe (circles). The numerical results (lines) directly from Eq. (10) and (11) are displayed simultaneously 
for comparison and good agreement is found even for moderate deviation from the discontinuity point. Since β 
increases monotonically with H, ωc is red-shifted when the applied magnetic field h0 is decreased, accompanied 
by the enhancement of dr

n( ) around ωc. For a lower field h0 =​ 1000Oe, we have 
η
.

~dr
n( ) 0 0136 , which is larger by 1–2 

orders of magnitude than the result for MnF2 at the same applied magnetic field as reported in refs 14 and 15.
For practical purposes, a sufficiently large reflectivity is necessary for the application of reflected shift. 

Figure 2(b) shows a typical frequency spectrum of reflectivity of a YIG slab ( = . =d h0 3m, 2680Oe0 ), where |r|2 
is quite small around ωc but rises rapidly when the frequency approaches the sharp edge of a platform of |r|2 =​ 1. 
The rapid oscillation of reflectivity is a typical interference pattern of a slab of finite thickness, which is not exhib-
ited in the spectrum of dr in Fig. 2(a) since the reflected shift is independent of slab thickness. The total-reflection 
platform at f >​ fr occurs when the wave vector k2x in YIG becomes imaginary, which means a negative μeff in the 
cases of normal incidence (ky =​ 0). According to the dispersion relation of μi and μr, it is easy to find

ω ω= +H H( 1) (20)r m

and the frequency dependence of μeff and g can be expressed as
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Note that at ω =​ ωr, both g and μeff go infinite, but their ratio has a finite value
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Substituting this in to Eq. (16), we obtain the reflected shift at ωr
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This result tells us the largest dr
n( ) achievable when =r 12 , which increases monotonically with the reduced 

magnetic field H up to a strong-field limit: λ
π

0 .

Oblique incidence.  When the incident beam is at a certain angle θ, the reflected shift dr and the transmitted 
shift dt caused by a YIG-slab of thickness d can be expressed as

θ θ θ= + Λd d D d( , ) ( ) ( , ) (24a)r
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where the thickness-independent part θD( ) is according to the first term in Eq. (12), given by

θ θ θ= ++ −D g F F( ) [ ( ) ( )] (25)

with

θ
µ µ

µ
=

± + ±

± +±F
k k k k

k k g k
( )

( ) ( )

( ) (26)

eff x x
k

k k eff x x

eff x x y

1 2 2 1

1 2
2 2 2

y

x x

2

1 2

The expression of θΛ d( , ) can be obtained from Eq. (13) and (14) as

θΛ =
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Here we have introduced a function

Figure 2.  Calculated normal incidence (a) GH shift of reflected field dr/λ and (b) reflectivity as a function of 
frequency (express as ω/2π). The red, blue and black curves correspond to h0 =​ 2580, 2980, 2780Oe, respectively. 
Circles: approximated results from Eq. (19); Lines: numerical results.
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which can be rewritten as
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where G k( )e y0  is the result of G k( )y  for a slab of scalar permeability µeff  while M k( )y  gives the correction term 
caused by the tensor form of the slab permeability:
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Note that µ = ω ω
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g/ eff H( 1)
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, hence the condition µ + ( )g / 1 1eff
2 2  holds for most frequencies not 

close to ωr  in the transparent region ω ω< r , and θΛ d( , ) can be well approximated by the shifts 
θ= = Λd d d( , )re te e  due to an effective non-MO slab of (ε, µeff ) for the same incident angle θ and slab-thickness 

d38.
The competition between θD( ) and θΛ d( , ) leads to the coexistence of two types of NRS at certain frequencies. 

Figures 3 and 4 illustrate the variance of |r2|, λd /r  and λd /t  with the incident angle θ and the slab thickness d. The 
magnetic field h0 is set to be 2780 Oe, at which the characteristic frequencies are given by = .f 9 749 GHzc  and 
= .f 9 991 GHzr . To one’s interest, both reflectivity and the shifts show the periodicity with the change of 

slab-thickness (shown in Fig. 3). Two NRS regions are revealed in the sign-patterns of the lateral shifts for 
= .f 9 5 GHz, .9 7 GHz and 9.736 GHz in Fig. 3b and c, where region A extends from θ =​ 0 to θ =​ θA with only 

slight thickness dependence while region B for θ θ> B shows a periodic positive-to-negative transition of dr (and 
dt as well) with thickness varying.

