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Each beat of the heart completes the final step in a sequence of events commencing
with electrical excitation-triggered release of Ca2+ from the sarcoplasmic reticulum
which, in turn, triggers ATP-hydrolysis-dependent mechanical contraction. Given that
Thermodynamics is inherently detail-independent, the heart can be thus be viewed
as a mechanical pump – the generator of pressure that drives blood through the
systemic and pulmonary circulations. The beat-to-beat pressure-volume work (W) of
the heart is relatively straightforward to measure experimentally. Given an ability to
measure, simultaneously, the accompanying heat production or oxygen consumption,
it is trivial to calculate the mechanical efficiency: ε = W/1H where 1H is the change of
enthalpy: (W + Q), Q representing the accompanying production of heat. But it is much
less straightforward to measure the thermodynamic efficiency: η = W/1GATP, where
1GATP signifies the Gibbs Free Energy of ATP hydrolysis. The difficulty arises because
of uncertain quantification of the substrate-dependent yield of ATP - conveniently
expressed as the P/O2 ratio. P/O2 ratios, originally (“classically”) inferred from thermal
studies, have been considerably reduced over the past several decades by re-analysis
of the stoichiometric coefficients separating sequential steps in the electron transport
system – in particular, dropping the requirement that the coefficients have integer values.
Since the early classical values are incompatible with the more recent estimates, we aim
to probe this discrepancy with a view to its reconciliation. Our probe consists of a simple,
thermodynamically constrained, algebraic model of cardiac mechano-energetics. Our
analysis fails to reconcile recent and classical estimates of PO2 ratios; hence, we are left
with a conundrum.

Keywords: thermodynamics, cardiac muscle, metabolism, myothermia, stoichiometry of mitochondrial ATP
production
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INTRODUCTION

Until early in the 21st Century, the accepted P/O2 ratio for the
oxidative phosphorylation of glucose had been 38 moles of ATP
per 6 moles of molecular oxygen, yielding a P/O2 ratio of 6.3.
The equivalent values for palmitate (the most prevalent saturated
fatty acid in the daily diet of the heart (Taegtmeyer et al., 2016)
had been 129 moles of ATP per 23 moles of molecular oxygen,
yielding a P/O2 ratio of 5.6. We refer to these as “classical”
estimates. Both were consistent with the existence of integer
values of the stoichiometric ratios separating consecutive steps in
the mitochondrial electron transport system. However, since that
time, there has accumulated an extensive literature detailing the
mitochondrial oxidation of glucose, in particular. It is now widely
accepted, to the point of adoption in undergraduate textbooks
[see, for example, Boron and Boulpaep (2009)], that the yield is
considerably less than the classical value given above. Glucose
oxidation is now thought to result in the generation of only 30
or 31, rather than 38, moles of ATP [for highly readable reviews,
see Rich (2003) or Salway (2004). The comparable value for
palmitate oxidation has been lowered from 129 to 104 (Salway,
2004)]. Since oxygen input (6 moles per mole of glucose, 24 moles
per mole of palmitate) has remained unchanged, while putative
ATP output has been reduced, the efficiency of cardiac recovery
metabolism must necessarily have diminished.

Our use of the phrase “recovery metabolism” reflects the
fact that the energy cost of a cardiac twitch comprises two
conceptually distinct but temporally contiguous components:
“initial metabolism” (I) and “recovery metabolism” (R). Initial
metabolism comprises the biochemical events that occur nearly
simultaneously with contraction: namely, the ATP hydrolysis-
funded cycling of actin-myosin cross-bridges and ion pumps,
and the rapid regeneration of ATP at the expense of a limited
pool of PCr. Recovery metabolism reflects the reversal of the
initial biochemical change: that is, the regeneration of PCr
by ATP via oxidative phosphorylation of metabolic substrates
in the mitochondria. Aerobic recovery metabolism is hence
the exclusive domain of the mitochondria. Any contribution
of non-mitochondrial recovery metabolism is quantitatively
unimportant in myocardial tissues. Indeed, it has been recognized
for over 60 years that lactate is readily metabolized by
the heart (Griggs et al., 1966; Chapman and Gibbs, 1974;
Drake-Holland et al., 1983).

