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Abstract: Polymers are long-chain, highly molecular weight molecules containing large numbers of
repeating units within their backbone derived from the product of polymerization of monomeric units.
The materials exhibit unique properties based on the types of bonds that exist within their structures.
Among these, some behave as rubbers because of their excellent bending ability, lightweight nature,
and shape memory. Moreover, their tunable chemical, structural, and electrical properties make
them promising candidates for their use as sensing materials. Polymer-based sensors are highly
utilized in the current scenario in the public health sector and environment control due to their rapid
detection, small size, high sensitivity, and suitability in atmospheric conditions. Therefore, the aim of
this review article is to highlight the current progress in polymer-based sensors. More importantly,
this review provides general trends and challenges in sensor technology based on polymer materials.

Keywords: shape memory; polymer-based sensors

1. Introduction

Smart materials are substances that respond to given impulses from external sources
via physical or chemical stimuli, resulting in changes in material characteristics. In the
current scenario, considerable interest is being devoted to polymers due to their reversible
or irreversible nature (changing properties under external stimuli), such as pH, light
radiation, temperature, and electric/magnetic fields [1]. Smart polymers exist in the form
of solutions, gels, self-assembled nanoparticles, films, or solids [2–5]. Researchers are
utilizing already known characteristics of these materials in more complex issues, such
as the controlled delivery of drugs and genes, catalysis, detection and imaging, adaptive
coatings, or self-healing materials [6–8]. Polymer-derived materials can be easily processed
and biocompatible [9–12]. Polymer-based sensors have gained considerable interest, which
is evident from the number of published research articles and the amount invested in this
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branch of study [13]. Sensors derive information about the environment in which they are
employed (locally/remotely). Polymer-based materials can be tuned through appropriate
synthetic or modification techniques, making polymers prominent in sensing devices [14]
with diverse applications [15].

Generally, analytical techniques for a sensor require sophisticated instrumentation
facilities, trained manpower, and scientific protocols that pose severe limitations to use
by common people. Hence, the topic of greater importance is the development of cheap
sensors employing a user-friendly approach. The most promising technologies for sen-
sor and biosensor processing are polymer-derived technologies. The common polymeric
materials used in sensing devices are hydrogels, conducting polymers, molecular imprint-
ing polymers, and composites and nanocomposites [16–19]. The materials employed in
these polymer sensors enhance the target molecular recognition as basic support for im-
mobilization of various functionalities (metal nanofillers, dyes, etc.,) and by altering the
physical/chemical properties, hence allowing target analyte detection [20,21]. Another
polymer-based sensor advantage is the chance of modifying their chemical characteristics
in such a way that their degradation resistance, flexibility, reactivity, and biodegradability
are tuned [22].

Thus, in light of the above-mentioned facts, the current review discusses various types
of polymer matrices for different sensing materials and the applications of various polymer
sensors. Moreover, much attention has been focused on the challenges and trends involved
in the current field of study. Examples of various types of polymer-based sensors (natural
and synthetic) have been discussed in this review.

2. Biopolymer-Derived Sensors

Natural (macromolecular) polymers are generated from plants/animals that are used
in a variety of applications, including the cosmetic industry, pharmaceutics, etc. They
are inexpensive, adjustable, widely accessible, degradable, and biocompatible. Never-
theless, microbes can destroy them, the degree of hydration varies, and metal ions can
contaminate the polymer surface [23]. Plant-derived materials include starch, cellulose,
acacia gum, hemicellulose, inulin, glucomannan, and pectin, whereas animal-derived
materials include chitin, chitosan, and alginate [23]. This homopolymer is made up of
D-anhydroglucopyranose units connected by a (1–4)-glucosidic linkage (Figure 1) [24].
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Figure 1. Structure of cellulose reprinted with permission from ref. [24]. Copyright 2010 American
Chemical Society.

