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Abstract 
Human leukocyte antigen (HLA) is highly polymorphic and plays a key role in guiding adaptive 
immune responses by presenting foreign and self peptides to T cells. Each HLA variant selects a 
minor fraction of peptides that match a certain motif required for optimal interaction with the 
peptide-binding groove. These restriction rules define the landscape of peptides presented to T 
cells. Given these limitations, one might suggest that the choice of peptides presented by HLA is 
non-random and there is preferential presentation of an array of peptides that is optimal for 
distinguishing self and foreign proteins. In this study we explore these preferences with a 
comparative analysis of self peptides enriched and depleted in HLA ligands. We show that HLAs 
exhibit preferences towards presenting peptides from certain proteins while disfavoring others 
with specific functions, and highlight differences between various HLA genes and alleles in those 
preferences. We link those differences to HLA anchor residue propensities and amino acid 
composition of preferentially presented proteins. The set of proteins that peptides presented by a 
given HLA are most likely to be derived from can be used to distinguish between class I and class 
II HLAs and HLA alleles.  Our observations can be extrapolated to explain the protective effect of 
certain HLA alleles in infectious diseases, and we hypothesize that they can also explain  
susceptibility to certain autoimmune diseases and cancers. We demonstrate that these 
differences lead to differential presentation of HIV, influenza virus, SARS-CoV-1 and SARS-CoV-
2 proteins by various HLA alleles. Finally, we show that the reported self peptidome preferences 
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of distinct HLA variants can be compensated by combinations of HLA-A/HLA-B and HLA-A/HLA-
C alleles in frequent haplotypes. 

Introduction 
T cells detect pathogen-infected and abnormal (e.g. tumour) cells by monitoring cell-surface-
displayed short peptides presented by the human leukocyte antigen (HLA) complex. HLA 
molecules are highly specific in terms of the peptide sequences they are able to present, and 
peptides not presented by HLAs remain invisible to the immune system (1).  HLA class I (HLA-I) 
and HLA class II (HLA-II) molecules present peptides that are typically recognised as a complex 
by CD8 and CD4 T cells, respectively; HLA-I-peptide complexes are also engaged by activating 
and inhibitory receptors on innate lymphocyte subsets such as natural killer (NK) cells. The three 
classical HLA-I genes expressed in all nucleated cells in humans are HLA-A, HLA-B, and HLA-C. 
HLA-I molecules present peptides  derived from intracellular proteins. The intracellular antigen 
presentation pathway involves cleavage of proteins in the cytosol by proteasomes, translocation 
to the endoplasmic reticulum (ER) lumen, trimming by ER-resident aminopeptidases, loading onto 
HLA and presentation at the cell surface. Each cell’s HLAs present multiple different peptides at 
varying peptide-HLA copy numbers per cell. HLA-II genes (HLA-DR, HLA-DP and HLA-DQ) are 
constitutively expressed in only a subset of cells specialized for antigen presentation, such as 
dendritic cells, B cells, and macrophages, but expression can also be induced in additional cell 
types, e.g. in response to cytokine stimulation. HLA-II molecules present peptides derived from 
extracellular proteins taken into cells via endocytosis and phagocytosis, and intracellular proteins 
that access the HLA-II processing pathway via autophagy. 
HLA-I molecules typically bind peptides of 8-12 amino acids (aa) in length. The HLA-I peptide-
binding cleft is closed at both N- and C-terminal ends, and optimal length preferences are often 
biased towards binding of 9-mer peptides; longer peptides frequently bulge out of the cleft to be 
accommodated  (2). For most HLA-I alleles the most abundant peptide length is 9 aa, but fine 
length preferences differ between alleles - in particular, some bind almost exclusively 8- and 9-
mers (e.g., HLA-B*51:01) while others have a relatively high frequency of ligands of length 12-13 
aa (e.g. HLA-A*01:01) (3). By contrast, HLA-II molecules possess an ‘open’ peptide-binding cleft 
and can therefore accommodate longer peptides than HLA-I. They frequently present nested sets 
of peptides that have a common “core” with N- and C-terminal extensions of varying length (4). 
High affinity ligands for a given HLA allele usually share a common amino acid motif with relatively 
strict preferences in anchor positions (for HLA-I usually the second (P2) and last (PΩ), for HLA-II 
- P1, P4, P6 and P9), which form specific interactions with residues of corresponding HLA binding 
pockets (4, 5). The HLA locus is the most polymorphic in the human genome with tens of 
thousands alleles described to date  (6). HLA variants that differ in peptide-contacting residues 
differ in the repertoire of peptides they present. The diversity of HLA alleles in the population is 
an important evolutionary mechanism for defense against diverse pathogens, e.g. rapidly 
mutating viruses. Different HLA alleles are associated with the severity and outcomes of viral 
infections. For example, the HLA-C*15:02 allele is associated with protection against SARS-CoV-
1 (7), and HLA-B57 is highly associated with efficient HIV-1 control and long-term non-progressive 
infection in the absence of antiretroviral therapy (8). 
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Large-scale in vitro binding assays and recent advances in mass spectrometry (MS) have enabled 
generation of large datasets of ligands for many HLA alleles (5). The largest database of HLA 
ligands, IEDB (9), contains ~750,000 peptidic epitopes presented by 830 MHC alleles (as of 
August 2020).  
Experimental HLA ligandome data is used for the training of artificial neural networks for prediction 
of HLA ligands and T cell epitopes (reviewed in (10, 11)). Different tools, such as NetMHCpan 
(12) and MHCflurry (13) allow HLA-I ligand prediction with high accuracy and allow predictions 
even for HLA variants with no experimental data available (14). For HLA-II predictions of peptide 
binding are complicated by substantial variation in length of presented peptides and currently 
available HLA-II binding predictors have limited accuracy (4).   
Comparison of MS-eluted HLA ligands and decoys predicted as HLA binders that were not 
observed in MS data enables the development of antigen processing predictors (13). The 
combination of antigen processing and HLA binding predictors in the MHCflurry tool resulted in 
significantly higher performance compared to HLA binding prediction only  (13). Experimental 
HLA ligandome data (15) is also useful for the investigation of properties of proteins that are more 
likely to give rise to HLA ligands. It was recently shown that helical regions are significantly 
enriched in the ligands, suggesting different proteolytic resistance depending on the secondary 
structure and size of the initial protein fragment (16).  
Apart from that, protein length and expression level, rate of proteasomal degradation, mRNA 
translation efficacy, presence of proteolytic signals, and sites of ubiquitination also influence the 
presence of protein-derived peptides in HLA ligandome (17, 18).  
Several studies have employed gene ontology (GO) analysis to characterize functions of proteins 
that frequently serve as HLA ligands sources (17–23). These studies found enrichment of 
mitochondrion, ribosome, and nucleosome cellular component terms (17) and DNA-, RNA- and 
protein-interaction molecular function terms (18) and relative depletion of membrane and 
extracellular matrix proteins (21). However, these results may reflect differences in the expression 
level of the corresponding genes, rather than enrichment of HLA ligands within them. Abelin et al.  
(24) demonstrated that after correction for expression, enrichment in HLA ligands is observed 
only for proteins associated with the late endosome, although in the absence of the correction 
proteins with other localizations were also enriched (ER, mitochondria, nucleus, secreted) or 
depleted (cell membrane, cytoplasm). It was recently shown that most foreign MHC-I-displayed 
peptides are immunogenic (25). Additionally, recent work by the Cerundolo lab suggests that 
mitochondria-localized proteins are more immunogenic than other human peptides (26), which 
has implications for cancer immunotherapy. However, the studies mentioned above were based 
on aggregated datasets containing ligands from many distinct HLA alleles, and corresponding 
analyses were not focused on exploring differences between alleles. The datasets in question 
were also relatively small, e.g. in the largest of them (18) only 59% of human genes gave rise to 
at least one HLA ligand, while as it was recently shown by Sarkizova et al. (3) all human proteins 
may serve as sources of HLA ligands.  
In this study, we investigated HLA binding preferences in terms of functions of presenting genes. 
In order to remove gene expression biases and focus on HLA presentation only, we used HLA 
ligandomes predicted in silico by the commonly used tool NetMHCpan-4.0, and focused mostly 
on HLA-I alleles due to significantly lower accuracy prediction for HLA-II. We performed HLA 
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binding predictions for all possible peptides of length 8-12 derived from the human proteome for 
a set of HLA alleles with different binding motifs. 
For all protein-coding genes, enrichment in HLA ligands was computed, and GO enrichment 
analysis was performed for sets of genes depleted or enriched in HLA ligands. Our results 
demonstrate that HLA alleles have a tendency to present peptides derived from proteins with 
specific molecular functions. These propensities are different for HLAs with different binding 
motifs, but similar for alleles with similar anchor residue preferences, which is explained by HLA 
preferential presentation of proteins enriched in amino acids that are favourable anchor residues 
for that allele.  
Using experimental data from the HLA ligand atlas (15), we observe substantial differences  
between HLA class I and class II alleles, with class I alleles tending to present intracellular proteins 
and class II - membrane transport proteins.  
Differences in functions of proteins preferentially presented by different HLA variants may be 
important for antiviral immunity. We demonstrate that HIV-protective HLA-B*57:01 is more likely 
to present proteins from GO categories corresponding to viral genes as compared with non-
protective HLA-B*08:01. 
We also hypothesized that HLA presentation bias towards proteins with specific functions may be 
compensated for in haplotypes. We demonstrate that HLA-A/HLA-B and HLA-A/HLA-C allele 
pairs from frequent HLA haplotypes are significantly more different in their GO enrichment profiles 
of the presented proteins than random allele pairs.   

