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Improving the DNA specificity and applicability of
base editing through protein engineering and
protein delivery
Holly A. Rees1,2,3, Alexis C. Komor1,2,3, Wei-Hsi Yeh1,2,3,4,5, Joana Caetano-Lopes6,7, Matthew Warman6,7,

Albert S.B. Edge4,5,8 & David R. Liu1,2,3

We recently developed base editing, a genome-editing approach that enables the program-

mable conversion of one base pair into another without double-stranded DNA cleavage,

excess stochastic insertions and deletions, or dependence on homology-directed repair. The

application of base editing is limited by off-target activity and reliance on intracellular DNA

delivery. Here we describe two advances that address these limitations. First, we greatly

reduce off-target base editing by installing mutations into our third-generation base editor

(BE3) to generate a high-fidelity base editor (HF-BE3). Next, we purify and deliver BE3 and

HF-BE3 as ribonucleoprotein (RNP) complexes into mammalian cells, establishing DNA-free

base editing. RNP delivery of BE3 confers higher specificity even than plasmid transfection of

HF-BE3, while maintaining comparable on-target editing levels. Finally, we apply these

advances to deliver BE3 RNPs into both zebrafish embryos and the inner ear of live mice to

achieve specific, DNA-free base editing in vivo.
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T
raditional genome-editing agents introduce double-
stranded DNA breaks as the first step of genome
editing1–4. Cells respond to double-stranded DNA breaks

primarily through non-homologous end joining, resulting in
stochastic insertions or deletions (indels) at the cleavage site1,5.
To generate more precise changes in genomic DNA, homology-
directed repair (HDR) can be used to replace the genomic DNA
surrounding the cleavage site with that of an exogenously
supplied DNA donor template6–8. Unfortunately, HDR is
typically accompanied by an excess of indels resulting from
competing non-homologous end joining and is limited primarily
to mitotic cells. In addition, most genome-editing methods rely
on delivery of exogenous plasmid or viral DNA into mammalian
cells followed by intracellular expression of the agent9–12. These
delivery methods result in continuous, uncontrolled Cas9 and
sgRNA expression even after the on-target locus has been edited,
increasing the opportunity for genome editing at off-target
loci1,13.

We recently described base editing, a different approach
to genome editing that enables the direct, programmable,
targeted conversion of a C:G base pair to a T:A base pair3,14.
The third-generation base editor, BE3, contains in a single protein
(i) a catalytically impaired Cas9 that opens a small single-stranded
DNA bubble at a guide RNA-specified locus, (ii) a tethered single-
strand specific cytidine deaminase that converts C to U within a
window of approximately five nucleotides in the single-stranded
DNA bubble, (iii) a uracil glycosylase inhibitor that inhibits base
excision repair, thereby improving the efficiency and product
selectivity of base editing and (iv) nickase activity to manipulate
cellular mismatch repair into replacing the G-containing DNA
strand. The combination of these components enables efficient and
permanent C to T (or G to A) conversion in mammalian cells with
minimal indel formation. Since our initial report14, other
researchers have confirmed the ability of this strategy and related
approaches to facilitate Cas9-directed C to T conversion in
mammalian cells15–17 and in plants18.

Here we describe two advances that greatly improve the DNA
specificity of base editing and that allow base editing in vitro and
in vivo without supplying exogenous DNA, which has been
associated with a risk of recombination with the host genome and
cytotoxicity18,19. First, we engineer a mutant form of BE3
incorporating mutations known to decrease the DNA affinity of
Cas9 (ref. 20) that reduces off-target editing events with only a
modest decrease in on-target editing activity. Next, we reveal that
lipid-mediated delivery of base editor proteins complexed with
guide RNA results in even larger specificity enhancements with
no apparent reduction in on-target base editing compared to
plasmid DNA delivery. Delivery of base editors as
ribonucleoproteins (RNPs) typically reduces off-target editing to
below measurable levels, even for a notoriously promiscuous
guide RNA that targets a highly repetitive genomic DNA
sequence, in cultured human and mouse cells. These advances
enable us to demonstrate highly specific, DNA-free in vivo base
editing in mice and zebrafish.

Results
Engineering a high-fidelity base editor. Cas9 nucleases and their
associated fusion constructs have been shown to bind and cleave
DNA at off-target genomic loci21–24. Joung and co-workers20

developed HF-Cas9, a high-fidelity SpCas9 variant containing
four point mutations (N497A, R661A, Q695A and Q926A) that
were designed to eliminate nonspecific interactions between Cas9
and the phosphate backbone of the DNA target strand (Fig. 1a)
consistent with the previous abrogation of nonspecific DNA
interactions in TALENs that greatly increased their DNA cleavage

specificity25. Since base editors operate on the non-target strand
within the single-stranded DNA bubble created by Cas9 (ref. 14)
we hypothesized that introducing these four point mutations
from HF-Cas9 into BE3 to generate ‘HF-BE3’ might reduce
off-target base editing without altering its base conversion
capabilities (Fig. 1a,b).

Plasmids encoding BE3 and HF-BE3 as His6-tagged proteins
were overexpressed in Escherichia coli and purified first by
nickel affinity chromatography and then by cation exchange
chromatography (Supplementary Fig. 1a,b). Following extensive
optimization of expression and purification conditions, BE3
and HF-BE3 protein can be routinely produced at a yield of
B2 mg l� 1 of culture media (Supplementary Fig. 1a–c).

We used the purified base editor proteins to compare base-
editing efficiency and the width of the editing window of HF-BE3
and BE3 biochemically. We measured in vitro C to U conversion
efficiencies in a synthetic double-stranded DNA (dsDNA) 79-mer
with a protospacer comprised of TC repeats. The target dsDNA
(250 nM) was incubated with BE3:sgRNA or HF-BE3:sgRNA
(2 mM) for 30 min at 37 �C. After incubation, the edited DNA was
amplified using a uracil-tolerant polymerase and sequenced
by high-throughput DNA sequencing (HTS). We observed
comparable editing efficiencies and activity window widths for
HF-BE3 and BE3 in vitro (Fig. 1b). These findings indicate
that introduction of the high-fidelity mutations into BE3 does
not compromise inherent on-target base-editing efficiency
or change the width of the editing window of the resulting
HF-BE3 protein in vitro.