Cellulose is colorless, odorless, adsorbent, and hydrophilic due to the paper’s vivid,
high-contrast, colorless backdrop, which is suitable for well-appreciated color changes, and
the surface groups get functionalized easily to generate orimetric sensors. Alberti et al. [25]
designed a Fe(III)/V(IV)-based sensor from cellulose functionalized by a powerful chelating
agent (deferoxamine [DFO]) that generates stable and colorful complexes. The DFO paper
sensor was created using a method proposed earlier by Takagi et al. [26], which comprises
hydroxyl group halogenation and later reaction with molecules of deferoxamine. Following
Fe(II) exposure, the RGB properties of the DFO–papers pictures were changed. Disposable
sensors could be generated from nanocellulose generated from nanofibers, nanostructured
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materials, or microorganisms. Cellulose nanofibers (CNFs) can be obtained and purified
from cellulose fibers of lignocellulosic materials (for example, wood, and agricultural
residue) using a variety of mechanical and chemical technologies [27]. Chauhan and col-
leagues [28] developed a new optical pH sensor based on dye-functionalized nanocellulose
production in a single step. The resultant nanomaterial is covalently linked with a Remazol
dye. The dye created a stable suspension where the color changed from bright red to
purple as the pH was altered from acid to alkaline. A disposable stick was made using
adhesive tape to adhere a section of the lignocellulose film to a plastic strip. It can detect pH
changes in a reversible and quick manner. Chitosan is another common biopolymer. This
macromolecule is a polysaccharide derived from the deacetylation of chitin, a molecule
found in the exoskeleton of shellfish [29]. It exhibits outstanding adhesive properties, film
permeability, water permeability, dimensional stability, and biocompatibility. Chitosan,
having a pKa of 6.3, is deployed as an electron acceptor in surface-modified sensors for
anions due to amines on the polymer’s surface. It is a fantastic conducting polymer that
has attracted significant attention as a sensor and is made from modified seafood waste
such as crab and shrimp. It is a special substance that can be used in microdevices because
of its high density of amine groups, which provide active bonding sites [30]. Chitosan has
great properties for use as an electrochemical and gas sensor. Furthermore, it has been
employed as a biosensor because of its remarkable film-forming characteristics and its
ability to maintain its inherent features. Chandrasa Karan et al. [31] used an electrochemical
deposition approach to successfully create a chitosan-based ammonia sensor that has all the
necessary characteristics of a dependable sensor, such as repeatability, sensitivity, recovery,
and speed in response to ammonia exposure. Furthermore, a sensor’s capacity to function
at room temperature with minimal energy consumption and fabrication costs makes it a
dependable sensor that can be employed in a variety of applications.

A quick self-healing bio-based polymer was utilized to examine perspiration in hu-
mans in real time, with the data being successfully sent to a smartphone. Perspiration
detector threads can be knitted into fabric or connected with a wireless flexible printed
circuit board (FPCB) for real-time sweat monitoring. The self-healing potentiometric ion-
sensing thread is made by covering carbon fiber thread (CFT) electrodes with a strong
citric acid-based supramolecular polymer capable of extraordinarily fast self-healing within
30 s at ambient temperature. These flexible threads may simultaneously detect electrolytic
potassium and sodium ions. After 30 s of healing, the sweat sensors demonstrate excep-
tional sensitivity and impressive self-healing efficiency (>97.0%). A wireless electrical
circuit board containing the built wearable ion sensor system was checked on humans
while they operated a bicycle [32].

Gogoi et al. [33] produced and characterized bio-based polymers derived from cur-
cumin, polycurcumin acrylate (PCUA), and polycurcumin methacrylate (PCUMA). Picric
acid and nitrobenzene are chemically sensitive to these polymers. PCUMA is more effec-
tive than PCUA as a nitroaromatic vapor sensor. At ambient temperature, the polymer
is also a good nitroaromatic compound detector. The presence of aromatic rings in the
monomer allows for graft polymerization and copolymerization, which could lead to a
novel nitroaromatic sensor with an improved response. This sensor has the advantage of
being able to detect a variety of nitroaromatic chemicals while also being reversible.

3. Synthetic Polymer-Based Sensors
3.1. Polymers Using Molecular Imprinting (MIPs)

The template-induced synthesis of chemically synthesized transmitters in a polymer is
known as molecular imprinting. Specific recognition sites generated by molecular imprint-
ing offer remarkable properties, such as good specificity durability as well as competitive
prices, providing compounds tempting substitutes to natural transmitters. Advances in
nanotechnology and polymer science have also helped in the performance of screen-printed
carbon polymer (MIP) sensing devices. The importance of molecular recognition in bio-
logical processes cannot be overstated. It is currently the subject of several studies due to
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its catalysis and sensing applications. Modern sensor studies aim at developing synthetic
receptors that could provide natural interactions between antibodies and antigens, taking
both sensitivity and specificity into consideration. The electrochemical deposition process
includes creating recognition sites for polymer molecules, which function as templates.