Methods 

Predicting HLA ligands 
All possible 8-12 mers were cut from the human proteome and supplied to the software 
NetMHCpan v 4.0 (12) in order to predict putative HLA ligands. A proof-of-concept analysis was 
initially performed in this study for an ad hoc selected set of 6 HLA alleles (HLA-A*02:01, HLA-
A*11:01, HLA-B*07:02, HLA-B*27:05, HLA-C*02:02, HLA-C*15:02), all having different anchor 
residue preferences (Supplementary Figure S1).  
For exploration of differences in presentation of viral genes we expanded this set to 12 alleles 
with the addition of HLA-A*01:01, HLA-A*03:01, HLA-B*08:01, HLA-B*57:01, HLA-C*07:02 and 
HLA-C*08:01. Viral HLA-binding peptides were predicted using NetMHCpan v 4.0 software in the 
same way as human-derived ligands. 
Conclusions from the smaller dataset were supported upon repetition of analysis using an 
extended set of 93 HLA alleles (see Supplementary Table 3) covering 95% of individuals 
worldwide. For analysis of compensation of HLA presentation bias in haplotypes, ligandome 
predictions were also made for alleles corresponding to frequent haplotypes but not presented in 
the set of 93 alleles. In total, 133 HLA alleles were surveyed in the current study.  
The NetMHCpan software was run using default parameters, and both strong and weak binders 
(Rank < 2) were used as the list of putative human-derived ligands for each allele. Complementary 
analysis was performed using the MHCflurry software (13) with default parameters. In order to 
confirm that results were not biased by using a specific HLA binding prediction algorithm we 
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selected HLA ligands based on the “Affinity percentile” column from MHCflurry. We also used the 
“Presentation score” column to account for antigen processing biases. 

HLA ligand enrichment analysis 
Human proteins were assayed based on the number of observed and expected ligands for each 
HLA allele as follows. We first counted the number of predicted ligands 𝑁! of length 𝑙 coming from 
protein 𝑖. The average number of presented ligands for each HLA allele was computed as 𝜌 =<
𝑁! >/< 𝐿! >, where 𝐿! = 𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑝𝑟𝑜𝑡𝑒𝑖𝑛	 − 	𝑙 is the corrected protein length and <∙> denotes 
the average over the proteome. The probability of observing a given number of ligands from each 
gene and the odds are computed using Binomial distribution as 𝑃(𝑁!) = 𝑃"!#$%(𝑁!|𝜌, 𝐿!) and 
𝑙𝑜𝑔	𝑂𝑑𝑑𝑠	 = 	 𝑙𝑜𝑔	(𝑁! 	/	𝜌𝐿!). These values were used to define sets of HLA ligand-enriched and -
depleted proteins (HLEPs and HLDPs). 

Experimentally validated HLA ligands 
HLA ligands for both class I and class II alleles were extracted from the HLA Ligand Atlas dataset 
(15) that lists peptides obtained from publicly available MS HLA elution experimental data. 