In contrast to recovery metabolism, initial metabolism can
readily be divided into two further components: activation
and force development. Activation metabolism commences

Abbreviations: Glossary of symbols:1GATP , Gibbs free energy of ATP hydrolysis;
1H, change of enthalpy: (W + Q); HA, enthalpy of activating contraction;
HB, enthalpy of basal metabolism; HX−b, enthalpy arising from cross-bridge
cycling; Hmito, enthalpy of mitochondrial oxidative phosphorylation; 1HPCr ,
molar enthalpy change of creatine phosphate hydrolysis; δHx−b, extent of PCr
breakdown by cross-bridges x molar enthalpy change; W/1H: W/(W + Q), ε

mechanical efficiency; W/1G, η thermodynamic efficiency; I, initial metabolism;
Q, heat; QX−b, heat arising from cross-bridge cycling; QX−b(Isom), heat arising from
X-b cycling during the isometric phase of an auxotonic contraction; QX−b(Short),
heat arising from X-b cycling during the shortening phase of an auxotonic
contraction; R, recovery metabolism; r, ratio of recovery metabolism to initial
metabolism: R/I; W, work; X-b, cross-bridge.

immediately prior to force development and continues
throughout the contractile event; it funds sarcolemmal
excitation and sarcoplasmic reticular Ca2+- cycling – the
electrical and ionic events which, acting sequentially, achieve
excitation-contraction coupling.

It has been a long-standing challenge [commencing,
unsurprisingly, with early investigations by AV Hill and
colleagues using skeletal muscle (Hill, 1911, 1949; Hartree and
Hill, 1922, 1928)], with further refinement by Bugnard (1934),
to determine the ratio (r) of recovery metabolism (R) to initial
metabolism (I):

r = R/I (Eq. 1)

Whereas in amphibian skeletal muscle at 0◦C, as typically
utilized by Hill and colleagues, these two components are
temporally distinct, such is not the case for cardiac muscle
experiments performed between room temperature and body
temperature, where other methods of separation, applicable to
the thermometric technique, must be employed. Thus Mast
et al. (1990), utilizing data previously published by Mast
and Elzinga (1988), which had arisen from measurements of
heat production by rabbit right-ventricular papillary muscles
undergoing brief trains of isometric contractions at 20◦C,
developed a numerical correction procedure. This deconvolution
procedure quantified recovery heat production that had occurred
during the antecedent brief period of activity, in addition to the
“pure” recovery heat observed during the subsequent exponential
decline of muscle heat production to its supra-basal value.

It is important to emphasize that the separation of initial and
recovery heat using the deconvolution technique was achieved
by eliciting a brief train of twitches, with the accompanying
heat production being recorded by rapid-response “flat-bed”
thermopiles. What we now describe is a method that can be
applied using data arising from steady-state contractions in a
flow-through microcalorimeter (Taberner et al., 2005, 2011, 2018;
Han et al., 2009; Johnston et al., 2015). The method, based
on a straightforward algebraic model, yields estimates of the
thermodynamic efficiencies of both cross-bridge cycling and
mitochondrial ATP production, thereby allowing us to quantify
the aforementioned difference between “classical” estimates of
mitochondrial efficiency and more recent ones that admit non-
integer mitochondrial stoichiometric coefficients.

In order to pursue that objective, we present a simple,
thermodynamically consistent, algebraic model. The model aims
to allow calculation of substrate-dependent P/O2 ratios, thereby
permitting comparison with the current ratios detailed above.

METHODS AND RESULTS

Since no animals were used, this study is exempt from animal
ethical considerations.

We commence by defining conceptually and experimentally
distinct components of overall enthalpy production (1HO):

1HO = 1HB + 1HA + 1HX−b + 1Hmito (Eq. 2)
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FIGURE 1 | Conceptual basis of overall cardiac enthalpy output as a function
of afterload. QB and QA define basal and activation heat, respectively. Heat
from cross-bridge cycling in isolated cardiac muscle preparations arises from
two distinct temporal phases: isometric [QX−b(Isom)] and reduction of filament
overlap [QX−b(short )] corresponding, respectively, to the isovolumic and
auxotonic phases of contraction of the heart in vivo. W denotes cross-bridge
work. [Modified from Tran et al. (2017) under the aegis of the Rights
Link R©-Copyright Clearance Center; Account Number: 3000104389; License
Number: 4678431442941].

The first three variables are the enthalpy outputs arising
from basal metabolism, activation and cross-bridge cycling,
respectively. The enthalpy from the first two of those appears
entirely as heat (denoted “Q” in Figure 1) whereas enthalpy
from cross-bridge cycling can appear as both heat and
mechanical work.

The further separation of “isometric heat” [QX−b(Isom)]
and “shortening heat” [QX−b(Short)] (Figure 1) is again purely
conceptual, reflecting the fact that, in the beating heart,
a period of isovolumic contraction necessarily precedes a
period of auxotonic shortening. No fundamental difference of
cross-bridge energetics between the isometric and shortening
phases is implied.