The linkages between the framework and functional monomers were also maintained
throughout polymerization and were stabilized by crosslinking in the polymer [34]. A
general process of imprinting is shown in Figure 2.
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The interaction of the monomer with the template tends to form a cavity around the
molecular template; the template is later removed, thus leaving behind the imprinted cavity
for target molecular rebinding. The sensor sensitivity has a value of 2.1 W/% RH and an
89 percent repeatability with recovery and response times 155 and 25 s correspondingly. As
more than just an outcome, the developed MIP may detect the target analyte preferentially
in the template-derived locations [35,36]. A molecularly imprinted polymer magnetic
nanoparticle system is depicted in Figure 3.
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Figure 3. (Top) Schematic imprinted magnetic nanoparticle synthesis. (Bottom) Representation of
imprinted nanoparticles attached to thiol ligands on a gold surface for sensing. Reprinted with
permission from the reference [36]. Copyright 2019 American Chemical Society.

Enzymes, proteins, bacteria, viruses, metal ions, poisons, and other templates may
all be imprinted with molecular imprinting polymers. They are promising materials,
particularly in sensor systems, due to their precise recognition sites.

Multi-threading sensors seem to be effective and inexpensive biomolecule sensors.
They can be employed in electrical, chemical, optical, and electromechanical monitoring
modes [37]. The interaction of an electrolyte and receptors on the surface of an electrode is
the basis for electrochemical sensors. In one intriguing study [38], for example, a voltametric
theophylline-based sensor for sol-gel immobilized (MIPs) is given. Theophylline has been
used to treat infections and serious lung sickness for over 70 years due to its low cost
and broad availability. Microspherical and macroporous MIP particles were immobilized
on the surface of a carbon electrode using the sol-gel process, together with graphite
(the conducting medium). An alternating heartbeat-modified electrode is utilized as a
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voltametric method to quantify methylphenidate at concentrations as low as 1 M, yielding
findings that are comparable or lower than those reported by electrochemical methods.
Another unusual yet intriguing work [39] created an MIP-based duplex novel nucleotide
recognition sensor. In one case, a cocaine potentiometric MIP nanoparticle-based sensor
was developed [40]. Cocaine is a popular recreational drug; its excessive usage causes
symptoms such as internal bleeding, depression, and respiratory arrest, and its use has
economic and social ramifications. As a result, it is necessary to develop sensitive and easy
cocaine detection technology, especially for either medical or investigative applications.
This novel potentiometric biosensor has been built on functionalized polymer nanoparticles
(nano MIPs), which are created by a decent optimization phase. A novel potentiometric
sensor is built on nanocomposite membrane polymer nanoparticles (nano MIPs) which are
created by a solid-phase imprinting process. Nano MIPs manufactured using functional
monomer as the acrylamide exhibited the maximum yield and responsiveness to cocaine
which is the reason for their choice in device fabrication. A recent study [41] presented
temperature-sensitive electrical and chemical sensors derived from MIPs for serum albumin
detection in bovines. A hydrogel (thermoresponsive)-derived biosensor is based on a layer
formed on the surface of a glassy carbon electrode by free radical polymerization. When
external temperature stimulation is administered, a permanent structural change in MIP
promotes bovine serum albumin (BSA) sensing. The BSA sensor performed admirably in
terms of selectivity, stability, recovery, and repeatability.

MIP-based optical sensors are classified into two types: (i) MIP affinity sensors and
(ii) MIP optoelectronic sensors. For MIP affinity sensors, the devices are capable of detecting
analytes possessing properties such as fluorescence, absorbance, and refractive index. For
optoelectronic sensors, binding at the analyte/MIP site leads to increased absorbance
at a certain wavelength, fluorescence quenching, or a change in refractive index [42,43].
Wren and colleagues [44,45] created a fluorescent optical fiber chemical sensor for cocaine.
A fluorescent probe for optical fibers was made by synthesizing a rationally selected
fluorophore and then incorporating it into a molecularly imprinted polymer. The amount
of fluorescence emitted is proportional to the amount of cocaine present in a sample.
This sensor is promising with a detection limit of about 1 M, and it takes research in a
new direction by providing a rapid and low-cost approach that could be beneficial in
drug forensics. Furthermore, they talked about certain MIP-based electrical, chemical,
and optical sensing devices, emphasizing their applicability to real-world samples. MIPs
moved beyond simple technology demonstrators. The goal at hand should be to scale up
production, increase robustness, and find a sustainable market.