Mass spectrometry-based profiling of peptides presented on single 
HLA-I allele-expressing cell lines 
HLA-I-deficient CD4-expressing 721.221 cells (originally obtained from Prof Masafumi Takaguchi, 
Kumamoto University, Japan) were stably transfected with HLA-A*02:01. Transfectants were 
expanded by growth in RPMI 1640 medium (Thermo Fisher) containing 10% fetal bovine serum 
(FBS), 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin (R10), and 2 x 108 
cells harvested for HLA-I bound peptide profiling. Mass spectrometry-based immunopeptidome 
profiling of HLA-A*11:01-transfected CD4.221 cells was reported previously (27);  the same 
methodology was employed here for immunopeptidome profiling of HLA-A*02:01-expressing 
CD4.221 cells.  
Briefly, cells were washed once in PBS, pelleted and 1 ml IGEPAL buffer [0.5% IGEPAL 630, 50 
mM Tris pH8.0, 150 mM NaCl and 1 tablet Complete Protease Inhibitor Cocktail EDTA-free 
(Roche) per 10 ml buffer] was added per 0.5–1 × 108 cells, and cells were lysed by mixing for 45 
min at 4°C. Cell lysates were cleared by two centrifugation steps, 2000 × g for 10 min followed by 
20,000 × g for 30 min at 4°C. HLA-peptide complexes were immunoprecipitated from the cell 
lysates on W6/32-coated Protein A-Sepharose beads overnight at 4°C. W6/32-bound HLA-
peptide complexes were sequentially washed with 20 mL of wash buffer 1 (0.005% IGEPAL, 50 
mM Tris pH 8.0, 150 mM NaCl, 5 mM EDTA), wash buffer 2 (50 mM Tris pH 8.0, 150 mM NaCl), 
wash buffer 3 (50 mM Tris pH 8.0, 400 mM NaCl) and finally wash buffer 4 (50 mM Tris pH 8.0).  
Peptide-HLA complexes were eluted from the beads in 5 mL of 10% acetic acid, and samples 
were dried down prior to resuspension in 120 μL loading buffer (0.1% TFA, 1% acetonitrile in 
ultragrade HPLC water). Samples were loaded onto a 4.6 × 50 mm ProSwift RP-1S column 
(Thermo Fisher Scientific) and eluted using a 500 μL/min flow rate over 10 min from 2 to 34% 
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buffer B (0.1% TFA in acetonitrile) in buffer A (0.1% TFA in water) using an Ultimate 3000 HPLC 
system (Thermo Scientific). Alternate odd and even HPLC fractions were pooled and dried down 
prior to resuspension in 20 μL LC-MS/MS loading buffer (0.1% TFA in water).  
For LC-MS/MS analysis, 9 ul of each sample was injected onto a Dionex Nano-Trap precolumn 
(Thermo Scientific), before separation with a 60 min linear gradient of acetonitrile in water of 2-
25% across a 75 µm × 50 cm PepMap RSLC C18 EasySpray column (Thermo Scientific) at 40ºC 
and a flow rate of 250 nl/min, resulting in an approximate average pressure of 600 bar. LC 
solvents contained 1%(v/v) DMSO and 0.1%(v/v) formic acid.  Peptides were introduced using an 
Easy-Spray source at 2000V at  to a Fusion Lumos mass spectrometer (Thermo Scientific). The 
ion transfer tube temperature was set to 305ºC. Full MS spectra were recorded from 300-1500 
m/z in the Orbitrap at 120,000 resolution with an AGC target of 400,000. Precursor selection was 
performed using TopSpeed mode at a cycle time of 2 s. Peptide ions with a positive charge 
between 1-4were isolated using an isolation width of 1.2 amu and trapped at a maximal injection 
time of 120 ms with an AGC target of 300,000. Singly charged ions were deprioritised to other ion 
species during acquisition. Higher-energy collisional dissociation (HCD) fragmentation was 
induced and fragments  were analysed in the Orbitrap. LC-MS/MS data was analysed using 
PEAKS v8.0 (Bioinformatic Solutions) software. 

Gene ontology enrichment analysis 
Sets of proteins enriched and depleted in HLA ligands (HLEPs and HLDPs) were assayed for 
over-representation of certain Gene Ontology (GO) categories as follows. GO enrichment test 
was performed using GOANA method from Limma R package (28) and top enriched GO terms 
coming from molecular function (MF), biological process (BP) and cellular component (CC) were 
selected for visualization. Additional verification of GO enrichment trends was performed with 
DAVID web tool (29). Note that while sets of HLEPs and HLDPs were used for GO analysis for in 
silico predicted ligands datasets, sets of proteins containing at least one HLA ligand were assayed 
for experimental data as most of those datasets contain too few ligands to perform ligand 
enrichment test. 

Analysis of compensation for HLA presentation bias in haplotypes 
Data for HLA-A/HLA-B/HLA-C haplotypes with the highest frequency in 19 populations of different 
ethnic origin (listed in Supplementary Table 4, all from USA National Marrow Donor Program) 
was taken from the “Allele frequencies” database (http://www.allelefrequencies.net/) (30). 
Filtering for haplotypes with a frequency higher than 0.01% resulted in multiple entries for each 
of the populations (mean 42, range 28 - 89) which were merged to an aggregated dataset of 806 
HLA-A/HLA-B/HLA-C haplotypes. 
Further, these haplotypes were split into pairs of corresponding HLA-A/HLA-B, HLA-A/HLA-C, 
and HLA-B/HLA-C alleles (the resulting dataset is referred to as “Haplotypes”). The “Control” 
dataset included all possible HLA-A/HLA-B, HLA-A/HLA-C, and HLA-B/HLA-C combinations of 
alleles from the “Haplotypes” dataset with the exclusion of those pairs that were identical to pairs 
from the “Haplotypes” dataset within the first two digits in allele names.  
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For each pair of alleles, the euclidean distance between GO term enrichment profiles was 
calculated and the distributions of that distance for “Haplotypes” and “Control” datasets were 
compared. GO term enrichment profile is a vector composed of enrichment folds for each of the 
analyzed GO terms (wherein fold value was taken with a positive sign for enriched GO terms, for 
depleted terms with a negative sign, and for not significantly changed terms fold was set to 0). 

Data analysis code availability 
Custom R scripts were used for data processing, analysis and plotting. R code used for the 
analysis is stored as an R markdown notebook that was tested under R v3.6.2. Scripts and 
smaller datasets are available at corresponding GitHub repository 
https://github.com/antigenomics/hla-go-ms. 

Results 

Exploring differences in HLA ligand incidence across human 
proteins 
We started our analysis (see Figure 1 for overview) by running a large-scale in silico prediction 
of HLA ligands in the entire human proteome using NetMHCpan software. For our exploratory 
analysis we predicted 9-mer ligands for an ad hoc set of 6 HLA alleles: two HLA-A alleles (HLA-
A*02:01 and HLA-A*11:01), two HLA-B alleles (HLA-B*07:02 and HLA-B*27:05) and two HLA-C 
alleles (HLA-C*02:02 and HLA-C*15:02). Our predictions yielded ~5x105 HLA ligands for each 
allele (Supplementary Table S1) in line with previous estimates of the number of 9-mers a single 
HLA can present  (31). 
In order to identify proteins in which ligands are either enriched (HLA ligand-enriched proteins, 
HLEPs) or depleted (HLDPs) for every surveyed HLA allele we computed the number of ligands 
mapping to every human protein and estimated the expected number of ligands for each protein 
as the proteome-average ligands-per-amino acid frequency multiplied by the length of the protein. 
HLEPs and HLDPs were then selected based on a fixed  P-value threshold (computed using 
Binomial distribution and adjusted for multiple testing, see Materials and Methods) and the 
observed-to-expected ratio of mapped ligand counts (Figure 2A). For all HLA alleles surveyed 
we observed many HLEPs (an average of 877 across all alleles) and HLDPs (565 on average), 
but the exact number of such proteins varied greatly across alleles (range from 55 to 1946 for 
HLEPs and from 106 to 1557 for HLDPs, see Supplementary Table S1).  

