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Editorial 

Precision requirements in stereotactic arrhythmia radioablation for ventricular tachycardia 

The desire for high precision in stereotactic body radiotherapy 
(SBRT) is ingrained in the radiotherapy community, covering all the 
usual steps of a course of treatment [1–3]. However, increased precision 
often comes at the cost of increased complexity and resource con-
sumption. At first glance, clinical outcomes after SBRT appear similar 
with either passive (internal target volume) or active (gating and 
tracking) motion management strategies, e.g., for peripheral lung tu-
mours [4]. Upon closer scrutiny, differences in local tumour control and 
organ-at-risk doses, and thus potential toxicity between active and 
passive motion management strategies, can be observed for upper 
abdominal tumours where motion is generally more pronounced [5]. If 
treatment precision is strongly desired and active motion management 
such as tracking [6] or gating with breath hold [7,8] is unavailable or 
impractical, several options can be explored to enhance passive motion 
management strategies such as abdominal compression (AC) [8,9] and 
online plan adaptation [10,11]. Recently, lessons from SBRT of solid 
tumours have been translated into the cardiology realm to tackle 
another socioeconomic concerning disease, cardiac arrhythmias, by 
delivering SBRT to the heart in a novel treatment called STereotactic 
Arrhythmia Radioablation (STAR), also referred to as cardiac radio-
ablation or cardiac SBRT. Given our prior knowledge from conventional 
SBRT, our current understanding of the radiosensitivity of the heart and 
the fact that the heart exhibits potentially the most complex motion in 
the human body, the required treatment precision for STAR is naturally 
an important consideration for the radiotherapy community. 

In this volume of the journal, Mannerberg et al. [12] describe the 
potential use of AC as a motion management tool for STAR. Using a 
cohort of 18 lung cancer patients, the authors use 4D computed to-
mography to assess the utility of abdominal compression for decreasing 
the breathing component of the heart motion. A reduction of median 
respiratory heart motion of 1–3 mm in superior-inferior direction was 
observed with AC. This work contributes to our understanding of the 
suitability of applying oncology motion management techniques to 
STAR. In the wider context, this work also highlights questions such as 
what precision is required for STAR and how much effort we must we 
put into motion management. 

Firstly, one must consider the clinical condition of patients being 
treated with STAR and their treatment alternatives. Ventricular tachy-
cardia (VT) is a severe life-threatening cardiac arrhythmia condition 
arising mainly from structural heart disease [13]. Patients are primarily 
treated with antiarrhythmic drugs and often receive an implantable 
cardioverter defibrillator to detect and terminate the VT through anti- 
tachycardia pacing (ATP) or defibrillation shocks [13,14]. Invasive 
catheter ablation by means of endo- and/or epicardial localization and 
disruption of the underlying arrhythmogenic substrate is the standard of 

care for patients with refractory VT [15]. However, antiarrhythmic 
drugs and catheter ablation come with significant risks of pharmaco-
logical toxicities, procedure complications, and VT recurrences 
requiring repeat interventional procedures in 20–50 % of the patients 
[16]. Additionally, catheter ablation may suffer from limitations con-
cerning the depth and accessibility of the targeted arrhythmogenic 
substrate. STAR has most commonly been used to treat patients with 
continued refractory VT and limited treatment options [17] and in 
systematic reviews and meta-analyses promising safety profiles and re-
ductions of more than 85 % of the VT burden have been reported [18, 
19]. However, to date, STAR treatments have utilized varying technol-
ogies and methodologies [17–21], creating heterogeneous cohorts with 
potentially varying treatment delivery precision, making it difficult to 
fully understand the risk-safety profile of this new treatment. This 
highlights the need for a better understanding regarding the choice of 
optimal technology and methodology for this new and novel treatment 
and the desire for future technique harmonization and standardization 
[17]. 

The technical requirements for STAR treatments are very similar to 
routine lung SBRT but additional considerations are necessary; electro- 
anatomical mapping and scar imaging are required for target volume 
definition [20,21], cardiac vital signs may need to be continuously 
monitored during treatment, and cardiac target motion must be appro-
priately managed [20,22]. The application of a single fraction radio-
therapy dose to the arrhythmogenic substrate, generally following 
prescriptions of 25 Gy [17], is also very different from treating tumours 
from a radiobiological standpoint. Two main mechanisms, after high 
dose radiation in the heart, were identified in preclinical experiments: 
(1) vacuolization, fibrosis and necrosis after doses exceeding 30 Gy 
[23,24], and (2) protein changes due to notch activation resulting in 
increased conduction velocity [25,26]. Clinically, patients may respond 
to STAR within a few days showing no fibrosis in the treated area 
[25,27,28] or up to weeks and months later with small pathological 
lesions [29,30]. Further understanding of these complex interactions 
and variable treatment effects may eventually lead to different concepts 
and requirements for target definition, treatment planning and treat-
ment precision. Interestingly, while STAR is showing promising clinical 
results in VT patients with structural heart damage, dose to the heart is 
otherwise minimized in thoracic radiotherapy as it is linked to car-
diotoxicity and reduced survival in oncological cohorts [31,32]. 