In Fig. 4(a) and (c), the curves of dt vs θ at a certain slab thickness for = .f 9 736 GHz are presented for both 
the YIG slab and the corresponding effective slab. It is clearly seen that θΛ d( , ) can be well approximated by 
θΛ d( , )eff , which accounts for the transition of dt with thickness at larger incident angles. For the reflected shift dr 

(Fig. 4(b) and (d)), θD( ) dominates the NRS region at smaller angles and makes a non-negligible correction to the 
NRS in region B, breaking the symmetry between dr and dt which is an important feature of GH shifts due to a 
non-MO slab38.

Two special cases.  Asymptotic behaviors of the GH shifts in two special cases of particular interest for appli-
cations can be obtained from the general formulas Eq. (24–30). The first case is at ω =​ ωr, where total reflection 
occurs and the reflected shift is only determined by θD( ) even at oblique incidence. By expanding the function in 
terms of κ θ≡ =k k/ siny 0  and keeping terms up to the second order, we have
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Since µ = +g H H/ / 1eff  at ωr, the asymptotic behavior of dr is given by
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where dr
n( ) is the reflected shift in Eq. (23) at normal incidence. The calculated results from Eq. (32) are illustrated 

in Fig. 5a in comparison with the numerical results for =h 1000Oe0 , 2000Oe and 3000Oe.
The second case is the transmitted shift accompanied by a 100% transmittivity when the slab thickness satisfies 

π Ζ= ∈k d m m( )x2 . According to Eq. (24b), the transmitted shift can be written as
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when π=k d mx2 , we have φ = 0 and
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Also keeping the first two terms in the expression of dt, we obtain the asymptotic behavior of dt in this case
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The transmitted shift will vanish at ω =​ ωr, because of the divergence of μeff at this frequency, and then rise with 
frequency decreasing. Figure 5b illustrates the frequency-dependence of dt at a certain incident angle 
(θ = ° °30 , 45 ) for =h 3000Oe0  when the slab thickness satisfies the total transmission condition. Good agree-
ment is found between the approximated dt in Eq. (36) and the numerical results.

Figure 3.  (a1) Reflectivity, (b1) GH shift of reflected field λd /r  and (c1) GH shift of transmitted field λd /t  as 
functions of the slab thickness (expressed as λd/ ) and the incident angle θ for =h 2780Oe0 , = .f 9 5 GHz. (2), 
(3) are the same as (1) but for = .f 9 7 GHz and .9 736 GHz, respectively.
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Numerical simulations
To verify the above theoretical analysis, we performed a numerical simulation of a YIG slab illuminated by a 
Gaussian incident beam with the well-known finite-element analysis software COMSOL Multiphysics. The center 
of the incident beam arrived at the upper interface of the slab is located at the point (0, 0) and the half-width of 
the beam is 7.5λ. The GH shifts can be directly obtained by comparing the field distributions of the incident beam 
and the reflected/transmitted beam at the relevant interfaces.

Figure 4.  (a), (c) GH shift of transmitted field λd /t  and (b), (d) GH shift of reflected field λd /r  vs the incident 
angle θ at two certain slab thicknesses: (a,b) λ= .d 3 03 , (c,d) λ= .d 3 047  for both the YIG slab and the 
corresponding effective slab. The incidence frequency is = .f 9 736 GHz.

Figure 5.  (a) GH shift of reflected field λd /r  vs θsin [ ] for =h 1000, 3000Oe0  at =f f r. (b) GH shift of 
transmitted field λd /t  vs the frequency at two certain incident angles (θ = ° °30 , 45 ) for =h 3000Oe0 , 

π=d k10 / x2 . The solid lines indicate the numerical results and the square symbol lines correspond to the 
asymptotic behaviors calculated from Eq. (32) and (36).
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Note that the damping of YIG has been neglected in the analytic expressions. In our simulations, a more prac-
tical dispersion of YIG permeability will be adopted where the damping factor is set to be α γ ω= × dH/2 , with 
=dH 30Oe35. The low damping (~10−4) implies that no significant absorption effects will occur except for fre-

quencies near ferromagnetic resonance =f H f m0 . According to Eqs (17), (18) and (20), the two characteristic 
frequencies for nonreciprocal GH shifts, fc and fr, will not be close to f0 unless the field h0 is in the strong-field limit 
h ms0 .
At normal incidence the analytical results predict that nonvanishing reflected shift occurs in both the trans-

parent region ( <f f r) and the opaque region ( >f f r) as shown in Fig. 2. The simulation results of the field dis-
tribution along the incident interface for both the incident beam and the reflected beam are given in Fig. 6. The 
parameters are chosen to be the same as those for the points A and B in Fig. 2b, namely h0 =​ 2680 Oe, d =​ 0.3 m, 
= .f 9 01 GHz (point A) or = .f 9 72 GHz (point B). The cases with (black solid lines) and without (blue solid 

lines) damping are both investigated. Table 1 gives the reflected shifts given by analytic expressions, simulations 
without damping and simulations with damping. It is shown that the damping has no significant effect on the 
shift, and the analytic predictions is in good agreement with the numerical results.