We next capitalize on an experimentally straightforward
simplification. It is trivial to “null” the basal enthalpy
contribution (1HB; Eq. 2) electrically when making thermal
measurements. When this is done, the magnitude of initial
enthalpy production (1HA +1HX−b) is revealed.

As foreshadowed above, initial enthalpy can be further
separated into its underlying components, activation enthalpy
and cross-bridge enthalpy, by use of a suitable inhibitor of cross-
bridge cycling. This has recently been achieved in cardiac muscle
by Tran et al. (2017) and by Pham et al. (2017) using the
agent blebbistatin, the effectiveness of which had previously been
demonstrated in skeletal muscle (Barclay, 2012). Blebbistatin was
chosen because it: (i) achieves complete inhibition of cross-bridge
turnover (Kovács et al., 2004; Allingham et al., 2005), (ii) does not
affect excitation-contraction coupling (Farman et al., 2008), and
(iii) does not affect the Ca2+-sensitivity of the contractile proteins
(Dou et al., 2007). Using this cross-bridge inhibitor, Pham et al.
(2017) found activation enthalpy to be both length-independent

and force-independent (see Figure 1). These findings allow
unambiguous quantification of 1HX−b at any given afterload. In
the following, we focus on the afterload that maximizes cross-
bridge efficiency since it too, is equally unambiguous.

Experimental quantification of cross-bridge heat (QX−b)
and cross-bridge work (W) defines cross-bridge enthalpy
(δHX−b), thereby allowing definition of macroscopic cross-bridge
efficiency (εX−b):

εX−b =
W

W + QX−b
≡

W
δHx−b

(Eq. 3)

where δHx−b is the enthalpy change, as heat plus work, associated
with cross-bridge cycling. It arises from the net breakdown of
PCr, subsequent to the hydrolysis of ATP, which powers cross-
bridge cycling, and the subsequent rapid buffering of ATP at the
expense of PCr by the creatine kinase reaction, and is distinct
from overall efficiency (εo):

εo =
W

W + QX−b + Qmito
(Eq. 4)

The biochemical correlate of the expenditure of cross-bridge
enthalpy is the production of ADP and Pi which, in the
presence of PCr, regenerates ATP with rapid kinetics. But the
concentration of PCr in cardiac myocytes is modest (of the
order of 20–30 mmol L−1) so that work can be sustained only
briefly from this source of ATP (see Figure 2A). That is, in the
absence of recovery metabolism, cross-bridge cycling has but a
brief existence.

Our aim is to estimate the thermodynamic efficiency of cross-
bridge cycling (ηX−b), which does not depend on the enthalpy
of phosphocreatine, HPCr, but rather on the Gibbs Free Energy
of ATP (1GATP), a variable whose numeric value cannot be
measured by thermometric or calorimetric means:

ηX−b ≡
W

1GATP
=

W
1HX−b

1HPCr

1GATP
= εXb

1HPCr

1GATP
(Eq. 5)

where1HPCr and1GATP are molar values, and where

1GATP = 1Go
ATP + RT ln (

[ADP] [Pi]
[ATP]

), (Eq. 6)

as shown in the Legend of Figure 2. We now capitalize on an
insight due to Wilkie (1974):

ηo = ηX−b · ηmito (Eq. 7)

where the subscript “o” again signifies “overall,” indicating the
combined thermodynamic efficiencies of cross-bridge cycling
and mitochondrial oxidative phosphorylation operating in series.

We next exploit a fortuitous approximation: the difference
in magnitudes between 1H and 1G for the oxidative
metabolism of each of carbohydrates, fatty acids and alcohol is
negligible (Battley, 2002). The validity of this approximation is
demonstrated in Table 1, where the rightmost column expresses
the difference in magnitudes of enthalpy and Gibbs free energy,
as a percentage of the former, for selected common metabolites.

Since the average difference of the entries in the right-most
column of Table 1 is −0.05%, it is evident that 1GS ≈ 1HS,
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FIGURE 2 | Events underlying cross-bridge metabolism. (A) The creatine-phosphokinase (Lohmann) reaction. Note the relative independence of ATP and PCr
concentrations until the latter is nearly exhausted [based on Figure 4.2, Page 142 of Woledge et al. (1985)] (B) The Gibbs Free Energy of ATP hydrolysis as a function
of the progressively increasing concentration of inorganic phosphate (Pi) in the absence of mitochondrial function, reflecting events shown in (A):
GATP = 1Go

+ RT ln([ADP] [Pi] /[ATP]), where the Standard Gibbs Free Energy of ATP hydrolysis, Go
ATP = −30 kJ/mol, R is the Universal Gas Constant

(8.31 kJ/mol), T is absolute temperature (310 K), and [ATP] and [ADP] are assumed to be 5 mmol/L and 1 µmol/L, respectively, under steady-state conditions of
twitch force production. (Note the inverse scale on the ordinate).

where the subscript “S” denotes “substrate.” Hence, Eq. 7 can be
re-expressed as:

ηo = ηX−b ηmito or ηmito ≈
εo

ηX−b
(Eq. 8)

where εo signifies macroscopic overall efficiency.