3.2. Sensors Based on Conducting Polymers

Compounds have been differentiated via their potential to delocalize their pi electrons.
Polyacetylene could be turned into a conducting polymer upon doping with Br2 and I2
during the first time by MacDiarmid, Shirakawa, and Heeger in 1972 [46,47]. In 2000,
this invention was recognized with the Nobel Prize in Chemistry. Conducting polymers
provide numerous advantages, including the ability to be doped to display metallic and
semiconducting properties. The materials can combine plastic and electrical properties.
They may be altered, decomposed in non-polar solvents, and printed using low-cost tech-
niques. However, there are certain disadvantages, such as a lack of long-term stability. They
have a wide range of applications due to their characteristics, including supercapacitors,
nanocoatings, catalysis, biomedicine, and sensors [48,49]. Polyaniline, polyacetylene (PA),
polypyrrole, poly(para-phenylene), and polyfuran were the most often utilized conducting
polymers (Figure 4).
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Due to their redox activity, this class of polymers is used as a gas detector in sensing.
Performance-enhancing drugs can be a p-type or n-type configuration and can change
the polymer from a semiconductor to a conducting one. In p-type polymers, the electron
migration is from the HOMO-LUMO polymer (chain HOMO) to doping agent LUMO. This
transition leads to the creation of polymer holes, causing them to lose electrons. When
an oxidized polymer (p-type) is exposed to a reducing agent (CO, NH3, CH4, H2, H2S,
acetone, or ethanol), its resistivity rises; conversely, when the polymer’s surface reacts
with an oxidizing agent (NOx, CO2, SO2, O2, or O3), its resistivity reduces [50,51]. Korent
et al. [52,53] reported an inexpensive NH3 sensor based on the polyaniline functionalization
of a screen-printed electrode (SPE). The SPE was altered in this study by electrochemically
polymerizing polyaniline in HCl. The compiled signal is produced by the reaction of
the oxidized polymer substrate (PANIH+) and NH3; this electron exchange produces an
electric flow.

PANIH+ + NH3 PANI + NH4
+

Sensors built of conducting polymers are more accurate than GC/MS. Sensor device
assembly should be mechanized, for example, using 3D technology, with a reaction time of
a few seconds [54,55]. Forzani et al. [56,57] investigated a glucose oxidase-based electro-
chemical sensor (GOx). The sensing array is composed of junctions of nano polyaniline,
where electropolymerization of monomer takes place in the presence of poly (acrylic acid).
GOx increases glucose oxidation to gluconolactone, followed by enzyme degradation to
GOx (FADH2). The reduced enzyme combines with the oxygen in the solution, resulting in
the formation of GOxFAD and H2O2. The conductive polymer is oxidized by peroxide in
the last phase.

glucose + GOx(FAD)→ gluconolactone + GOx(FADH2)

GOx(FADH2) + O2 → GOx(FAD) + H2O2

PANIred + H2O2 → H2O + PANIox

Swager et al. [58] assembled a Na+-based sensor by conducting polymer polythio-
phene. The first part was carried out by modifying polythiophene with a crown ether. The
polymer in an unbound state maintains molecular planarity by distortion of the pi electron
cloud. On complex formation with Na+, there is a twist in the structure because a structure
distortion takes place, leading to a decrease in conjugation and conductivity (Figure 5).
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The glucose oxidase is then bonded to the polymeric surface. GOx promotes enzyme
degradation to GOx(FADH2) and oxidation of glucose to gluconolactone. The reaction of
the reduced enzyme and oxygen in the solution phase produces GOxFAD and H2O2. In the
last step, the conductive polymer is oxidized by peroxide [59,60]. The conductivity of the
polymer reduces when it is electrochemically oxidized in the presence of Na+. The impact
is likeliest due to the higher inductive action of macrocyclic oxygens [61,62]. To summarize,
conducting polymers are widely employed in all types of sensors due to their adjustable
electronic properties, simplicity of polymerization, and inexpensive production costs.