HLAs differentially present human proteins associated with certain 
gene ontology categories 
We next analyzed the length distribution HLEPs, HLDPs and the remaining proteins that do not 
show any difference in HLA ligand counts (Supplementary Figure S2). While one might expect 
that longer proteins would provide more statistical power to infer differences in the number of HLA 
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ligands, we found that proteins of any length can feature differences in HLA presentation. More 
specifically, we observed that longer proteins are more likely to be depleted in ligands while 
shorter ones are enriched in presented peptides. 
In order to characterize human genes encoding proteins that are more or less likely to be 
presented by HLAs we ran a gene ontology (GO) term enrichment analysis as shown in Figure 
2B. We observed prominent enrichment of certain “molecular function” (MF), “biological process” 
(BP) and “cellular component” (CC) GO categories of genes coding for HLEPs and HLDPs, and 
found differences between GO category profiles across surveyed HLAs. In general, genes coding 
for HLDPs are more likely to encode extracellular matrix components, collagen and myosin, which 
is in line with the observation mentioned above as those are typically longer proteins. It is thus 
hard to decouple potential length bias from gene function in this case, as all HLA alleles show 
similar disfavoring of this set of genes. 
On the other hand, genes coding for HLEPs display a diverse set of associated GO categories. 
For example, HLA-A*02:01, HLA-C*02:02 and HLA-C*15:02 are more likely to present ligands 
from genes encoding membrane proteins and those involved in receptor signalling such as G-
coupled receptor and olfactory receptor signalling. HLEPs for HLA-A*11:01 and HLA-B*27:05 are 
involved in translation and gene expression, while HLA-B*07:02 ligands derive from proteins 
involved in regulation of transcription and HLA-B*27:05 presents ligands from genes involved in 
DNA replication and chromatin silencing. It is also necessary to note that HLA-A, -B and -C genes 
do not show much similarity and alleles of different HLA-I genes can have similar preferences. 

Human proteins are differentially represented within HLA ligands 
of different length 
In order to check for differences in human HLEP and HLDP set composition for HLA ligandomes 
corresponding to different peptide lengths we surveyed 8-mer to 12-mer predictions for the HLA-
A*11:01 allele as described above (Supplementary Figure S3). HLA-A*11:01 predominantly 
presents 9- and 10-mers, although longer and shorter peptides are also known to be presented 
by this allele (32). We found genes that were either enriched or depleted for HLA ligands for all 
surveyed peptide lengths; the total number of ligands of each length was around 105 
(Supplementary Table S2). Analysis of genes enriched within HLA-A*11:01 ligands of each 
length reveals a number of GO categories that are associated with longer and shorter HLA ligands 
(Supplementary Figure S4). GO categories characteristic of genes depleted in HLA-A*11:01 
ligands are similar across all ligand lengths and correspond to genes coding for extracellular 
proteins and collagen, in line with general trends observed for the 6 HLA-I alleles described above. 
GO categories of genes coding for HLA-A*11:01 HLEPs are, however, distinct across peptide 
lengths: 9- and 10-mer peptides are linked to genes involved in transcription and translation 
processes, while 12-mers are linked to genes associated with mitochondrial and transporter 
genes. As observed biases in HLEP features may be due to differences in in silico ligand 
prediction accuracy for different lengths (for example, there are far more training examples of 9-
mer ligands than 11-mers (12)), we performed additional validation of these results using 
experimental HLA ligandomes and alternative software tools as described in the next section. 
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Amino acid composition of proteins enriched or depleted in HLA 
ligands 
To explore the molecular basis for differences in gene presentation profiles between HLA alleles, 
we compared the amino acid composition of HLEPs and HLDPs. The results presented in Figure 
3A demonstrate that HLEPs are enriched in amino acids which are good anchor residues for the 
particular HLA allele (see Supplementary Figure S1 for motifs of presented peptides). For 
example, for HLA-A*02:01, HLA-C*02:02, and HLA-C*15:02, which require hydrophobic anchors, 
HLEPs have a higher frequency of hydrophobic and lower frequency of charged residues. The 
amino acid frequency profile for HLA-B*27:05 HLEPs is very close to that of the human proteome 
except for a higher frequency of arginine, which is strictly preferred by the allele as an anchor 
residue in the P2 position. 
The observed bias in the amino acid composition of HLEPs and HLDPs leads to differences in 
the GO categories enriched in these gene sets. Thus, for HLA-A*02:01, HLA-C*02:02 and HLA-
C*15:02, which are prone to present more hydrophobic proteins, GO categories enriched in 
HLEPs are mainly associated with membrane proteins (Figure 2B) which have a relatively high 
frequency of hydrophobic residues. HLA-A*11:01 and HLA-B*27:05, which require lysine and 
arginine as anchor residues, are more likely to present proteins involved in interaction with DNA 
(Figure 2B) and that have a relatively high frequency of positively charged amino acids.  
Comparing GO enrichment analysis results for different alleles we found that several GO 
categories are enriched in HLDPs for all surveyed alleles except HLA-B*07:02 (Figure 2B, Figure 
3B). Genes corresponding to these GO terms are enriched in glycine and proline residues as 
shown in Figure 3C. These GO categories are mostly associated with the extracellular matrix 
(Figure 2B, Figure 3B) and include fibrous proteins such as collagen. Glycine and proline 
residues are critically important for collagen ternary structure formation. Glycine is a bad anchor 
residue for almost all HLAs, and proline dramatically affects peptide conformation preventing its 
binding with HLA. It can be suggested that proteins enriched in G and/or P are poorly presented 
by multiple HLAs. HLA-B*07:02 is the exception as this allele strictly requires proline as the 
peptide P2 anchor.  

Exploration of ligand presentation bias on an extended dataset of 
HLA alleles 
To check that the conclusions from the analyses in the previous sections are not artifacts of the 
selection of surveyed HLA alleles, we performed in silico predictions of HLA ligands and GO 
enrichment analysis for an extended set of 93 alleles (Supplementary Table S3) using 
NetMHCpan software, in the same manner as for the initial set of 6 alleles. Alleles were selected 
to cover at least one of the HLA-A, HLA-B, and HLA-C alleles in 95% of individuals worldwide, 
based on allele frequencies reported by Sarkizova et al. (3). 
First, we re-examined our observation of the existence of GO categories associated with HLDPs 
for most alleles. We observed that there is a group of GO terms related to extracellular matrix and 
collagen which are associated with HLDPs for up to 95% (89 out of 93) of surveyed alleles 
(Supplementary Figure S5A). Proteins corresponding to these terms are enriched in glycines 
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and prolines (Supplementary Figure S5C). Exceptional alleles, for which these “universally 
depleted” terms are not associated with HLDPs are the ones that strictly require proline residues 
as P2 anchors (Supplementary Figure S5B). Overall, all the conclusions reached from the 
analyses performed with the initial set of 6 alleles, i.e. depletion of proteins enriched in glycines 
and prolines which correspond to GO terms related to structural functions (Figure 3BC, with the 
exception of HLA-B*07:02 having proline anchor residues), remain valid when a broader range of 
alleles are considered. 
Further, we explored HLA presentation preferences for proteins of different lengths. To better 
understand the protein length bias for HLEPs and HLDPs we compared the amino acid 
composition of human proteins of different lengths. Preferences in the length of presented 
proteins may be explained by the differential amino acid composition of proteins from different 
length quartiles (Supplementary Figure S6A). As shown in the figure, the frequency of 
hydrophobic amino acids is highest for proteins in the second length quartile (Q2) and lowest for 
Q4 proteins. In accordance with this trend Q2 proteins constitute the highest fraction of HLEPs 
for HLA-A*02:01, HLA-C*02:02, and HLA-C*15:02 alleles featuring hydrophobic anchor residues. 
For HLA-A*11:01 and HLA-B*27:05, which utilise positively charged anchor residues, Q1 proteins 
constitute more than half of HLEPs, in line with the observation that these proteins have the 
highest frequency of arginines and lysines. For the majority of alleles, the highest fraction of 
HLEPs is composed of smaller proteins from the second length quartile (Q2) and most HLDPs 
are longer proteins from Q4 (Supplementary Figure S6B). Hydrophobic amino acids which are 
required as anchor residues for the majority of alleles (see Supplementary Table S3) are 
enriched in Q2, so for these alleles the length distribution of HLEPs peaks in Q2. There are some 
exceptions where the distribution of length of HLEPs is not maximal in Q2 (Supplementary 
Figure S6C), but these exceptions are also explained by the amino acid composition of proteins 
in different length quartiles. Alleles for which length distribution of HLEPs peaks in Q1 require 
positively charged anchor residues (arginine and lysine) which are enriched in Q1 proteins. Alleles 
that prefer to present Q4 proteins require negatively charged glutamic acid as an anchor which is 
enriched in Q4 proteins (Supplementary Figure S6A). 