Given the current uncertain radiobiology underpinning STAR treat-
ments, the required treatment precision probably depends on the indi-
vidual patient. Clinically, it is important to consider the treatment 
urgency (cardiac storm for an intubated patient vs. infrequent VT for an 
ambulatory patient), the patients’ general condition (age, underlying 
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heart disease, ejection fraction, lung function, comorbidities, etc.) and 
the size and location of the arrhythmogenic substrate especially with 
respect to serial risk organs like oesophagus and stomach, among other 
factors. Technically, this translates into varying precision requirements 
for target volume definition, motion management and treatment de-
livery. For target definition, the question arises what to specifically treat 
(e.g., the whole scar or only the precisely defined VT substrate) and what 
biological mechanism of STAR should be targeted. Inter-observer tar-
geting agreement is consequently poor [33,34] and requirements for the 
necessary precision of TV contouring are therefore challenging to define. 
Nevertheless, our technical methods of transporting target concepts 
from the electrophysiology domain into the radiation oncology domain 
should be strictly within SBRT precision requirements [21,35,36]. 

For motion management and treatment delivery, several possibilities 
have been explored for STAR. To date, the most used motion manage-
ment technique is the passive combined cardio-respiratory internal 
target volume approach [17,20]. Target motion is often smaller in VT 
patients than that observed in abdominothoracic SBRT due to their 
cardiac impairment and the often-fragile conditions that typically 
manifest through a low left-ventricular ejection fraction [22]. Simple 
and easily implemented motion mitigation techniques are therefore 
applicable in the patient population to whom STAR is currently most 
commonly being offered. AC can be considered to reduce respiratory 
motion, however patient compliance is often challenging, and extra 
cardiac critical structures might be pushed closer to the heart [37]. 
Furthermore, reductions in respiratory motion amplitudes through AC 
were generally small in VT patients [38] or surrogate cohorts [12] and 
assessment of AC suitability for individual patients is strongly advised. 
Again, it should be emphasised that surrogate cohorts that do not 
contain patients with an ischemic heart disease situation are prone to 
overestimating the impact of cardiorespiratory motion relative to 
currently treated VT patients. If STAR targets are close to critical 
structures and/or exhibit large motion, active respiratory motion man-
agement techniques such as gating, deep-inspiration breath-holds or 
tracking [20,29] may be necessary to achieve higher treatment delivery 
precision and targeting. Feasibility of respiratory gating based on cine 
MR imaging on a low field MR linear accelerator was tested on a single 
patient [39]. A reduction of the treated volume by more than a factor of 
two could be achieved. High-field MR-linac systems have shown their 
potential for enhanced STAR targeting utilizing cardiac MRI [40] as well 
as active cardiorespiratory motion mitigation through combinations of 
respiratory tracking and cardiac gating [41]. 

Treatment precision requirements and the need for more complex 
active motion management are thought to be higher in STAR treatments 
for atrial fibrillation (AF) than VT, likely contributing to the relatively 
lower clinical uptake and success of STAR for AF [42,43]. Reasons for 
this include the combination of target motion complexity, target motion 
magnitude and target proximity to critical structures [43], as well as 
differing antiarrhythmic radiobiology mechanisms and requirements, 
and the favourable life expectancy and health of the AF patient cohort 
[42]. The risk–benefit profile for treating benign AF with STAR therefore 
leans towards ensuring safety, particularly considering current knowl-
edge gaps regarding treatment toxicities. 

Currently there does not seem to be a simple answer regarding how 
precise STAR treatments must be. Required treatment precision and 
safety margins for STAR depend on many different variables including 
clinical goals and target characteristics and there are also many un-
knowns and knowledge gaps, substantiating important future research 
opportunities in this field. Whilst high precision is desired in STAR, the 
patient’s clinical condition, prognosis and alternative treatment options 
is perhaps currently a more important factor when making treatment 
protocol and motion management choices for this new treatment 
technique. 
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