HF-BE3 enhances editing specificity following transfection.
Next, we compared base-editing efficiencies, specificities and
editing window widths of BE3 and HF-BE3 in mammalian cells
following plasmid DNA transfection. We chose four well-studied
endogenous genomic loci (HEK293 site 3, FANCF, EMX1
and VEGFA site 2) to interrogate on- and off-target base
editing in mammalian cells14,24. VEGFA site 2 is highly repetitive,
containing 14 Cs out of 20 protospacer nucleotides, and is
associated with notoriously high rate of known off-target genome
editing20,22,24,26. We chose to include this site because it poses
a formidable specificity challenge. In contrast with most
nuclease-based genome-editing applications, base editing relies
on the precise location of the protospacer to place the target
nucleotide within the editing window and usually little or no
flexibility in the choice of guide RNA is available. Therefore, the
development of base editors with enhanced specificities even for
highly repetitive, promiscuous sgRNA targets is crucial3,14.

We amplified by PCR and analysed by HTS the on-target locus
and known off-target loci following plasmid transfection24 with
each of the four base editor:sgRNA pairs. On-target editing in
HEK293T cells for these four endogenous genomic loci was
slightly reduced by introduction of the HF mutations; editing
averaged 29±5% with BE3, and 21±3% (mean±s.e.m. for n¼ 3
biological replicates) for HF-BE3 (Figs 2a–d and 4a).

For each of the three standard, non-repetitive target sites
(HEK293 site 3, FANCF and EMX1), we examined the three most
frequently modified off-target loci that contain a C within
the editing window from the off-target loci previously reported
to be modified from treatment with Cas9 and the same guide
RNA (Supplementary Table 2)24. When cells were transfected
with BE3 plasmid, C-T conversion across the nine most
frequently modified Cas9 off-target loci for HEK293 site 3,
FANCF and EMX1 averaged 1.1±0.3% (Fig. 2a–c; mean±s.d.
for n¼ 3 biological replicates). Installation of the HF mutations
reduced the absolute level of the mean off-target editing
by 37-fold to 0.03±0.005%, with only one instance of
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measureable off-target C-T conversion (Fig. 2a; EMX1 C5 at
off-target 1).

To characterize HF-BE3 specificity on an extremely challen-
ging site, we compared BE3 and HF-BE3 off-target activity when

targeting the highly repetitive VEGFA site 2 locus. BE3 treatment
leads to an average of 15±5% editing of cytosines located in the
activity windows of the four tested off-target sites associated with
this sgRNA (all average values quoted in this paragraph represent
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Figure 1 | Engineering and in vitro characterization of a high-fidelity base editor (HF-BE3). (a) Schematic representation of HF-BE3. Point mutations

introduced into BE3 to generate HF-BE3 are shown in green. The representation used PDB structures 4UN3 (Cas9), 4ROV (cytidine deaminase) and 1UGI

(uracil DNA glycosylase inhibitor). (b) In vitro deamination of synthetic substrates containing ‘TC’ repeat protospacers. Values and error bars reflect the

mean and range of two independent replicates performed on different days.