Validation of HLA allele and ligand length biases 
To ensure our observations are not an artifact of the HLA ligand prediction model used by 
NetMHCpan software, we re-ran the same analysis using an alternative software tool MHCflurry 
(13). In addition to peptide-HLA binding, MHCflurry also takes into account antigen processing 
and can provide the combined score (“Presentation score”), which performs better to predict HLA 
ligands. We performed the analysis using both affinity and presentation scores of MHCflurry to 
enable evaluation of the impact of software and potential antigen processing biases. In both cases 
the analysis revealed nearly identical results to Figure 2 in terms of ligand enrichment scores and 
P-values, as well as the list of associated GO categories, as can be seen in Supplementary Note 
1, Figure SN1. Also, the bias in the number of HLA ligands reported for proteins of different 
lengths (Supplementary Figure S2) holds true when applying MHCflurry as a HLA ligand 
prediction method (Supplementary Note 1, Figure SN2). 
In addition, to determine whether the interpretation of our findings would be affected by use of an 
alternative GO annotation strategy, we re-annotated HLA ligand-enriched and -depleted gene 
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sets using DAVID, another commonly used web tool (29). DAVID analysis showed clustering of 
GO categories enriched and depleted for genes of interest that was highly in line with the results 
described above (Supplementary Note 1, Figure SN3). Annotation clusters (groups of GO 
categories) identified by DAVID as being over-represented are also supportive of the general 
trends mentioned above, e.g. depletion of proteins representing extracellular matrix components, 
collagen and myosin in HLA ligands. 
We also independently validated our results with experimentally-determined ligandomes of HLA-
A*02:01 and HLA-A*11:01 alleles (see Methods section). Analysis of GO categories enriched in 
parent proteins of HLA-A*02:01 peptides compared to HLA-A*11:01-presented proteins and vice-
versa revealed consistency with the in silico results reported above, and protein GO categories 
matched HLEPs of corresponding HLA alleles. As can be seen from Figure 4A, GO categories 
that are enriched in either HLA-A*02:01 or HLA-A*11:01 according to in silico data analysis are 
also more common in proteins that feature HLA ligands of corresponding alleles in experimental 
data, supporting the observed difference between functions of HLA-A*02:01 and HLA-A*11:01 
HLEPs. Moreover, GO categories enriched in HLEPs of HLA-A*11:01 allele ligands of various 
lengths are highly correlated with GO categories enriched for ligands of corresponding lengths in 
experimental data (Figure 4B). 

HLA ligand atlas analysis and difference between class I and 
class II HLAs 
To provide further verification of our results on real HLA ligand datasets and compare them to in 
silico HLA ligand predictions we explored the HLA ligand atlas dataset (15). We ran GO 
enrichment analysis for sets of genes corresponding to peptides presented by each HLA allele in 
the dataset and compared profiles of enriched categories across alleles. Note that we used every 
gene that has at least one reported HLA ligand, and did not use an enrichment test for the number 
of ligands per gene as the size of the database is too small to ensure good coverage of all human 
genes. Using HLA ligand atlas allowed us to independently validate the phenomenon of 
preferential presentation of genes with specific functions by different HLA alleles. 
Principal component analysis was used to visualize differences between HLAs based on functions 
of genes they tend to present as shown in Figure 5A. The plot shows clear separation between 
genes providing a source of ligands presented by HLA class I and class II, with co-clustering of 
HLA-C and HLA-B alleles and a notable differentiation between HLA-DQ versus HLA-DR. 
Notably, while HLA class I and class II alleles are clearly separable, it is hard to tell HLA class I 
genes apart based on GO enrichment profiles (Figure 5B). 
For in-depth exploration of genes that are differentially presented between class I and class II 
alleles we took the PC2 component from Figure 5A that linearly separates HLA classes and 
analyzed GO categories having highest weights in these components (Figure 5С). We observed 
that class II HLA alleles are more likely to present membrane transport proteins, while class I 
alleles are prone to present components of intracellular structural proteins. 
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Analyzing presentation of viral genes by different HLA alleles 
As the spectrum of viral protein functions should be highly specific we suggest that our 
observation of differential presentation of peptides derived from human proteins with differing 
functions may be extrapolated to presentation of viral peptides by distinct HLAs. Thus, we 
suggested that there may be substantial differences in presention of viral peptides and different 
human HLA alleles will favor certain viral proteins. We calculated the presentation odds for each 
viral gene-HLA pair as the ratio of the observed number of ligands divided by expected value 
computed under the assumption of independence between an HLA allele and the number of 
ligands it presents from a given gene. Comparative analysis of presentation odds of viral peptides 
by human HLAs (Figure 6A) reveals co-clustering of viral genes with similar functions and certain 
HLAs (e.g. HLA-B*07:02 and HLA-B*27:05, HLA-A*03:01 and HLA-A*11:01).  
However, surveyed HLA alleles mostly feature contrasting presentation odds profiles, and the 
distribution of correlation coefficients for these profiles is shifted to negative values (Figure 6B). 
For example a pair of HLA-A alleles, HLA-A*02:01 and HLA-A*11:01, appear to have distinct 
preferences for presenting viral proteins (Figure 6C), in line with their difference in preferences 
for presenting human proteins with certain functions reported above (Figure 2B). On the other 
hand, HLA-A*11:01 and HLA-B*27:05, which tend to present human proteins of similar functions 
(Figure 2B) are also similar in terms of viral protein presentation odds profiles (Figure 6C). 
Considering similar viral proteins, we observe little difference in the way they are presented by 
the same HLA. When comparing presentation odds across all 12 surveyed HLAs between 
proteins of SARS-CoV-1 and SARS-CoV-2 strains we observe nearly perfect correlation for 
almost all proteins (Figure 6D). 
Finally, we performed a direct comparison to test the hypothesis that tendency to present self-
peptides with certain functions is intrinsically linked to the variability in viral protein presentation 
by HLAs. We tested if distance between self-peptide GO profiles was correlated with distance in 
viral presentation profiles, testing each of 12 HLA alleles against the remaining 11 (Figure 6E). 
All alleles show a positive correlation between these two distances, and for the majority the 
correlation was substantial (R > 0.3 for 7 out of 12 alleles). The overall correlation coefficient for 
all 66 possible distance pairs is R = 0.32, P = 0.009. 
We can speculate that inter-allele differences in preferences for binding of peptides derived from 
viral as well as human proteins could be among the factors contributing to the differential 
association of particular alleles with protection/pathogenesis in different infections (see 
Discussion). 