3.3. Sensors Based on Acrylic Polymers

The use of acrylic polymers in sensing is attributed to the sensing functionalities that
are covalently bound to the polymeric backbone, which can be tailored to process materials
with diverse properties. The commonly used acrylic polymers employed for this purpose
are derivatives of acrylamide, their copolymers, and meth/acrylic acid. Various functional
groups can be incorporated into acrylic moieties for designing sensor-based materials [63].
Garcia et al. reported acrylic-based sensors with fluorescent/colorimetric properties for
various analytes [64,65]. The strategy consisted of thin film polymer preparation by radi-
cal polymerization, where 1-vinyl-2-pyrrolidone served as the hydrophilic base, methyl
methacrylate (MMA) monomer as the hydrophobic part, and a sensory unit (side group
reactive moiety). In one of the works on polymers based on ninhydrin, the evolution of
“chronic human wounds” was pictorially represented (Figure 6) [66].
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The package includes a colorimetric polymer film that changes color when exposed to
amino acids. The kit allows for the quantification of total amino acid content by examining
the color properties of a sensory film (RGB) acquired from smartphone images. This gadget
can aid in the diagnosis of chronic human ailments by providing an analytical procedure
that is not influenced by subjective assessment [67,68]. It can create a pH polyacrylate-based
sensor where polyacrylic acid (PAA) is obtained utilizing a free radical polymerization
approach in aqueous media. The use of ultrasonic energy allows for more robust and
environmentally friendly polymerization. PAA is then utilized as a capping agent in the
synthesis of AgNPs in the absence of any UV/gamma radiations or any additional reducing
agents. Another noteworthy work discussed the creation of an optoelectronic humidity
sensor based on Sc(III) polyacrylics [69,70]. To investigate the sorption/desorption of
humidity at normal temperature, nanostructured scandium polyacrylate was placed on
flat borosilicate substrates. The use of ultrasonic energy allows for more robust and
environmentally friendly polymerization. PAA is then utilized as a capping agent in
the synthesis of AgNPs in the absence of any additional reducing agents or UV/gamma
radiations. The resulting Ag-PA sol was used to detect pH with the naked eye. This study
is an example of a feasible low-cost pH sensor based on a colorimetric smart polymer.
Another noteworthy work discussed the creation of an optoelectronic humidity sensor
based on Sc(III) polyacrylic [71]. To investigate the sorption/desorption of humidity at
normal temperatures, nanoscandium-polyacrylate was placed on flat borosilicate surfaces.
The sensor has a sensitivity value of 2.1 W/% RH and 89% repeatability; the sensor’s
response and recovery times are 25 and 155 s, respectively. It appears to be a viable
humidity-measuring gadget.

3.4. EVOH Polymers

Because of its barrier qualities against gases and humidity, EVOH is a diblock copoly-
mer consisting of ethylene and vinyl alcohol, which is extensively used in the food packag-
ing and pharmaceutical sectors. When ethylene and vinyl alcohol monomers are copoly-
merized, the keto–enolic tautomeric balance moves to the aldehydic form (Figure 7), due
to which the structure cannot be achieved. As a result, the most often employed synthetic
process calls for ethylene and vinyl acetate as monomers, followed by hydrolysis [72].
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EVOH is offered on a large scale in various ethylene proportions, viz., 27%, 32%,
38%, and 44%; the variable percentages of monomers result in divergent railing qualities in
opposition to gases and solubility in organic solvents. Excess ethylene rates in the formation
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render the diblock copolymer very hygroscopic and, as a result, with less restraining
characteristics when creating hydrogels [40]. It is critical to emphasize that the tacticity
and novel functionalities on the polymer’s surface influence its solubility. EVOH is a great
contender for sensor development due to its outstanding mechanical characteristics and
the simplicity of surface functionalization. Cui et al. [41] used EVOH as a polymeric solid
phase to construct a sensor for measuring Cu2+ in an aqueous solution.

The basis of this sensing approach is the quenching of luminescence by Cu2+. Because
nitrogen likeliest correlates with the metal cation, an electron shift from pyrene to Cu2+

occurs, encouraging nonradiative relaxation. In the presence of Fe3+ and Hg2+ in the
suspension stage, measurements were purchased. These cations produced a modest level
of gleaming quenching. As a result, the suggested approach may be regarded as selective
against Cu2+ in solution [48]. Magnaghi et al. [73,74] created an intriguing novel polymeric
optode for high-protein food deterioration based on an EVOH copolymer. In this work,
EVOH was functionalized with several dyes (Figure 8), which caused the color to change
at different pH levels.
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The sensors alter color based on the ambient pH in which they are placed. Likewise, Al-
berti et al. [75,76] generated a sensor for Fe(III) in which EVOH was utilized as a solid state.
Deferoxamine meylate (DFO) and 3,4-hydroxypyridinone ligand (KC18) functionalized the
copolymer. These ligands tend to form tinted composites with Fe(III).