C5 C6

C5 
off

-ta
rg

et
 1

C5 
off

-ta
rg

et
 2

C6 
off

-ta
rg

et
 2

C5 
off

-ta
rg

et
 3

C6 
off

-ta
rg

et
 3

0

10

20

30

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s 
w

ith
ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T Plasmid delivery, BE3

Plasmid delivery, HF-BE3

Untreated control

EMX1 on-target : GAGTC5C6GAGCAGAAGAAGAAGGG

*

*

*
*

* *

***
***** **

C6 C7 C8
C11

C5 
off

-ta
rg

et
 1

C6 
off

-ta
rg

et
 1

C7 
off

-ta
rg

et
 1

C8 
off

-ta
rg

et
 1

C11
 o

ff-
ta

rg
et

 1

C6 
off

-ta
rg

et
 2

C7 
off

-ta
rg

et
 2

C8 
off

-ta
rg

et
 2

C10
 o

ff-
ta

rg
et

 2

C6 
off

-ta
rg

et
 3

C7 
off

-ta
rg

et
 3

C8 
off

-ta
rg

et
 3

0

1

2

10

20

30

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T Plasmid delivery, BE3

Plasmid delivery, HF-BE3

Untreated control
******

******
***

***

******

*
**

* **

C4 C5

C4 
off

-ta
rg

et
 1

C5 
off

-ta
rg

et
 1

C5 
off

-ta
rg

et
 2

C9 
off

-ta
rg

et
 2

C5 
off

-ta
rg

et
 3

C9 
off

-ta
rg

et
 3

0.0

0.5

10

20

30

40

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T

Plasmid delivery, BE3

Plasmid delivery, HF-BE3

Untreated control

** **

***

**

*

C4 C5 C6 C7 C9
C10

C4 
off

-ta
rg

et
 1

C5 
off

-ta
rg

et
 1

C6 
off

-ta
rg

et
 1

C7 
off

-ta
rg

et
 1

C9 
off

-ta
rg

et
 1

C4 
off

-ta
rg

et
 2

C5 
off

-ta
rg

et
 2

C6 
off

-ta
rg

et
 2

C7 
off

-ta
rg

et
 2

C8 
off

-ta
rg

et
 2

C9 
off

-ta
rg

et
 2

C4 
off

-ta
rg

et
 3

C5 
off

-ta
rg

et
 3

C6 
off

-ta
rg

et
 3

C7 
off

-ta
rg

et
 3

C8 
off

-ta
rg

et
 3

C9 
off

-ta
rg

et
 3

C5 
off

-ta
rg

et
 4

C6 
off

-ta
rg

et
 4

C7 
off

-ta
rg

et
 4

0

20

40

60

80

100

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T Plasmid delivery, BE3

Plasmid delivery, HF-BE3
Untreated control

EMX1 off-target 1: GAGTC5TAAGCAGAAGAAGAAGAG

EMX1 off-target 2: GAGGC5C6GAGCAGAAGAAAGACGG

EMX1 off-target 3: GAGTC5C6TAGCAGGAGAAGAAGAG

FANCF off-target 1: GGAAC5C6C7C8GTC11TGCAGCACCAGG

FANCF off-target 2: GGAGTC6C7C8TC10C11TACAGCACCAGG

FANCF off-target 3: AGAGGC6C7C8C9TC11TGCAGCACCAGG

HEK293 site 3 off-target 1: CACC4C5AGACTGAGCACGTGCTGG

HEK293 site 3 off-target 2: GACAC5AGACTGGGCACGTGAGGG

HEK293 site 3 off-target 3: AGCTC5AGACTGAGCAAGTGAGGG

VEGFA site 2 off-target 1: CTAC4C5C6C7TC9C10ACCCCGCCTCCGG

VEGFA site 2 off-target 2: ATTC4C5C6C7C8C9C10ACCCCGCCTCAGG

VEGFA site 2 off-target 3: ACAC4C5C6C7C8C9C10ACCCCGCCTCAGG

VEGFA site 2 off-target 4: TGC3C4C5C6C7C8C9C10ACCCCACCTCTGG

HEK293 site 3 on-target: GCCC4C5AGACTGAGCACGTGATGG VEGFA site 2 on-target: GACC4C5C6C7TC9C10ACCCCGCCTCCGG

FANCF on-target: GGAATC6C7C8TTC11TGCAGCACCTGG

a b

c d

Figure 2 | Activity of a high-fidelity base editor (HF-BE3) in human cells. (a–c) On- and off-target editing associated with plasmid transfection of BE3 and

HF-BE3 was assayed using high-throughput sequencing of genomic DNA from HEK293T cells treated with sgRNAs targeting non-repetitive genomic loci

EMX1 (a), FANCF (b) and HEK293 site 3 (c). On- and off-target loci associated with each sgRNA are separated by a vertical line. (d) On- and off-target

editing associated with the highly repetitive sgRNA targeting VEGFA site 2. Values and error bars reflect mean±s.d. of three independent biological

replicates performed on different days. For a–c, stars indicate significant editing based on a comparison between the treated sample and an untreated

control. *Pr0.05, **Pr0.01 and ***Pr0.001 (Student’s two-tailed t-test). For d, asterisks are not shown since all treated samples displayed significant

editing relative to the control. Individual P values are listed in Supplementary Table 1.
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mean±s.d. for n¼ 3 biological replicates). In contrast, HF-BE3
leads to a threefold reduction in absolute off-target editing
(5.0±2.3%) at the same off-target sites (Fig. 2d). When compared
to transfection of BE3, HF-BE3 significantly (Po0.05, two-tailed
Student’s t-test) reduced off-target editing at 27 of the
57 cytosines located at off-target loci (Supplementary Table 1),
while HF-BE3 treatment leads to a significant reduction (Po0.05
two-tailed Student’s t-test) in on-target editing at only 3 of the
16 interrogated on-target cytosine residues.

In addition to considering the differences between absolute
editing at off-target loci, we also calculated the on-target:off-target
editing specificity ratio by dividing the observed on-target
efficiency by the off-target efficiency (Supplementary Fig. 2a,b).
This metric takes into account any reduction in on-target editing
associated with installation of the HF mutations, and is useful for
applications sensitive to both the efficiency and specificity of base
editing. Off-target editing by HF-BE3 was below the detection
limit of high-throughput sequencing for several off-target loci.
For these cases, we assumed a conservative off-target editing
efficiency equal to the upper limit of detection (0.025% C-T
conversion; see Methods). On the basis of this analysis,
the average improvement in specificity ratio upon installation
of the HF mutations across all 34 target cytosines we examined
was 19-fold, when plasmid delivery of the two constructs was

performed. These results collectively establish that for
non-repetitive sites (Supplementary Fig. 2a) as well as a highly
repetitive site (Supplementary Fig. 2b), HF-BE3, results in a
substantially enhanced base-editing specificity with only a modest
reduction in on-target editing efficiency compared to BE3.

RNP delivery of BE3 enables DNA-free base editing. Next, we
studied the ability of BE3 in a DNA-free, RNP form to mediate
base editing when directly delivered into cultured human cells.
We and others recently established that cationic lipid reagents can
potently deliver negatively charged proteins or protein:nucleic
acid complexes into mammalian cells including ribonucleopro-
tein (RNP) complexes and that RNP delivery can substantially
reduce off-target genome editing27–29

We combined the commercially available cationic lipid
Lipofectamine 2000 with either purified BE3 protein or
HF-BE3 protein after pre-complexation with a guide RNA
targeting the EMX1, HEK293 site 3, FANCF or VEGFA site 2
locus, and incubated the resulting lipid:RNP complexes with
HEK293T cells. After 72 h, we harvested genomic DNA and
analysed on-target and off-target base editing by high-throughput
DNA sequencing. As with all Cas9-based technologies, we
observed substantial variations in editing efficiency at different
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Figure 3 | Protein delivery of base editors into cultured human cells. (a–d) On- and off-target editing associated with RNP delivery of base editors

complexed with sgRNAs targeting EMX1 (a), FANCF (b), HEK293 site 3 (c) and VEGFA site 2 (d). Off-target base editing was undetectable at all of the

sequenced loci for non-repetitive sgRNAs. Values and error bars reflect mean±s.d. of three independent biological replicates performed on different days.

Stars indicate significant editing based on a comparison between the treated sample and an untreated control. *Pr0.05, **Pr0.01 and ***Pr0.001

(Student’s two-tailed t-test).
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genomic loci (Figs 2 and 3). To display trends associated with
on-target editing efficiency between different treatments,
we calculated the mean on-target base-editing efficiencies at the
four tested loci (Fig. 4a). Protein delivery of BE3 (200 nM) leads
to on-target editing efficiencies comparable to those observed
with plasmid transfection (26±4% versus 29±5%, respectively;
mean±s.e.m. for n¼ 3 biological replicates; Fig. 4a).