But ηX−b =
1HPCr

1GATP
εX−b & ηmito =

εo

εX−b

1GATP

1HPCr

so ηXb =
εX−b

εo

1HX−b +Hmito

1HX−b
(Eq. 9)

thus
εX−b

εo
= 1+

1Hmito

1HX−b
= 1 + r, since r =

1Hmito

1HX−b

(Eq. 10)

TABLE 1 | Difference between Ho and Go for the oxidative metabolism of
common metabolites at 25◦C.

Metabolite 1Ho (kJ/mol) 1Go (kJ/mol) Percentage

Acetic acid −874.54 −874.30 0.03

Glucose −2803.03 −2881.26 −2.79

Ethanol −1366.83 −1325.32 3.04

Glycerol −1655.40 −1654.46 0.06

Sucrose −5640.87 −5784.20 −2.54

Palmitic acid −9977.83 −9789.70 1.89

Data selected from Table 6 of Battley (2002). The right-most column expresses the
percentage difference between the enthalpy and Gibbs free energy for selected
metabolites at 298.15 K.

Hence, ηmito
1

1+ r
1GATP

1HPCr
(Eq. 11)

It is clear from Eq. 11 that estimation of the thermodynamic
efficiency of recovery metabolism requires numeric estimates
of r, GATP, and HPCr. Very few estimates of r arising from
experiments on cardiac muscle have been published. But those
of which we are aware have all utilized the method developed
by Woledge and described above (Mast et al., 1990). Using this
technique during either single twitches or trains of ten twitches
at a stimulation rate of 0.2 Hz in rabbit right-ventricular papillary
muscles, these authors found the value of r to be 1.18 at 20◦C.
Using comparable techniques on mouse left-ventricular papillary
muscles undergoing isovelocity contractions at 30◦C, values of
1.16 Barclay et al. (2003) and 1.20 (Barclay and Widén, 2010)
have subsequently been reported. Given the closeness of these
three independent estimates, we have adopted their average
value: r = 1.18.

The stoichiometry of ATP synthesis from PCr
hydrolysis, is 1:1 and the best estimate of its enthalpy
output, achieved using microcalorimetry, with both acid
hydrolysis and enzymatic hydrolysis of PCr, is 35 kJ mol−1

(Woledge and Reilly, 1988).
Our best estimate of the Gibbs Free Energy of ATP

hydrolysis, under conditions prevailing in the myocardium,
probably remains that of Kammermeier et al. (1982): 60 kJ
mol−1, arising from experiments performed on isolated,
perfused, electrically paced female Sprague-Dawley rat
hearts subjected to biochemical analyses of high-energy
phosphates following rapid freezing. This early value
remains in remarkable agreement with the more recent
determination of 59.7 kJ mol−1, arising from in situ ATP flux
measurements recorded in 17 healthy human hearts of either
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FIGURE 3 | Overall efficiency as a function of relative afterload. Average data
from 56 rat left-ventricular trabecula at 32◦C. Peak overall efficiency (0.155)
occurred at a relative afterload of 0.45. Inset: data from a single representative
trabecula; data fitted by cubic regression. [Figure modified from Tran et al.
(2016) under the aegis of the Rights Link R©-Copyright Clearance Center;
Permission received from The American Physiological Society].

sex using the technique of magnetic resonance spectroscopy
(Weiss et al., 2005).

Given these three required parameter values, Eq. 11
immediately returns:

ηR ≈
1

1+ 1.18
·

60kJ
mol
35kJ
mol

≈ 0.786 (Eq. 12)

In order to calculate cross-bridge thermodynamic efficiency,
we turn to data published by Tran et al. (2016) arising from
experiments performed at 32◦C using left-ventricular trabecula
from Dahl salt-sensitive rats and their congenic controls. These
authors apportioned 56 animals into four equal-size cohorts fed
on either high- or low-salt diets. Since there were no differences
of efficiency among the four groups, the results were averaged and
displayed in Figure 3, where the mean peak value of εX−b ± SEM
was found to be 0.155± 0.059.

Given that ηX−b = εo/ηmito (Eq. 8), it follows that the
thermodynamic efficiency of cross-bridge work performance,
(ηX−b), is 0.155/0.786 or 0.20.