Haplotype compensation of bias in HLA presentation of proteins 
with different molecular functions 
In previous sections, it was noted that HLA alleles with similar anchor residue preferences have 
similar profiles of GO terms enrichment and viral gene presentation odds, while alleles with 
different anchor preferences are more likely to have contrasting profiles (see Figure 2B and 
Figure 6ABC). Considering that HLA alleles are inherited not individually but in haplotypes, one 
may hypothesize that haplotypes composed of HLA alleles that are prone to present proteins with 
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different molecular functions might be evolutionarily advantageous as they would be able to 
present a more diverse set of peptides to the immune system. 
To test this we collected a dataset of HLA class I haplotypes (combinations of HLA-A, HLA-B, and 
HLA-C alleles) which have the highest frequencies in populations of different ethnic origin 
(Supplementary Table S3, for details see Methods). Haplotypes were divided into pairs of alleles 
of different genes (HLA-A/HLA-B, HLA-A/HLA-C, and HLA-B/HLA-C). As a control set we 
reshuffled alleles from the haplotype set to make up random pairs. In both sets, for each resulting 
pair of HLA alleles, we computed GO terms enrichment profiles distance. A comparison of 
corresponding distributions (Figure 7) between these two sets demonstrates that pairs of HLA-
A/HLA-B and HLA-A/HLA-C alleles associated with frequent haplotypes are significantly different 
in terms of the distance between corresponding GO terms enrichment profiles from control allele 
pairs. Thus, commonly observed haplotypes consist of more divergent pairs of HLA alleles in 
terms of the proteins they tend to present peptides from. This result may be interpreted as 
indicating that the haplotype composition is focused on compensating “holes” in the 
immunopeptidome that are the result of non-uniform proteome presentation by various HLAs. 