In contrast, protein delivery of HF-BE3 reduced on-target
editing compared to protein delivery of BE3 at the four genomic
loci studied (average editing efficiency of 13±3% versus 26±4%,
respectively; mean±s.e.m. for n¼ 3 biological replicates; Fig. 4a).
Since HF-BE3 and BE3 have comparable editing efficiencies in
a test tube (Fig. 1b) and editing is only slightly reduced when
HF-BE3 is expressed from plasmids in HEK293T cells (Fig. 2a–d),
it is tempting to speculate that the decreased efficiency of editing
from HF-BE3 protein delivery may be a result of decreased
HF-BE3 stability in mammalian cells. Lower stability could be
offset by continual expression from a plasmid, but not following
one-time protein delivery. This observation is consistent with a
recent report of reduced on-target indel formation with purified
HF-Cas9 compared to purified Cas9 when nucleofected into
CD34þ haematopoietic stem and progenitor cells30. While this
work was in review, Kim et al.31 demonstrated RNP delivery of
BE3 into mouse embryos using electroporation. To the best of our
knowledge, our approach is the first DNA-free technique capable
of generating precise changes to individual nucleotides in
mammalian cells without electroporation, which has limited
in vivo therapeutic relevance.

RNP delivery of base editors greatly enhances specificity.
Importantly, while RNP delivery of BE3 and HF-BE3 led to
substantial on-target base editing, we observed no instances of

measurable base editing (o0.025%) at any of the nine tested
off-target loci associated with EMX1, FANCF and HEK293 site 3
(Fig. 3a–c). In contrast, plasmid delivery of BE3 leads to an
average of 1.1±0.3% (mean±s.d. for n¼ 3 biological replicates)
off-target editing across all sequenced cytosines within the base-
editing activity window, and detectable off-target editing at 11 of
the 16 off-target cytosines located at these nine off-target loci
(Fig. 2a–d). At off-target loci of the three non-repetitive loci
tested, BE3 protein delivery leads to a 26-fold higher average
specificity ratio than that of plasmid delivery (Supplementary
Fig. 2a). These results reveal that RNP delivery of base editors
markedly increases the DNA specificity of base editing.

Protein delivery of either BE3 or HF-BE3 also resulted in
greatly improved base-editing specificity at the highly promiscu-
ous VEGFA site 2 locus compared to plasmid delivery of either
BE3 or HF-BE3 (compare Figs 2 and 3; see Supplementary
Table 1). Absolute frequencies of base editing at the off-target loci
associated with this site were reduced upon protein delivery at
least 10-fold for both BE3 (plasmid delivery: 15±4% off-target
editing; protein delivery: 1.3±0.4% off-target editing; all values
in this paragraph represent mean±s.d. for n¼ 3 biological
replicates) and HF-BE3 (plasmid delivery: 5±2% off-target
editing; protein delivery: 0.5±0.1% off-target editing). Across
all four studied loci, base-editing specificity ratios for
on-target:off-target editing increased an average of 66-fold for
protein delivery of BE3 compared with plasmid delivery of BE3
(Supplementary Fig. 2). Collectively, these results reveal that for
both repetitive and non-repetitive target sites, RNP versus DNA
delivery is a stronger determinant of base-editing specificity than
the presence or absence of the high-fidelity Cas9 mutations.

Neither introduction of the HF mutations nor delivery method
substantially altered the low indel rates associated with base
editing. Indel frequencies at all on-target loci across all treatment

B
E

3
pl

as
m

id

H
F

-B
E

3
pl

as
m

id

B
E

3
pr

ot
ei

n

H
F

-B
E

3
pr

ot
ei

n

0

10

20

30

40

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T

0 500 1,000

0

10

20

30

40

BE3 plasmid (ng)

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T On-target, C5, plasmid delivery

Off-target, C5, plasmid delivery

0 200 400 600

0

10

20

30

BE3 protein (nM)

%
 T

ot
al

 s
eq

ue
nc

in
g 

re
ad

s
w

ith
 ta

rg
et

 C
 c

on
ve

rt
ed

 to
 T On-target, C5, protein delivery

Off-target, C5, protein delivery

a

b c

EMX1 : GAGTC5C6GAGCAGAAGAAGAAGGG

EMX1 off-target 1: GAGTC5TAAGCAGAAGAAGAAGAG

Figure 4 | Effect of dosage of BE3 protein or plasmid on the efficiency of on-target and off-target base editing in cultured human cells. (a) On-target

editing efficiency at each of the four genomic loci was averaged across all edited cytosines in the activity window for each sgRNA. Values and error bars

reflect mean±s.e.m. of three independent biological replicates performed on different days. (b,c) On- and off-target editing at the EMX1 site arising from

BE3 plasmid titration (b) or BE3 protein titration (c) in HEK293T cells. Values and error bars reflect mean±s.d. of three independent biological replicates

performed on different days.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15790 ARTICLE

NATURE COMMUNICATIONS | 8:15790 | DOI: 10.1038/ncomms15790 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


conditions in this study remained low (typically r5%;
Supplementary Fig. 3a), and the editing:indel ratio remained
higher in all cases tested (typicallyZ10-fold; Supplementary
Fig. 3b) than in previous studies using optimized HDR
protocols30,32,33. For non-repetitive sgRNAs, very few indels
were observed at off-target loci (Supplementary Fig. 3c), although
we note that plasmid delivery of BE3 generated up to 5% indels
for off-target loci associated with VEGFA site 2 (Supplementary
Fig. 3c).

Taken together, these results establish that protein delivery
of base editors maintains on-target base-editing efficiency
and greatly enhances editing specificity relative to delivery of
plasmid DNA.

RNP delivery decouples on- and off-target editing. Given
the striking enhancement of base-editing specificity associated
with protein delivery of BE3, we investigated whether this
improvement was a result of a reduction in the total quantity of
active genome-editing agent delivered into the cell. Using the
sgRNA targeting EMX1, we performed a dose response study for
plasmid (Fig. 4b) and protein delivery (Fig. 4c). To maximize
transfection efficiency between treatment conditions, the volume
of Lipofectamine 2000 was 1.5 ml for all tests, and the base editor
protein:sgRNA molar ratio was maintained at 1:1.1 for protein
delivery. For plasmid delivery, we used a mass ratio of sgRNA
plasmid:BE3 plasmid of 1:3 (molar ratio B1:1) and 1.5 ml of
Lipofectamine 2000. We observed off-target base editing under all
conditions tested for plasmid delivery (Fig. 4b), but virtually no
off-target editing under all protein delivery conditions tested
(Fig. 4c).