With estimates provided for the thermodynamic efficiencies
of both cross-bridge energy expenditure (0.20, Figure 3) and
mitochondrial energy expenditure (0.79, Eq. 12), we present
a pictorial summary of overall thermodynamic efficiencies
of cross-bridge cycling and resulting mitochondrial oxidative
phosphorylation in Figure 4.

DISCUSSION

In order to focus on the uncertain link in the chain of events
commencing with excitation-contraction and culminating with
metabolic restoration of ATP, we have developed a simple
and straightforward algebraic model. The model enables the
separation and quantification of the thermodynamic efficiencies
of cross-bridge cycling and attendant mitochondrial oxidative
phosphorylation.

Critique of the Model
Whereas it contains no assumptions, the model does exploit
two approximations: (i) the ratio of heat produced by the
mitochondria to heat generated by cross-bridge cycling is 1.18
(the mean of three values reported in the Literature) and (ii)
the quantitative differences between the enthalpies and Gibbs
free energies of oxidation of common metabolic substrates
is sufficiently small that they may be ignored (Table 1).
Furthermore, with a single exception (Weiss et al., 2005), its
parameter values gleaned from the literature pertain to rodent
(rat or mouse) myocardial tissues. With these caveats, we
conclude that the maximum thermodynamic efficiency of work
generation by the myocardium (ηo) is a modest 16%. This implies
(see Figure 4) that cross-bridges convert 20% of the free energy
from ATP hydrolysis into work and mitochondrial oxidation
transfers 80% of the free energy available in metabolic substrates
into free energy in the form of ATP.

It is important to stress that the value of 20% efficiency is
restricted to mechanical (i.e., cross-bridge) performance only.
As shown schematically in Figure 1, it explicitly excludes both
the basal and activation components. Inclusion of these two
“overhead” metabolic costs, neither of which directly funds
cross-bridge cycling, would, of course, reduce the overall
thermodynamic efficiency of the heart even further – perhaps
by as much as 40–50%. Nevertheless, our finding of 16% for
the overall efficiency of cross-bridge cycling (εo) aligns well
with the seminal values reported by Gibbs et al. (1967) for
rabbit right-ventricular papillary muscles: 16% to 19%, and
by Neely et al. (1967) for isolated, perfused, rat whole-heart
preparations: 16% to 17%. Note that both of these estimates
differ greatly from the “isoefficiency” value of 40% promoted by
Khalafbeigui et al. (1979), Suga et al. (1980, 1981, 1986), Suga
(1979, 1990), but which was based on a conceptual error, as
revealed by Han et al. (2012).

Error Analysis of the Model
A rigorous examination of the susceptibility of a numeric model
to the value of its parameters can be achieved through a formal
Error Analysis. Appendix 1 provides the relevant derivation and
shows a small sample of results. Since there is a total of five input
parameters [denoted by subscripted values of putative fractional
errors (f ), each of which has only a single constraint (f ≥ 0)], an
infinite number of Fractional Errors of Measurement are available
to be modeled. Of the five input parameters, fPCr may be the
most likely to be in error given that its nominal value (35 kJ/mol)
was obtained using a bicarbonate buffer (Woledge and Reilly,
1988), prior to the discovery of Na+-HCO3

− exchangers resident
in the sarcolemmal membranes of cardiac myocytes, However,
with respect to any potential Error of Estimate arising from
this source, the authors of the study state: “In this solution
HCO3

− will provide approximately 17% of the internal buffer
capacity. This will have the effect of increasing the value of –
1Hob, by 1 kJ mol−1” - or an uncertainty of less than 3%
in that parameter.

Furthermore, as shown in Appendix Figure A1(A), even in
a worst-case scenario, with Errors of Measurement of twice the
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FIGURE 4 | Summary of overall “classical” thermodynamics of cardiac energetics. The right-hand orange arrow denotes the production of ATP via the Lohman
reaction, which comprises cross-bridge enthalpy production (as shown in Figure 2B). The left-hand orange arrow denotes mitochondrial metabolism in which n
moles of metabolic substrate are oxidizsed to provide sufficient Gibbs free energy to produce n moles of ATP to fund cross-bridge cycling. Overall thermodynamic
efficiency (0.16) is calculated as the product of mitochondrial and cross-bridge thermodynamic efficiencies; 0.8 and 0.2, respectively. [Modified from Barclay (2017)
under the aegis of Rights Link R©-Copyright Clearance Center: permission received from John Wiley and Sons].

magnitude given above in each of r, 1GATP, and 1HPCr , the
Error of Estimate in R would be unlikely to exceed 10%, This
would translate to an ATP yield of 35 molATP per molglucose,
still considerably greater than recent estimates arising from
mitochondrial experiments, thereby again underscoring the
“classical-mitochondrial” difference.