Lopez-Carballo et al. [77] created an O2 chromatic sensor using blue methylene,
glycerol, TiO2, and EVOH. To protect the content, the presence of oxygen within food
packaging must be avoided. The researchers combined TiO2, glycerol, and methylene
blue in the EVOH network to create a detecting solid phase. The resulting substance was
utilized to create layers and coatings. The sensing procedure is depicted in Figure 9.
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EVOH can be effectively used in the development of chemical sensors, especially as a
brace for acquiring extrudable substances, which, in theory, is appropriate for experimental
utilization because of its tendency to liquefy in hydro-alcoholic blends and applied to
pliable substrates via coating or printing processes.

3.5. Polymer Inclusion Membranes

Polymer inclusion membranes (PIMs) are liquid membranes based on polymers,
invented over 50 years ago, and are employed as the recognizing component of ion-
selective electrodes and ocular detectors (optodes). PIMs have recently been used in
specimen development and preconcentration, passive sampling, and may be integrated
into networked and self-operating devices. A PIM is made of a liquid state and a polymeric
brace, which is commonly PVC, cellulose triacetate, or polyethylene glycol (vinylidene
fluoride-co-hexafluoropropylene). The polymeric component serves as the membrane’s
skeleton, providing mechanical strength. An extractant (carrier) in the liquid phase holds
the analyte via ion–couple development or complex formation. Some conveyors have
plasticizing properties; however, during membrane production, an extra conditioner is
introduced to improve elasticity or increase the solubility of the analyte in the liquid state.
PIMs are generally made by liquefying all the ingredients in a tiny amount of evaporative
solvent (dichloromethane or tetrahydrofuran) and diffusing them. The solvent was gently
evaporated until a homogenous and clear PIM on the fling surface, which might be level
or columnar, was produced. An ion-choosy electrode can be created by casting a film
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on the tip of the electrode. By including a chromophore in the membrane composition,
flat-sheet PIMs may be employed to create optical sensors [78,79]. The gold nanomaterial
polymer inclusion membrane was used as a recognizing stage, as well as to immobilize
the immunizer. The suggested sensor has the capability for in-place food checks due to its
easy investigational technique and the mobility of potentiometric apparatus. The proposed
platform’s strong performance was proven by an operating span of 1.3–13 × 106 cells mL−1

and an LOD of 6 cells mL−1, which were equivalent to previous electrochemical label-free
immunosensors for ST. The suggested technique may be used for any bacteria–antibody
coupling by simply altering the particular antibody and adjusting the AuNP-PIM. For Zn(II)
determination, a disposable optode was designed [45]. It is made by immobilizing a dye,
2-acetylpyridine benzoyl hydrazone (2-APBH), in a polymer insertion sheet adhered to the
outer side of a polyester band. An investigational factorial blueprint is used to optimize the
sheet constitution to get a substance with a pleasing look, as well as appropriate concrete
and visual qualities. The best sheet was made of 2.5 g PVC, 4 mL tributyl phosphate, and
40 mg 2-APBH. The optical sensor has a level span of 0.03 (i.e., the LOD) to 1 mg L1 of Zn(II),
and it reacts for almost 30 min when submerged in aqueous solutions with a pH of 6. The
reactivity to Zn(II) is superior to that of other ordinary cations. The instrument is used to
determine Zn(II) levels in an authenticate reference material, perforated tap water, mineral
drinks, food amalgamators, and foot health protection items, yielding consistent findings.
This section emphasizes the rising interest in PIMs in chemical sensing. The fabrication of
tiny PIM-rooted tools with inflated reactivity and suitability for environmental, biological,
and clinical study will be a future challenge [80].