We performed linear regression analysis to assess the relation-
ship between on- and off-target editing for plasmid and protein
delivery. For plasmid delivery, off-target editing was closely
associated with on-target editing rates (R2¼ 0.95, P¼ 0.0012 for
non-zero slope, F-test), whereas there was no significant
association between off-target and on-target editing using protein
delivery (R2¼ 0.078, P¼ 0.59 for non-zero slope, F-test).

These data indicate that protein delivery of base editors offers
an inherent specificity advantage that is independent of dosage.
Together with our previous observations29,34, these findings
support a model in which the higher DNA specificity of base
editing from protein delivery compared to DNA delivery arises
from the ability of protein delivery to avoid extended exposure of
the genome to base editors, thereby minimizing the opportunity
of base editors to process off-target loci after on-target loci have
already been modified.

DNA-free base editing in zebrafish and mice. The above
observations suggested the promise of protein delivery of BE3 to
maintain on-target base editing while eliminating detectable
off-target base editing. We therefore tested whether protein
delivery of BE3 could be used to generate specific point mutations
in zebrafish by injecting BE3:sgRNA complexes targeting the
tyrosinase locus into fertilized zebrafish embryos. We harvested
genomic DNA from the resultant zebrafish larvae 4 days post
injection and measured base editing and indel frequencies by
high-throughput sequencing (Fig. 5a). Two of the three
BE3:sgRNA complexes tested induced substantial point muta-
tions in vivo (TYR1: C3-T3 5.3±1.8%, TYR2: C4-T4

4.3±2.1%; mean±s.d. of n¼ 3 injected embryos; Fig. 5a).
Sequences of zebrafish loci are listed in Supplementary Table 5.

Finally, we applied these developments to achieve DNA-free,
high-specificity base editing in mice. To maximize the likelihood
of observing on- and off-target base editing in vivo, we used the

highly repetitive sgRNA targeting VEGFA site 2; conveniently,
the murine and human genomes are identical at this target site.

Using cultured murine NIH/3T3 cells, we confirmed that BE3
protein delivery yielded efficient on-target base editing at this
locus 34±11% (Supplementary Fig. 4a; all editing percentages
in this paragraph represent mean±s.d. for n¼ 3 biological
replicates). We used the Cutting Frequency Determinant (CFD)
algorithm29,34 to predict off-target loci in the mouse genome
associated with the VEGFA site 2 sgRNA (Supplementary
Table 3). Using cultured NIH/3T3 cells, we confirmed that two
of the top four predicted off-target loci are indeed modified by
plasmid delivery of BE3 in cultured murine cells (CFD off-target
locus 1; mean editing 9±5% and CFD off target locus 4; mean
editing 3±2%; Supplementary Fig. 4b–e). Consistent with our
results from human cells, protein delivery of BE3 reduced off-
target editing to levels similar to that of negative controls
(Supplementary Fig. 4c,e). The mean base-editing specificity ratio
for CFD off-target loci 1 and 4 increased from 28±13 for plasmid
delivery of BE3 to Z780±300 for protein delivery of BE3
(values represent mean±s.e.m.; n¼ 3 biological replicates).

To establish DNA-free base editing in mice, we combined
BE3:sgRNA complexes with Lipofectamine 2000 (Fig. 5b) and
performed intracochlear injections into mouse pups at P1–P2.
Injected cochlear tissues were harvested 3–4 days post injection
and microdissected into five to seven samples per cochlear
region. Control cochlea from uninjected mice were harvested
simultaneously. Genomic DNA was extracted from the harvested
tissue, amplified by quantitative PCR (qPCR) to late-exponential
phase, and subjected to high-throughput DNA sequencing
to measure C-T conversion. Although it is impossible to
quantitate base-editing efficiency among treated cells because it is
not possible to retrieve DNA exclusively from cells exposed to
base editor protein, we observed unambiguous base editing from
tissue in three regions of the cochlea: the basal end of the organ
of Corti, the stria vascularis and the modiolus (Fig. 5c,d).
We detected no significant indel formation in treated tissue
samples (o0.1% indels; Supplementary Fig. 5b).

The percentage of cochlear cells containing target C-T
conversion (Fig. 5c) was significantly lower than that observed in
treated NIH/3T3 cells in culture (Supplementary Fig. 4a),
consistent with the highly localized nature of lipid-based
protein delivery and our inability to isolate DNA exclusively
from cells exposed to base editor. Nonetheless, local delivery
offers key advantages for accessible applications, including
control over which cell types are edited, and ease of preparation
and administration.

Finally, we analysed off-target editing following intracochlear
injection of BE3:sgRNA:lipid complexes. Analysis of all four
predicted off-target loci, including the confirmed off-target sites
CFD locus 1 and CFD locus 4 in genomic DNA from the cochlear
tissue of mice injected with the BE3:VEGFA site 2 sgRNA:lipid
complex revealed no detectable C-T conversion or indel
formation above that observed in untreated control samples for
any of the off-target loci tested (Supplementary Fig. 5a).

Together, these in vivo base-editing results establish a
virus-free, DNA-free strategy for the precise conversion of
individual nucleotides in the genomic DNA of animals with high
DNA sequence specificity.

Discussion
The strategies developed and implemented in this study expand
the utility and applicability of base editing by removing or
reducing off-target base editing and establishing a DNA-free
delivery method that supports in vivo base editing. Protein
delivery improves base-editing specificity in human and murine
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cells compared with plasmid delivery of the same constructs
(Figs 2 and 3 and Supplementary Fig. 4), and enables specific base
editing in zebrafish and in the mouse cochlea (Fig. 5).

We generated a high-fidelity base editor by installing into
BE3 mutations known to enhance the DNA specificity of Cas9
(ref. 20). The installation of these mutations into Cas9 was
reported to result in undetectable indel formation at off-target
loci associated with non-repetitive sgRNAs, including the EMX1
locus interrogated here (Fig. 2a)20. The specificity enhancements
we observed in HF-BE3, while substantial, were more modest;
HF-BE3 exhibited detectable off-target base editing at both
repetitive and non-repetitive loci when delivered as plasmid DNA
into mammalian cells (Fig. 2a,d and Supplementary Fig. 4c,e).
It is tempting to speculate that this specificity enhancement
difference may arise from the fact that base editing, unlike
Cas9-mediated indel formation, does not require DNA cleavage
but only necessitates DNA-binding and R-loop formation14, and
some of the enhanced specificity of HF-Cas9 may arise from
impaired DNA cleavage at already-bound off-target loci.