Appendix Figure A1(B) shows that the Error of Estimate of
Initial Metabolism (I) is comparatively insensitive to errors of
estimate of its input parameters (Work and Heat).

Relative Insensitivity of εo to
Hypertension
Using the microcalorimetric technique, no difference has been
found in overall cross-bridge efficiency between trabecula
isolated from left and right ventricles of healthy rats at either
room temperature (Han et al., 2013) or body temperature
(Pham et al., 2017). These results in healthy cardiac tissues
have been largely duplicated in heart failure models. Thus
Han et al. (2014) found no difference of εo between trabecula
dissected from the left ventricles of streptozoticin-induced
Type I diabetic rats and their untreated controls. Nor were
differences revealed among trabecula from Dahl salt-sensitive
rats and their congenic controls, whether fed low- or high-salt
diets (Tran et al., 2016). Similar results obtained in trabecula
from both ventricles of hearts in which pulmonary arterial
hypertension had been induced by injection of monocrotaline
and untreated control trabecula (Pham et al., 2018). Hence, in
each of these models overall cardiac function was compromised
but the energetics of cycling cross-bridges and the associated
mitochondrial energy supply were unaffected. In fact, the only
hypertension-sensitive difference appeared in trabecula from

spontaneously hypertensive (SHR) animals where overall cross-
bridge efficiency was lower in trabecula from both failing
and non-failing hearts than in those of age-matched control
animals. Whereas this list is far from comprehensive, the contrast
between the results of a naturally arising model (SHR), and
those of three unrelated experimentally induced heart failure
models, is intriguing.

Entropy Production
The modest value of thermodynamic efficiency of cross-bridge
cycling (20%) shown in Figure 4 implies a high rate of entropy
production. This implication is qualitatively consistent with
the conceptual “energy well” picture proffered by TL Hill and
colleagues (Hill, 1974; Eisenberg and Hill, 1979; Eisenberg et al.,
1980), and subsequently exploited by Barclay (1999). Under any
of these authors’ formulations, potential Gibbs Free Energy of
ATP hydrolysis remains necessarily unused whenever a cross-
bridge either attaches belatedly or detaches prematurely, rather
than traversing the full descent of its parabolic Free Energy
profile. Hence, by the Second Law: -1HATP =1GATP + T1SATP,
the entropy (1S) so produced cannot subsequently be exchanged
(Chapman and Loiselle, 2016), thereby demonstrating that the
hydrolysis of an ATP molecule by actomyosin (Figure 2B) is
an irreversible process – a conclusion reached earlier by use
of a thermodynamically constrained mathematical model of the
cross-bridge cycle (Loiselle et al., 2010).

In contrast to the production of entropy by cross-bridge
cycling, our model predicts that the extent of inefficiency
attributable to mitochondrial oxidative phosphorylation of
metabolic substrates is modest; its primary source is likely to
be leakage of protons back across the inner mitochondrial
membrane, without contributing to ATP production via the
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electron transport system. An early calculation (Loiselle, 1987)
suggested that this source may contribute upward of 5 mW
g−1 to the basal component of total enthalpy production
(Figure 1). This speculative result has subsequently been
extensively investigated by Brand et al. (1994) who concluded
that the increased rates of oxygen consumption at high proton
motive force could be attributed to this source and that it further
contributes to the basal metabolic rate of homeotherms (Brand,
1990; Porter and Brand, 1993; Rolfe and Brand, 1996).

Mitochondrial P/O2 Ratios
The prediction of a modest extent (20%) of inefficiency
attributable to recovery metabolism warrants further
investigation. We commence by noting that, given any value of r
(the ratio of recovery metabolism to initial metabolism, Eq. 1),
then the P/O2 ratio, p, can be calculated as:

p =
1HS

1HPCr(r + 1)
(Eq. 13)

where 1HS is the substrate enthalpy per mole of oxygen
consumption. Early (mid-20th Century) experiments returned
values for p in the vicinity of 6.3 for NADH-linked metabolites
[for a comprehensive Review, see Table 1 of Hinkle (2005)]. This
is the value that we previously labeled “classical.” As detailed
above, with glucose as substrate, it generates a stoichiometric
ratio of some 37–38 molecules of ATP per mole of O2. With
palmitate as substrate, the classical value is 129 molecules of
ATP per mole of O2. The equivalent current values are 30 and
104, respectively.