3.6. Polymer Composites and Nanocomposites

Polymer nanocomposites (PNCs) are formed by the fusion of a polymeric phase (con-
tinuous) with a discontinuous phase of nanofillers. Numerous advantages in mechanical,
optical, and electrical qualities have piqued the interest of experts all around the world.
PNCs may be manufactured in a variety of forms, making them ideal for the development
of chemical and biological sensors. Nanostructured polymers have a significant influence
on biological and technological fields, particularly in drug delivery, catalysis, and sensing
applications [81,82]. Table 1 shows the PNCs are good candidates for electrochemical
sensor development due to their high electrical conductivity, huge surface area, and quick
electron rate. They comprise inorganic nanomaterials in combination with conducting
polymers/CNTs/graphene [83,84].

Recent breakthroughs in nanotechnology/wearable devices have emerged as signifi-
cant progress in health care and medical diagnostics, robotic systems, prostheses, visual
realities, and professional sports. The use of wearable sensors for the detection of motion
and body signals is done by attachment to clothing or fastening to human skin with ad-
hesive straps [85]. An intriguing paper [86] revealed that piezoresistive sensors can be
developed as strain sensors employing a copolymer of (styrene butadiene styrene) as the
matrix, supplemented with conducting media in the form of carbon nanofillers. Extrusion
or spray printing processes were used to create these sensors, which enabled scaling up
and inclusion in novel devices. Figure 10 depicts a thermal display glove system, which
has a linkage between a physiological process and a virtual condition.
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Graphene is a newly discovered two-dimensional carbon substance. Its clever elec-
trical, optical, and mechanical qualities make it a good candidate for strain sensors.
Chun et al. [87,88] developed graphene-based sensors on a stretchy polydimethylsiloxane
substrate that can detect microscopic stresses (up to 0.1%) and provide unique output
signals. This sensor can detect stretching, bending, and torsion in the human body. The
efficient coupling of diverse nanomaterials and conducting polymers with conductive
polymers offers new avenues for using PNCs in high-performance biosensing and electro-
chemical sensing [89].

Table 1. Table summarizing various polymers/polymer nanocomposites, analytes, immobilization
techniques, and LOD.

S. No. Polymer/Nanocomposite Analytes Techniques of
Immobilization Detection Limit References

1. Polyaniline Urea/Glucose Encapsulation - [90]

2. Polypyrolle Glucose Cell coating 0.005 mM [91]

3. Polyaniline E. coli Covalent linkages 10 CFU/mL [92]

4. Polypyrolle Catechol Entrapment 1.8 µM [93]

5. Ferrocene Polypyrolle M. tuberculosis - 1 aM–100 fM [94]

6. Polyaniline/MWCNT-Polymethylene
blue Cardiac troponin T - 0.10 to 8.0 pg/mL [95]
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3.7. Sensors for Antioxidant Activity

The expected substances for the formation of electrochemical sensors are natural
electropolymerized phenolic antioxidants. Electropolymerization of the antioxidants of
these substances enables the development of heat-proof polymers. Electro-agile polymeric
films capable of functioning as redox-arbitrators and furnishing an electrocatalytic action
on the oxidation of organic substances are formed of phenolic antioxidants comprising
catechol specks in their composition. To get the extraordinary feedback of the intent analyte,
the electropolymerization circumstances need to be optimized. The conduction of innate
phenolic antioxidant substances can be accelerated by integrating them with conveying
substances such as carbon nano substances, metals, or metal oxide nanomaterials. This
perspective has a positive influence on electroconductivity, as well as the efficient outer area
of the detector on which polymer electroplating is done. The integration of reformed films
elevates the reactivity and specificity of the intent analyte feedback. Moreover, display-
imprinted electrodes with already accumulated nano substances of carbon, metal, or oxides
of metals can be utilized for restricting polymeric coverage, which is beneficial for day-
to-day investigation. This ultimately leads to a decrease in sensor synthesis time, and the
analysis procedure. The poriferous shape of polymers offers different advantages, enabling
their use as a reactive film of the detector that provides feedback to a broad spectrum of
biological and inanimate substances. The polymeric sheets can work as a semipermeable
layer, thus allowing the formation of electrochemical detectors for substances of less
molecular weight, such as hydrogen peroxide, nitric oxide, and ascorbic acid. The existence
of electron-giving atoms in the polymeric layered construction enables it to adhere to heavy
metals, furnishing their preconcentration on the outer side of the detector. The perforated
setup of the polymeric coverage of organic analytes has the potential to adsorb specimens
due to the constructional uniformity and size outcome, specifying both the single or batch
reactivity of the detector produced and their broad implementation area in electroanalysis.
The establishment of innate phenolic antioxidants and all antioxidant criteria is of peculiar
interest and has a notable experimental perspective.