In a second attempt to reduce off-target base editing, we
demonstrated that RNP delivery of base editors leads to
decoupling of on- and off-target editing (Fig. 4b,c). RNP delivery
ablated off-target editing at non-repetitive sites while maintaining
on-target editing comparable to plasmid delivery (Figs 3a–c
and 4a), and greatly reduced off-target editing even at the highly
repetitive VEGFA site 2 (Fig. 3d). RNP delivery of base editors
may be especially useful for in vivo editing applications in which
cellular dosage is typically difficult to control or characterize.

We and others previously used RNP delivery of Cas9
coupled with the delivery of a donor DNA template to perform

HDR-based genome editing in mammalian cells. These approa-
ches, however, remain limited by low efficiency, cell-state
dependence and indel formation efficiencies typically exceeding
those of desired HDR outcomes, especially for point mutation
correction29,30,32,35. DNA-free base editing, in contrast, generates
a substantial excess of edited product relative to stochastic indels
both in vivo and in cells (Fig. 5a and Supplementary Fig. 5a,b).
To the best of our knowledge, RNP delivery of base editors
represents the first strategy for generating specific and precise
modifications to genomic DNA without requiring exogenous
DNA.

Methods
Cloning of plasmids. The plasmids in this study were generated by USER cloning.
Phusion U Hot Start polymerase (Thermo Fisher) was used to install point
mutations and construct protein expression plasmids from previously reported
constructs36. Protein sequences are listed in the Supplementary Information, and
plasmids for expression of BE3 and HF-BE3 are available from Addgene.

Expression and purification of BE3 and HF-BE3. BL21 Star (DE3)-competent
E. coli cells were transformed with plasmids encoding the bacterial codon-opti-
mized base editors with a His6 N-terminal purification tag. A single colony was
grown overnight in Luria-Bertani broth containing 50 mg ml� 1 kanamycin at
37 �C. The cells were diluted 1:200 into 2 l of the same media and grown at
37 �C until OD600¼ 0.70–0.75. The cultures were incubated on ice for 60 min and
protein expression was induced with 0.5 mM isopropyl-b-D-1-thiogalactopyrano-
side (GoldBio). Expression was sustained for 14–16 h with shaking at 18 �C.
The subsequent purification steps were carried out at 4 �C. Cells were collected by
centrifugation at 6,000g for 20 min and resuspended in cell collection buffer
(100 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 8.0, 1 M NaCl,
20% glycerol, 5 mM tris(2-carboxyethyl)phosphine (TCEP; GoldBio), 0.4 mM
phenylmethane sulfonyl fluoride (Sigma-Aldrich) and 1 complete, EDTA-free
protease inhibitor pellet (Roche) per 50 ml buffer used). Cells were lysed by
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sonication (6 min total, 3 s on, 3 s off) and the lysate cleared by centrifugation at
25,000g (20 min).

The cleared lysate was incubated with His-Pur nickel nitriloacetic acid (nickel-
NTA) resin (1 ml resin per litre of culture, Thermo Fisher) with rotation at 4 �C for
60–90 min. The resin was washed with 20 column volumes of cell collection buffer
before bound protein was eluted with elution buffer ((100 mM tris(hydroxymethyl)-
aminomethane (Tris)-HCl, pH 8.0, 0.5 M NaCl, 20% glycerol, 5 mM TCEP
(GoldBio), 200 mM imidazole). The resulting protein fraction was further purified on
a 5 ml Hi-Trap HP SP (GE Healthcare) cation exchange column using an Akta Pure
FPLC. Protein-containing fractions were concentrated using a column with a
100,000 kDa cutoff (Millipore) centrifuged at 3,000g, and the concentrated solution
was sterile-filtered through a 22-mm polyvinylidene difluoride membrane (Millipore).

After sterile filtration, proteins were quantified with Reducing Agent
Compatible Bicinchoninic acid assay (Pierce Biotechnology), snap-frozen in liquid
nitrogen and stored in aliquots at � 80 �C. Sequences of expressed proteins are
listed in Supplementary Note 2.

In vitro transcription of sgRNA. Linear DNA fragments containing the T7 RNA
polymerase promoter sequence upstream of the desired 20 bp sgRNA protospacer
and the sgRNA backbone were generated by PCR (Q5 Hot Start MasterMix,
New England Biolabs) using primers as listed in the Supplementary Note 3 and
concentrated on minelute columns (Qiagen). sgRNA was transcribed with the
HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs) at 37 �C for
14–16 h with 1 mg of linear template per 20 ml reaction. sgRNA was purified using
the MEGAClear Transcription Clean Up Kit (Thermo Fisher), according to the
manufacturer’s instructions. Purified sgRNAs were stored in aliquots at � 80 �C.

In vitro deamination assays. Sequences of DNA oligonucleotides used as
templates for the in vitro deamination assay are shown in Supplementary Note 3.
All oligonucleotides were purchased from IDT. Single-stranded oligonucleotides
synthesized with complementary sequences were combined (5 ml of a 100mM
solution) in Tris buffer pH 8.0 and annealed by heating to 95 �C for 5 min, followed
by a gradual cooling to 37 �C at a rate of 0.1 �C s� 1 to generate 79 base pair (bp)
dsDNA substrates. Freshly thawed base editor proteins (2 mM final concentration
in a 10 ml reaction volume) were complexed with the indicated sgRNA (2.2 mM final
concentration) in reaction buffer (20 mM HEPES pH 7.5, 150 mM KCl, 0.5 mM
dithiothreitol (DTT), 0.1 mM EDTA, 10 mM MgCl2)37 for 5 min at room
temperature. Annealed dsDNA substrates were then added to a final concentration
of 250 nM. The reaction proceeded for 30 min at 37 �C before protein denaturation
was performed by heating for 5 min at 99 �C. Addition of PB buffer (Qiagen,
100ml) and isopropanol (25ml)-ensured protein was dissociated from the substrate
DNA. DNA was purified with Minelute columns (Qiagen), and the resulting
products amplified to the top of the linear range with 15 cycles of qPCR (12 ng
input DNA, 50ml reaction volume) using a U-tolerant polymerase (Phusion U Hot
Start, Thermo Fisher) and primers as listed in the Supplementary Information.
Amplified DNA was purified using RapidTip2 (Diffinity Genomics) and barcoded
with a second round of PCR (eight cycles, 5 ng input) before being prepared for
sequencing on an Illumina MiSeq as described below.