What value of p is consistent with our estimate of ηmito? If
ηmito = 0.8, then 80% of 1HS is transferred to 1G in ATP.
In that case, then the ATP yield, per mole of glucose, would
be 2802 × 0.8/60 or 37.3. This value is consistent with the
classical, rather than recent, estimates of P/O2 ratios. Is it possible
that discrepancies of this magnitude prevailed in the muscles
considered in the current investigation but were obscured by
experimental uncertainties? One way in which ηATP could be
overestimated is if the assumed value of 1GATP were too low.
However, if nATP were 30 instead of 38, then 1GATP would have
to be an unrealistically high 76 kJ mol−1 to account for ηmito of
0.8. Recall (see Results) its re-measured and, re-confirmed, value
of 59.7 kJ mol−1 in human hearts in situ (Weiss et al., 2005).

A second factor to consider (see Eq. 13) is the substrate
enthalpies. Might the classical value (2800 kJ mol−1) for
glucose have been overestimated? Using the technique of
adiabatic calorimetry, Kabo et al. (2013) found the enthalpy
of α-D-glucose to be 2802.4 kJ mol−1. This value is in
remarkable accord with that of 2803.03 kJ mol−1 calculated by
Battley (2002). Thus, if the Gibbs Free Energy of cytoplasmic
ATP is 60 kJ mol−1, there would be sufficient energy
to generate 2803 × 0.8/60 or 37.4 ATP molecules per
mole of glucose – a value consistent with the theoretical
limit of 37–38.

Comparable stoichiometric concerns obtain for the
mitochondrial oxidation of palmitate. Salway (2004) details
how the classical value of 129 molecules of ATP per

FIGURE 5 | The dependence on the P/O2 ratio of the ratio of recovery heat to
initial heat (R/I) and recovery efficiency (εR). R/I values are scaled by the
left-hand y-axis and εR by the right-hand y- axis. The horizontal dashed lines
indicate the range of reported R/I values for cardiac muscle; that range
corresponds to P/O2 values from approximately 6 to 6.2, indicated by the
vertical dashed lines. That range of P/O2 values, in turn, is consistent with εR

values of 0.77 to 0.79, as indicated by the intersection of the vertical dashed
lines and the curve relating the P/O2 dependence of εR. If ATP yield were
approximately 30 ATP/glucose, then P/O2 would be 5 which would
correspond to R/I and εR values of 1.7 and 0.64, respectively.

mole of palmitate reduces to a value of 104 when non-
integral values for intermediate steps in the mitochondrial
sequence are allowed. However, Levine et al. (2014),
using the technique of differential scanning calorimetry,
reported the enthalpy of oxidation of methyl palmitate
to be 10694 kJ mol−1. Correction for the presence
of the methyl group, and multiplication by 0.8/60 (as
above), would yield 142.6 ATP per mole, a value readily
accommodating the theoretical maximum of 129 molecules
of ATP per mole.

The third factor with potential to affect the estimated ATP
yield is the value of r. If nATP were actually 30 instead
of 38 for glucose oxidation, then the amount of substrate
oxidized, and recovery heat produced, would have to be
38/30 or 1.27–times greater than assumed by acceptance
of the average measured value of r = 1.18. That is, r
would have to be 1.52, a value that greatly exceeds the
upper 95% confidence limit arising from its experimental
determinations of∼1.22 (Barclay et al., 2003). The consequences
of changed values of any of these three factors are displayed
in Figure 5.

What could bring clarity to these disparities would be
a study designed to investigate the issue by simultaneous
measurement of heat production and oxygen consumption.
Fortunately, such a study has been performed, albeit in
skeletal muscle. Nevertheless, given the similarity of the
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cellular machinery between cardiac and skeletal muscles, we
turn attention to the results of Mahler (1979) who, using
Sartorius muscles from Rana pipiens.” at 20◦C, compared
the suprabasal rate of oxygen consumption during recovery
from brief tetani (0.2, 0.5, and 1.0 s) with the amount of
ATP hydrolyzed (measured indirectly as the decrement of PCr
concentration) during the same period. The mean ratio of the
PCr decrement to the amount of suprabasal oxygen consumed,
subsequently shown to obey first-order kinetics (Mahler, 1985),
thereby simplifying interpretation, averaged over a total of
62 tetani, was 6.58 ± 0.55 – consistent with the “classical”
P/O2 value of 6.3.

In support of this convincing finding, Lou et al. (2000)
made simultaneous measurements (at 19◦C) of heat production
and oxygen consumption, measured polarographically, during
metabolic recovery of 10 bundles of white fibers from the
dogfish. Their reported value for recovery metabolism of 84%
in these skeletal muscle preparations echoes ours of 80% in
cardiac muscle – in accord with the “classical” values, but again
at variance with more recent estimates that yield non-integer
stoichiometric coefficients.