4. Use of Polymers in Biosensing and the Role of Cellulose in Biomarker Detection

Biomarkers are considered biologically existing molecules, a gene by which a particu-
lar disease or pathological condition can be detected. Cancer biomarkers are studied as
a subcategory and can be defined as a biofluid or any biological blood entity that distin-
guishes between a normal and abnormal biological state [96]. Cellulose paper, owing to
its promising thermal and mechanical strength and highly biocompatible nature, makes it
a promising candidate for the designation of a non-invasive diagnosis of several disease
biomarkers. In the case of polymer-based biosensors (PBBs), cellulose paper is utilized
as semi-rigid/rigid scaffold possessing numerous pores enabling storage of immobilized
reagents [97]. Das et al. [98] reported work on modified cellulose for cancer biomarker
detection using fluorescent spectroscopy. The modified cellulose-based assay detected
epithelial cell adhesion molecules both in the buffer and about 10% of bovine solution,
utilizing reaction times of less than half an hour. In another study, Lin et al. [99] reported
cellulose paper functionalized by dopamine for use as a visualized biosensor. The devel-
oped biosensor exhibited some indispensable properties, such as portability, disposability,
and visible characteristics, in comparison to other known biosensors. Some paper-based
sensors have also been used as immunosensors in pregnancy testing and the evaluation
of blood glucose levels. The prime challenge for this type of sensor is scant concentration
of cancer biomarkers at early stages of the tumor, and efforts are being made to achieve
higher sensitivity by tuning the signal amplifications. The paper-based sensing devices
being able to handle easily pose several challenges. The serious challenge is maintaining a
higher bioactivity of the recognition molecules of cellulose paper-based devices. As a result,
antibodies, and enzymes become prone to oxidation when moist, which are otherwise
protected from oxidation under dry conditions.
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5. Grand Challenges

Polymer-based sensors have been found to face the following challenges:

i. In search for selection of right precursors, followed by refining and devising the
mechanisms of reaction and mechanisms that allow a measurable signal detector to
be obtained;

ii. Searching novel materials for incorporation as polymer matrices;
iii. Development of pH based and ion-selective sensors;
iv. Doing trails for automating the process of procurement of polymer-based sensors.

However, research on sensors based on polymers is ongoing, and new solutions
are sought to fully understand the mechanism of the reaction. Majumdar and Adhikari
discussed various trends that could prove to be of prime importance when evaluating the
work done for polymer-based sensors in the upcoming years:

i. Utilization of chemical alterations for immobilization improvement of receptor molecules.
ii. Search of novel techniques and smart materials for their processing.
iii. Development of sensing materials capable of responding to various stimuli in

distinct ways.
iv. Investigating the biochemical reactions in non-aqueous media.

The use of polymers in sensing applications is not restricted to softness, lightweight-
ness, flexibility, low production costs, and longer shelf lives. Moreover, by changing the
nanomaterial dimensions, the property of sensing can be increased up to a considerable
limit to attain a calculated limit of detection and high sensitivity.

6. Concluding Remarks

Taking all the parameters into consideration, polymer-based sensors incorporating
appropriate modifications or specific functionalities may be used as highly specific sensors.
The use of polymers in sensing can be either directly or by immobilization of specific
receptors onto them. The benefits of using polymers as sensors are not restricted to their
ease of functionalization, biocompatibility, longer lifetimes, lightweightness, softness, and
cost-effective production. There has been a focus on significant modifications for better
performance and to take the sensors from the lab into the device marketing applications.
Collaboration at interdisciplinary levels between computational scientists, engineers, and
chemists will provide a boost in the implementation of large-scale production and develop-
ment to overcome these obstacles.

7. Future Perspectives

Although much work has been reported in the field of sensing materials, there is
still some unexplored area in which work needs to be done. The need to develop sensors
possessing a good limit of detection (LOD) and higher order of selectivity/sensitivity has a
specific need in pharmaceutics, herbicides, and pesticides. Moreover, conducting polymer-
based/MO nanofiller-based nanocomposites are still unexplored. The nanocomposites
based on transition metals/metal oxides can serve the purpose of biosensor/electrochemical
sensor both as a result of their prominent color change nature.
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