Purification and sequencing of genomic DNA. Genomic DNA was isolated
using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter)
according to the manufacturer’s instructions. For the first PCR, DNA was
amplified to the top of the linear range using Q5 Hot Start DNA Polymerase
(NEB), according to the manufacturer’s instructions but with the addition
of 3% dimethylsulphoxide and SYBR Gold Nucleic Acid Stain (Thermo Fisher).
For all amplicons, the PCR protocol used was an initial heating step of 2 min at
98 �C followed by an optimized number of amplification cycles (12 s at 98 �C,
25 s at 61 �C, 30 s at 72 �C). For zebrafish and for transfected cell samples 30 ng of
input DNA was used in a 50ml reaction, and for cochlear samples 20 ng was used in
a 25ml reaction. qPCR was performed to determine the optimal cycle number for
each amplicon. Amplified DNA was purified using RapidTip2 (Diffinity Genomics)
and barcoded with a further PCR (eight cycles, 5 ng input). The unique forward
and reverse primers used in the first-round PCR contained a constant region
50 to the annealing region, (forward: 50-ACACTCTTTCCCTACACGACGCTCTT
CCGATCTNNNN-30 , reverse: 50-TGGAGTTCAGACGTGTGCTCTTCCGAT
CT-30), which facilitated the binding of barcoding primers to amplified DNA for a
second-round PCR. In brief, an annealing temperature of 60 �C was used and cycle
numbers were 30 (EMX1), 28 (FANCF) and 28 (HEK site 3).

The second-round PCR used primers with three regions: a 50 constant region
allowing the amplicon to bind to the Illumina flow cell (italicized), an eight-base
barcoding region (X) and a 30 constant region allowing the barcoding primer to
bind to the first-round PCR amplicon (in bold). Examples of primer sequences are:

forward: 50-AATGATACGGCGACCACCGAGATCTACACXXXXXXXXAC
ACTCTTTCCCTACACGAC-30

reverse: 50-CAAGCAGAAGACGGCATACGAGATXXXXXXXGTGACTGG
AGTTCAGACGTGTGCTCTTC-30 .

Sequencing adapters and dual-barcoding sequences are based on the TruSeq
Indexing Adapters (Illumina). Barcoded samples were pooled and purified by gel
extraction (Qiagen), and then purified using Ampure beads (Beckman Coulter)

before quantification using the Qubit dsDNA HS Kit (Thermo Fisher) and qPCR
(KAPA BioSystems) according to the manufacturer’s instructions. Sequencing of
pooled samples was performed using a single-end read from 180 to 250 bases
(depending on the amplicon size) on the MiSeq (Illumina) according to the
manufacturer’s instructions.

Sequences of oligonucleotides used for PCR amplification are shown in
Supplementary Note 3. All oligonucleotides were obtained from IDT. The
optimized number of PCR cycles for each amplicon in this study are as follows:
VEGFA site 2 human genomic DNA (annealing temperature was 61 �C for 25 s
for all extension steps): on-target: 29 cycles, off-target #1: 32 cycles, off-target
#2:28 cycles, off-target #3:27 cycles, off-target #4:27 cycles, VEGFA site 2 murine
genomic DNA: on-target: 31 cycles, off-targets #1, #2, #3 and #4:31 cycles. HEK293
site 3: off-targets #1:29 cycles, off-target #2:28 cycles, off-target #3:28 cycles.
FANCF off-target #1:29 cycles, off-target #2:28 cycles, off-target 3:28 cycles. EMX1
off-targets #1, #2 and #3:28 cycles. TYR1, TYR2 and TYR3 sgRNAs
for amplification of zebrafish DNA: 32 cycles. Optimized protocols for
the on-target amplification of the EMX1, FANCF and HEK293 site 3 loci were
followed as previously described14.

Analysis and alignment of genomic DNA sequencing reads. Sequencing reads
were analysed as previously described14. In brief, sequencing reads were
demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were
analysed with a previously reported custom Matlab script14. Reads were aligned to
the reference sequence using the Smith-Waterman algorithm. Base calls with
Q-scores below 30 were replaced with a placeholder nucleotide (N). This quality
threshold results in nucleotide frequencies with an expected error rate of 1 in 1,000.
Indel frequencies were quantified with a previously published custom Matlab
script, which counts indels occurring in a 30-base window around the nCas9
cleavage site and are a minimum of two-base insertions or deletions14. Indels were
defined as detectable if there was a significant difference (Student’s two-tailed t-test,
Po0.05) between indel formation in the treated sample and untreated control.

For one of the sequenced amplicons, CFD off-target #3, associated with VEGFA
site 2 sgRNA in the murine genome, it was not possible to accurately measure indel
formation. The protospacer at this locus is directly preceded by 12 guanine bases,
which makes PCR and high-throughput sequencing of this site prone to random
insertion or deletions; deletion rates as high as 20% of sequencing reads were
observed in multiple independent untreated control samples. Since no significant
base editing was detected at this off-target locus under any treatment conditions
(Fig. 5 and Supplementary Fig. 4d), we suspect that indel formation is also
negligible at this locus.

A phred.II Q30 score corresponds to an estimated 99.9% accuracy in base
calling38. A 0.1% probability of incorrect base calling at a given position
corresponds to a lower limit for base calling of 0.1/4¼ 0.025% if we assume base
call errors are randomly distributed across the four bases. C-T editing
percentages that fell beneath this threshold were classified as undetectable.
Spontaneous deamination39 or polymerase error during PCR can also introduce
artefactual C-T edits. In order to distinguish base editor-induced C-T editing
from artefactual C-T editing rates, we sequenced untreated control cells for each
amplicon and calculated whether the C-T editing under a particular condition
was statistically significant using the Student’s two-tailed t-test with Po0.05 as the
threshold. Off-target sites with statistically significant editing rates 40.025% were
considered measureable. The number of aligned and quality-filtered reads for each
sample has been included in Supplementary Table 5.