Non-integer stoichiometric coefficients are most commonly
attributed to “proton leakage.” Mazat et al. (2013) provide
a comprehensive discussion of this issue, emphasizing
especially passive proton leak (a consequence of non-zero
membrane conductance), and the role of uncoupling proteins,
but considering also “slip” or “intrinsic uncoupling” as a
consequence of a decrease in the efficiency of proton pumps.
In a similar vein, van der Zwaard (2016) offer the timely
reminder that mitochondrial inhibition may be caused by
either nitric oxide production or by “methodological issues
related to permeabilizing procedures or isolation.” The
latter, of course, is not limited to mitochondrial isolation;
cardiac preparations (especially minute trabecula) can
likewise be unwittingly damaged during isolation. In any
case it does not seem to be unreasonable to suggest that
the higher temperature at which mitochondrial experiments
are conducted [37◦C; see, for example (Pham et al., 2014)
and accompanying commentary (Patel and McDonough,
2014)] vis-à-vis thermometric experiments (20–30◦C; see
section “Introduction”) may have the unintended result that
proton leakage is maximized under the former condition,
thereby contributing to the disparity between “classical” and
“mitochondrial” estimates of thermodynamic efficiency of
cross-bridge cycling.

An Unresolved Issue Underling
Mathematical Modeling of Cross-Bridge
Energetics
In order for any mathematical model (independent of its
complexity) in which the cross-bridge passes through a series of
states from “unattached” to “detached” to be thermodynamically
constrained, it must obey the following relation (Hill, 1989):∏

i f+∏
i f−
= e1GATP/RT (Eq. 14)

That is, the ratio of the product of all forward reactions (f+)
to the product of all reverse reactions (f−) is constrained by the
Gibbs Free Energy of ATP hydrolysis (see Eq. 6). But despite the
results of Mahler (1985) and Lou et al. (2000) there remains no
agreement between the “Classical” and “Mitochondrial” values of
1GATP. As noted above, if nATP were 30 (in concert with modern
“Mitochondrial” estimates) instead of 38, then 1GATP would
have to be an unrealistically high 76 kJ mol−1 (instead of the
“Classical” value of 60 kJ/mol, in order to account for ηmito of 0.8
as predicted by our simple model (Figure 4). Clearly, the yawning
difference between these two estimates of nATP and, consequently,
the numeric value of 1GATP casts uncertainty on the accuracy of
all mathematical models of the cross-bridge cycle.

Summary
Using a simple algebraic model, containing only three
parameters (r, 1HPCr , and 1GATP), each of which
has been experimentally well-attested, we find that the
thermodynamic efficiency of cross-bridge cycling is 20%,
while that of mitochondrial oxidative phosphorylation is
80%, giving a value of 16% for overall thermodynamic
efficiency of the mechanical activity of the heart. We show
that the latter value is consistent with those measured in
experiments undertaken using flow-through microcalorimetry.
Nevertheless, we are left with a biophysical-biochemical
conundrum. We are unable to reconcile the discrepancy
between “Classical” (i.e., thermodynamically constrained)
and “Mitochondrial” (i.e., stoichiometrically unconstrained)
P/O2 ratios – a situation that prevents full thermodynamic
understanding of the cascade of events comprising
the cardiac twitch.
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APPENDIX

It is required to determine the Errors of Estimate of R and I. To that end, we define f as the fractional error in each component of R
and I. For example, if f = 0.1, then the measurement error of1HPCr is expressed as 48± 4.8 J mol−1.

The Error of Estimate of ηR is given by:√√√√(
∂ηR
∂r f · r

)2
+

(
∂ηR

∂1GATP
f ·1GATP

)2
+

(
∂ηR

∂1HPCr
f ·1HPCr

)2

where the nominal values of r,1GATP, and1HPCr are 1.2, 60, and 48, respectively (see Text).
The Error of Estimate of ηI is given by: √(

∂ηI

∂W
f ·W

)2
+

(
∂ηI

∂Q
f · Q

)2

where the numeric values of W and Q arise from the original data used to construct Figure 3 and are 1.4625 and 7.6780, respectively
(Tran et al., 2016).

APPENDIX A1 | Relative Errors of Estimate of Recovery Metabolism (R). (A) Relative error in Recovery Metabolism attributable singly to r (red), 1GATP (green), 1HPCr

(orange) and collectively to all three input terms (blue). (B) Relative error in Initial Metabolism attributable to Work (purple), Heat (black) and collectively to both (red).
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