Discussion 
In this study, we performed a comparison of molecular functions of proteins preferentially 
presented by different HLA alleles. HLA restriction of peptide ligands shapes adaptive immune 
responses and is critical for protection against viruses and other pathogens, elimination of cancer 
cells and prevention of  autoimmune diseases, moreover it directly shapes the repertoire of 
cognate T cells that form the backbone of adaptive immunity (1, 33–35).  To investigate the effect 
of HLA restriction on the nature of the ligands presented to T cells, we studied peptides derived 
from the human proteome and predicted in silico binding for a set of HLA-I alleles having different 
recognition motifs. The number of predicted binders varied across HLA alleles in line with previous 
observations of different ligand length distributions (2) and sizes of experimental ligandomes of 
HLA-I variants (36). Ligand coverage of genes was not uniform - some genes gave rise to more 
or less predicted binders than was expected from the assumption of a random sampling of source 
genes. This difference in the number of ligands was used to select HLDPs and HLEPs, i.e. human 
proteins depleted and enriched in HLA ligands. 
Enrichment in HLA-I ligands is biased towards proteins of shorter length: longer proteins 
constitute the largest fraction of HLDPs, while the HLEP set contains proteins of shorter lengths. 
This may be attributed to the different amino acid compositions of proteins of different lengths: 
shorter proteins have a higher frequency of hydrophobic, positively charged and tyrosine residues 
(which are favourable anchor residues for the surveyed HLAs) than longer ones. The observed 
length bias should also hold for other HLA-I alleles requiring hydrophobic, positively charged or 
tyrosine anchor residues, which constitute the majority of HLA-I alleles with a high frequency in 
the human population. 
In order to comprehensively explore biases in features and functions of proteins preferentially 
presented by different HLA alleles we performed a gene ontology (GO) term enrichment analysis 
for sets of HLEPs and HLDPs. The profiles of GO categories corresponding to HLEPs and HLDPs 
differed between alleles but were similar for groups of alleles having similar anchor residue 
preferences (HLA-A*02:01, HLA-C*02:02, and HLA-C*15:02; HLA-A*11:01 and HLA-B*27:05). 
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These patterns may account for preferences in HLA presentation of proteins with a higher fraction 
of amino acids which are good anchor residues for that particular allele. HLA-A*02:01, HLA-
C*02:02, and HLA-C*15:02 are more likely to present relatively hydrophobic proteins, thus GO 
terms corresponding to HLEPs for these alleles are mainly associated with membrane proteins. 
For HLA-A*11:01 and HLA-B*27:05 HLEPs have a higher fraction of positively charged amino 
acids and corresponding GO terms are associated with DNA binding functions. Some GO 
categories (e.g. associated with collagen) corresponded to HLDPs of all surveyed alleles but HLA-
B*07:02. Proteins constituting these categories have a relatively high proportion of glycine 
residues (which are disfavoured anchor residues for almost all HLA alleles) and prolines (which 
are conformationally rigid and may disturb peptide conformation suitable for HLA binding). 
Proline-rich proteins are also expected to be depleted in naturally processed HLA ligands for the 
reason that prolines are depleted in up- and downstream regions of proteasome cleavage sites 
(24). HLA-B*07:02 is the exception as proline in P2 is strictly required for peptide binding by the 
allele variant. 
In order to explore potential ligand length bias, for HLA-A*11:01 we expanded our analysis for 
peptides of lengths 8-12 amino acids. Though general patterns of GO enrichment were similar for 
ligands of different lengths, some GO categories were associated with either shorter or longer 
ligands. This effect may be attributed to subtle differences in anchor residue preferences for 
ligands of different lengths, however such biases should be scrutinised to ensure that they are 
not an artifact of HLA binding prediction software.  
Most of our initial analysis reported here was based on in silico HLA-I ligand predictions performed 
by NetMHCpan software and GO enrichment analysis based on a hypergeometric test. To 
exclude any bias coming from prediction methodology, we re-ran our analysis using an alternative 
algorithm, MHCflurry, and were able to reproduce our results. NetMHCpan software predicts only 
peptide-MHC binding and does not consider potential effects of proteasomal cleavage and TAP 
transport. To account for impact of antigen processing steps we reran our analysis using the 
“presentation score” feature of MHCflurry software, which is a combination of predictions of HLA 
binding and antigen processing and was demonstrated to perform better than either of the former 
when used individually for prediction of HLA-bound ligands (13). All the conclusions based on 
NetMHCpan predictions stayed true, indicating that antigen processing steps do not appear to 
exert significant additional biases on the HLA-I ligandome structure. Similarly, we tested an 
alternative GO enrichment analysis method implemented in the DAVID web tool, again arriving at 
similar results. Thus, our results appear to be robust and independent from the choice of 
bioinformatic tools. Moreover, our main result highlighting differences in functions of human 
proteins that are differentially presented by different HLAs also holds when using experimentally 
identified ligands from the HLA ligand atlas datasets and HLA-A*02:01 and HLA-A*11:01 
ligandomes described in this study. HLA ligand prediction accuracy depends on the size of the 
training set, which in turn depends on the availability of experimental data, so predictions may be 
less accurate for some HLA alleles. In this study we observe similar groups of genes enriched 
and depleted in ligands both for extensively studied alleles (such as HLA-A*02:01) and less 
studied ones (such as HLA-C*15:02, which has a different binding motif to HLA-A*02:01). 
Similarly, less preferred ligand lengths for the 6 HLA-alleles investigated in this study (8-, 11- and 
12-mers) have lower binding prediction accuracy than more common ones (9- and 10-mers). We 
independently validated our results on human genes differentially presented by HLA ligands of 
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different lengths using experimental data for the HLA-A*11:01 ligandome. Thus, we suggest that 
our results should be robust to HLA ligand prediction accuracy differences.  
It is necessary to note that in this study we did not consider potential effects of gene expression 
on HLA ligandomes. While gene expression is certainly associated with gene function and may 
alter gene ontology, the majority of our results were based on “expression-agnostic” proteomes 
(i.e. every protein was counted once independently of its expression). However, we believe that 
this factor deserves a more thorough investigation in follow-up studies. A recent study (26) reports 
that the subcellular localization of human proteins may influence HLA presentation and T cell 
priming in the case of cancer antigen-specific responses. Our results show that proteins with 
different cellular component (CC) gene ontology categories tend to be presented preferentially by 
different HLAs, further suggesting that CC-based biases in protein presentation may play a role 
in anti-tumor immune responses. 
We also performed GO terms enrichment analysis for an experimental dataset from the HLA 
ligand atlas covering 51 HLA class I and 42 HLA class II alleles (15). The results obtained revealed  
co-clustering of various HLA class I and II alleles in terms of GO categories of genes they tend to 
present. Interestingly, PCA analysis shows a clear separation between HLA classes in terms of 
typically presented proteins, and HLA-DR alleles are clearly separated from HLA-DQ ones while 
there is little separation between HLA-A, -B and -C classes for HLA class I.  
Different preferences in functions of presenting proteins between HLA alleles may be important 
for antiviral immunity. We examined the link between the presentation of proteins encoded by 
viral genes and self genes with specific functions.  For all possible pairs of surveyed HLA alleles, 
we observed a substantial correlation between self-protein GO profiles and profiles of viral protein 
presentation (considering proteins from influenza virus, HIV-1 and SARS-CoV-1/2). We speculate 
that differences in the tendency of HLA alleles to present peptides from proteins with certain 
functions may be among the factors contributing to differential association of alleles with infection 
outcomes. Comparison of HLA-B*57:01 (associated with efficient control of viraemia and good 
disease prognosis in HIV-1 infection) and HLA-B*08:01 (associated with poor prognosis) (8) 
yielded a set of GO categories that differ between genes enriched in ligands presented by each 
of the alleles (Supplementary Figure S7). Interestingly, when comparing GO terms of genes 
providing a source of ligands that are preferentially presented by either HLA-B*57:01 or HLA-
B*08:01 we found that membrane and ion transport-related functions that are assigned to HIV 
genes are enriched in HLA-B*57:01-presented proteins.  
Finally, we hypothesized that the reported HLA presentation bias may be compensated for in 
haplotypes to increase the size of the immunopeptidome presented in each individual. To test 
this, we compared distributions of distances between GO enrichment profiles for pairs of HLA 
alleles associated with frequent haplotypes and for random pairs of alleles. On average, HLA-
A/HLA-B and HLA-A/HLA-C pairs showed higher within-haplotype group distance compared to 
control (randomly-selected) allele pairs. The absence of the effect for HLA-B/HLA-C pairs may be 
explained by the fact that different HLA-B and HLA-C alleles are more similar to each other than 
either of them are to HLA-A in terms of amino acid sequence, a result of the evolutionary origin 
of the HLA-C gene being from duplication of HLA-B (37). These results may suggest that 
haplotypes of HLA alleles with different preferences for presenting proteins with particular 
molecular functions are evolutionarily beneficial and have a greater chance of becoming fixed in 
the population. It should be noted that in a 2013 paper Rao et al. (38) reported that 
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complementarity of binding motifs in frequent HLA-A/HLA-B haplotypes is not higher than in 
random HLA-A/HLA-B pairs. The difference between earlier results and our conclusions may be 
explained by the lower accuracy of the older version of NetMHCpan software which was used in 
the Rao et al. study. NetMHCpan v2.0 was released in 2009 and was trained on the limited in 
vitro binding affinity data then available, but v4.0 used in this study was released in 2017 and was 
trained on a much larger dataset that additionally incorporated MS eluted ligand data.   
Thorough investigation of HLA presentation biases can lead to better understanding of 
mechanisms underlying the existence of both beneficial HLA alleles and those alleles leading to 
disease susceptibility in various scenarios ranging from infectious diseases to autoimmunity. The 
COVID-19 pandemic has highlighted the necessity of a rapid selection of vaccine targets. HLA 
binding preferences should evidently be taken into account together with the population frequency 
of HLA alleles during vaccine development. We hope that our findings can help to explain why 
certain HLAs are more likely to present peptides from specific viral proteins compared to others. 
Those presentation biases may arise due to evolutionary fine-tuning of the HLA presentation 
machinery optimizing selection of non-self peptides, a subject for future studies. 
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Figures 
 