At oblique incidence both reflected and transmitted shifts may be observed at certain conditions. Figure 7 
gives the simulated results when the incident angle is 45° and the external magnetic field h0 is 3000Oe. The fre-
quency and the slab thickness are chosen to satisfy the conditions for total reflection ( =f f r, Fig. 7a and c) and 
total transmission ( π=k d mx2 , Fig. 7b and d), respectively, since these cases are especially interesting for practi-
cal applications. Again both the cases with and without damping are investigated and compared with the analyt-
ical results as listed in Table 1. Trivial damping effects and good agreement between the analytical and simulation 
results are found, similar to those at normal incidence.

Conclusions
In this paper, we mainly investigate the lateral shifts of a TE wave both reflected and transmitted from a YIG 
slab theoretically. It is shown that the nonreciprocity effect caused by the MO material will result in a non-
vanishing reflected shift at normal incidence. In the case of oblique incidence, this effect also leads to a 
slab-thickness-independent term of dr which breaks the symmetry between the reflected and transmit-
ted shifts which is an important feature of GH shifts due to a non-MO slab. The asymptotic behaviors of the 
normal-incidence reflected shift are obtained in the vicinity of two characteristic frequencies (ωr and ωc) cor-
responding to a minimum reflectivity and a total reflection, respectively. And the coexistence of two types of 
negative-reflected-shift (NRS) at oblique incidence is discussed. Numerical results show that the reversal of the 
sign of GH shifts can be realized by tuning the magnitude of external magnetic field h0, adjusting the incident 
wave frequency f or changing the thickness d as well as the incident angle θ. We also investigate two special cases 
for practical purposes: the reflected shift with a total reflection and the transmitted shift with a total transmission. 

Figure 6.  The COMSOL simulation results for reflected shifts at normal incidence. (a) The distribution of 
electric field amplitude along the incident interface for = .f 9 01 GHz, =h 2680Oe0 and d =​ 0.3 m 
(corresponding to point A in Fig.2b); (b) The distribution of electric field amplitude along the incident interface 
for f =​ 9.72 Ghz h0 =​ 2680Oe and d =​ 0.3 m (point B in Fig.2b ). The red lines indicate the analytical shift of each 
case.

Analytical 
predictions

Simulations without 
damping

Simulations with 
damping

Normal 
incidence

f =​ 9.01 GHz dr =​ −​0.130λ dr =​ −​0.134λ dr =​ −​0.134λ

f =​ 9.72 GHz dr =​ ​0.229λ dr =​ ​0.221λ dr =​ ​0.221λ

Oblique 
incidence

Total reflection dr =​ ​0.443λ dr =​ ​0.454λ dr =​ ​0.454λ

Total transmission dt =​ ​0.241λ dt =​ ​0.245λ dr =​ ​0.245λ

Table 1.   Comparisons between analytical and simulation results.



www.nature.com/scientificreports/

1 0Scientific Reports | 7:45866 | DOI: 10.1038/srep45866

Analytical expressions of the shifts in these two cases are obtained approximately, which are in good agreement 
with the results from numerical calculations.

Though nonreciprocal reflected shifts were also reported in antiferromagnetic MnF2
16,17, our YIG-based study 

confirms the possibility of experimental demonstration of these effects in conventional ferrites at room tempera-
tures. And the systematic analysis of both the reflected and the transmitted shifts due to a YIG slab offers a deeper 
insight into the role of magnetic field in tuning the shift sign, magnitude and types (reflected or transmitted).

Methods
Theory and simulations.  The numerical simulation results shown in Figs 6 and 7 were obtained using the 
finite element solver COMSOL Multiphysics. The scattering boundaries were set for four sides. Based on the 
numerical simulation, the curves of field amplitude in Fig. 6 were obtained by performing the line plot along y 
axis from −​4λ to 4λ. Due to the interference effect, the field amplitudes are oscillating along x direction. The line 
plot is located at the first peak close to the interface between air and YIG. Meanwhile, we zoom in the line plot 
of |Ez| enough to get the distance between its symmetric axis and y =​ 0, which indicates the lateral shift dr. The 
numerical results in Fig. 7 were obtained by the same technique.
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