 
Figure 1. Overview of the study. A. In silico HLA ligandomes are generated by running HLA binding prediction 
software for the human peptidome (8- to 12-mers). HLA binders are then mapped back onto their parent proteins. 
Statistical analysis is performed to define sets of human proteins enriched or depleted in HLA ligands, HLEPs and 
HLDPs respectively. Functional analysis of these gene sets is performed using Gene Ontology (GO) category 
enrichment tests. B. GO annotation results are used to perform comparative analyses of HLA alleles, defining 
characteristic features of HLE(D)Ps. We show that preferred GO categories are clearly distinct between HLA alleles 
defining groups alleles with specific GO annotation profiles. These differences are however balanced and compensated 
by non-random selection of HLAs in HLA haplotypes observed in the population. C. Potential biases that shape 
HLE(D)P sets are explored, such as protein length, protein amino acid composition, together with the length of HLA 
ligands and HLA anchor residue types. D. Results are validated using real HLA ligandomes obtained from mass 
spectrometry data. E. Differences are identified  in non-self peptide presentation by various HLAs by studying HLA 
presentation preferences of viral proteins. We link viral and human peptide presentation by demonstrating the relation 
between self- and non-self protein presentation preferences for various HLAs. 
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Figure 2. Human genes enriched and depleted in HLA ligands and their associated Gene Ontology (GO) 
categories. A. Volcano plots showing the log of the ratio of observed and expected number of HLA ligands for each 
human gene plotted against enrichment P-value computed using binomial test. Point size shows number of predicted 
HLA ligands, point colour highlights genes enriched and depleted in ligands according to at least 2-fold increase or 
decrease in the number of ligands and adjusted P-value of < 0.05. Data for 6 selected HLA alleles are shown as 
separate plots. B. GO term enrichment analysis for human genes differentially presented by different HLAs. Point size 
represents the GO enrichment fold for genes enriched (yellow) and depleted (blue) in HLA ligands for each of 6 
surveyed HLA alleles. An adjusted P-value threshold of 0.01 was used as a threshold, Y axis lists the union of sets of 
top 20 GO categories for both ligand-enriched and ligand-depleted genes for each HLA allele. GO term names are 
preceded by either CC (cellular component), MF (molecular function) or BP (biological process) ontology name.  
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Figure 3. Amino acid composition of HLEPs and HLDPs for different HLA alleles. A. Comparison of amino acid 
composition of  HLEPs for the 6 selected HLA alleles and all proteins of the human proteome. Grey bars mark amino 
acids preferred by the allele in the anchor positions (P2 and/or P9) according to Supplementary Figure 1. Note that 
HLEPs tend to have a higher frequency of amino acids that are good anchors for this allele. Error bars show 95% 
confidence interval for the mean value. B. GO categories associated with HLDPs for 5 of 6 selected alleles (all but 
HLA-B*07:02). Ontology names: CC - cellular component, MF - molecular function, BP - biological process. C. 
Comparison of amino acid composition of proteins corresponding to GO categories from B. (only proteins which are in 
HLDPs for at least 1 allele were considered) and human proteome. Error bars show 95% confidence intervals for the 
mean value. Amino acids which are enriched in proteins corresponding to “commonly depleted” GO categories are 
glycine which can’t be used as anchors for most HLA alleles, and proline which dramatically affect peptide backbone 
conformation. HLA-B*07:02 represents a special case as this allele strictly prefers proline as anchor residue in P2.  
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Figure 4. Experimental validation of biased selection of self proteins presented by different HLA alleles and 
different HLA ligand lengths. A. Fraction of proteins presented by experimentally obtained HLA-A*02:01 and HLA-
A*11:01 ligandomes that correspond to a given GO category. The fraction is normalized by mean value for two alleles 
to highlight differences between proteins related to HLA-A*02:01 and HLA-A*11:01 alleles. Cellular component (CC) 
GO categories associated with proteins which are frequently presented by either HLA-A*02:01 (left panel) or HLA-
A*11:01 (right panel) according to in silico predictions were selected to match those in Figure 2B. Error bars show 1 
standard deviation of fractions.  B. Scatterplot compares the fraction of proteins presented by HLA-A*11:01 ligands of 
various lengths that correspond to a given GO category between in silico predictions and experimental data. CC GO 
categories associated with 9-12-mer ligands were selected to match those in Supplementary Figure 5. Colour shows 
ligand length at which maximum fold enrichment is reached for a given GO category.  
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Figure 5. Visualizing similarities between HLA alleles based on enriched GO categories of genes they tend to 
present. A. Principal component analysis (PCA) results for GO category fold enrichment profiles of various HLAs. GO 
enrichment profiles are computed based on gene sets obtained by mapping HLA ligands from the HLA ligand atlas 
dataset as the logarithm of observed to expected fraction of genes representing a given GO category. Colour shows 
HLA gene: A/B/C for class I and DR/DQ for class II. B. Distribution of pairwise distances between GO enrichment 
profiles of HLA alleles of the same and distinct HLA genes. Y axis corresponds to the HLA gene of the first HLA allele 
in each pair, the gene of the second allele is indicated by colour (same as in A.). Euclidean distance divided by the 
total number of GO categories is used. С. List of the top 10 GO categories that have most absolute weight in PC2 (see 
panel A.). Negative weight corresponds to dominance in class I HLA alleles, while positive weight corresponds to 
dominance in HLA class II. GO term names are preceded by either CC (cellular component), MF (molecular function) 
or BP (biological process) ontology name.  
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Figure 6. Differences in the number of ligands coming from viral genes presented by 12 different HLA alleles. 
A. Heatmap showing the logarithm of the ratio of observed to expected number of HLA ligands (presentation odds). 
Expected number of ligands for each gene and HLA pair was estimated as the sum of corresponding row and column 
of the matrix divided by the total number of ligands in the matrix. Dendrograms show results of hierarchical clustering 
of gene-wise and HLA-wise presentation profiles performed using complete linkage algorithm with Euclidean distance 
measure. Proteins from HIV (yellow), Influenza (blue) and SARS-CoV-1 (red) are shown. B. Absolute values of T-
statistic for observed pairwise correlation coefficients between viral gene presentation profiles of different HLAs (dark 
grey) compared to theoretical distribution (n=1000 random samples from null distribution with same number of degrees 
of freedom, light grey). C. An example comparison of viral gene presentation profiles between HLA-A*01 and HLA-
A*02 and HLA-B*27 alleles. Two-tailed paired T-test yields T statistic of 3.3 and P-value of 0.002. D. Comparison of 
SARS-CoV-1 and SARS-CoV-2 protein presentation odds across different HLA alleles. E. Correlation between distance 
in viral protein presentation odds profiles (Y axis) and distance in GO category profiles of HLA ligand-enriched human 
genes (X axis) for all HLA alleles. Each panel shows distances from a given HLA profile to profiles of each of the 
remaining 11 HLA alleles. Allele name and Pearson correlation coefficient are shown in panel title.  
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Figure 7. Bias in HLA presentation of proteins with different molecular functions is compensated in HLA-
A/HLA-B and HLA-A/HLA-C haplotypes. Distance in GO category profiles between pairs of HLA alleles of different 
genes (HLA-A and HLA-B, left panel; HLA-A and HLA-C, central panel; HLA-B and HLA-C, right panel). “Haplotype” 
set is composed of pairs of alleles constituting haplotypes with high frequency in one of the populations, “Control” is 
composed of random pairs of alleles from the “Haplotype” set (for details see Methods section). Statistically significant 
differences between the groups are for HLA-A/HLA-B (p-value = 5e-07, Mann–Whitney U-test) and HLA-A/HLA-C 
genes (p-value = 0.004, Mann–Whitney U-test). Higher values of the distance for “Haplotype” group indicate that pairs 
of alleles composing frequent haplotypes tend to present proteins with distinct functions. 
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