Statistical analyses of genomic DNA sequence alignments. Unless otherwise
noted, the mean values cited throughout the main text are representative of nZ3
independent biological replicates and the mean±s.d. has been stated.

The statistical analysis of the high-throughput sequencing data displayed in
Figs 2 and 3 was performed by comparing on- and off-target editing percentages in
treated samples to any editing measured in a negative control sample (untreated).
The Student’s two-tailed t-test was used, and individual P values are shown in
Supplementary Table 1. *Pr0.05, **Pr0.01 and ***Pr0.001. When editing was
below the detection limit (0.025%), significance was not calculated; all untreated
control samples showed undetectable editing.

For Fig. 4a, the mean on-target base editing was calculated by averaging editing
of cytosines in the base-editing activity window (C4–C8 for HEK293 site 3 and
EMX1, C4–C9 for FANCF and VEGFA site 2).

To account for sgRNA-dependent differences in base-editing activity, the base
editing:indel ratio was calculated (Supplementary Fig. 3b). This ratio was generated
by dividing the percentage of HTS reads with a C-T conversion (averaged across
the base-editing window for each site) by the percentage of HTS reads containing
an indel. As described above, if the off-target editing for a particular locus was
below the limit of detection, we conservatively assumed the estimated upper bound
of our detection method (0.025%) for the purpose of calculating specificity ratios.

Data analysis of in vitro edited DNA. Sequencing reads were automatically
demultiplexed using MiSeq Reporter (Illumina.). Quality-filtering was performed
using the online package usegalaxy.org40. Individual bases with an Illumina quality
score less than or equal to 30 were converted to the placeholder nucleotide ‘N’
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using FASTQ Groomer followed by FASTA Masker41. The resulting quality-filtered
FASTQ files were subsequently analysed with a custom python script provided in
Supplementary Note 1. Sequencing reads were scanned for exact matches to two
14-base sequences that flank both sides of the target DNA sequence. If no exact
matches were found, the read was excluded from analysis. If both 14-base
sequences were located and the length of the sequence between them was equal to
the expected protospacer length (20 bases), the protospacer sequence found
between the flanking regions was saved and the bases called by high-throughput
sequencing at each site within the protospacer were tallied.

Cell culture. Both HEK293T (American Type Culture Collection (ATCC)
CRL-3216) and NIH/3T3 (ATCC CRL-1658) were maintained in DMEM plus
GlutaMax (Thermo Fisher) supplemented with 10% (v/v) fetal bovine serum, at
37 �C with 5% CO2. Cells were obtained from ATCC and were authenticated and
verified to be free of mycoplasma by ATCC upon purchase.

Plasmid transfection of base editors into HEK293T cells. HEK293T cells were
seeded on 48-well collagen-coated BioCoat plates (Corning) in an antibiotic-free
medium and transfected at B70% confluency. Unless otherwise noted, 750 ng of
BE and 250 ng of sgRNA expression plasmids were transfected using 1.5 ml of
Lipofectamine 2000 (Thermo Fisher) per well according to the manufacturer’s
protocol.

Protein transfection of base editors into HEK293T cells. HEK293T cells
were seeded on 48-well collagen-coated BioCoat plates (Corning) in 250 ml an
antibiotic-free medium and transfected at B70% confluency. Base editor
protein was incubated with 1.1� molar excess of the necessary sgRNA at room
temperature for 5 min. The complex was then incubated with 1.5 ml Lipofectamine
2000 (Thermo Fisher) and transfected according to the manufacturer’s protocol for
plasmid delivery. Unless otherwise noted, BE protein was added to a final con-
centration of 200 nM (based on a total well volume of 275 ml).

Plasmid transfection of base editors into NIH/3T3 cells. NIH/3T3 cells were
seeded on 48-well collagen-coated BioCoat plates (Corning) in an antibiotic-free
DMEM medium and transfected at B75% confluency. Unless otherwise noted,
600 ng of BE and 200 ng of sgRNA expression plasmids were transfected using
1.4 ml of Lipofectamine 3000 with 1 ml of P3000 reagent (Thermo Fisher) per well
according to the manufacturer’s protocol.

Protein transfection of base editors into NIH/3T3 cells. NIH/3T3 cells were
seeded on 48-well collagen-coated BioCoat plates (Corning) in an antibiotic-free
DMEM medium and transfected at B75% confluency. Base editor proteins were
incubated with 1.1-fold molar excess of the indicated sgRNA at 25 �C for 5 min.
The complex was then incubated with 1.4 ml Lipofectamine 3000 (Thermo Fisher)
and transfected according to the manufacturer’s protocol for plasmid delivery.
P3000 reagent was not used because its addition leads to protein precipitation and
a reduction in base-editing efficiency. Unless otherwise noted, BE protein was
added to a final concentration of 400 nM (based on a total well volume of 275ml).

Intracochlear delivery of BE3 protein:guide RNA. All animal experiments were
approved by the Institutional Animal Care and the Use Committee of the Mas-
sachusetts Eye and Ear Infirmary. Intracochlear delivery was performed in P1–P2
mice of a mixed genetic background as described previously42. Briefly, mice were
anaesthetized by lowering the body temperature before the surgical procedure.
A postauricular incision was made near the right ear, and the bulla was lifted to
expose the cochlea. BE3 protein (57.7 mM stock concentration) was pre-complexed
with the sgRNA (100 mM stock concentration) in a 1:1.1 molar ratio and then
mixed with Lipofectamine 2000 (Thermo Fisher) in a 1:1 volumetric ratio. The
resulting solution (1.2–1.5 ml) was injected with a glass pipette (end diameter, 5 mm)
through the cochlear capsule into scala media at the cochlear basal turn that
attached to a nanolitre micropump (WPI, UMP3þMicro4þNanoFil) at the rate
of 250 nl min� 1. After injection, the incision was closed and the mice were brought
onto a heating pad to recover. After 3–4 days, the cochlea of mouse was dissected
into the organ of Corti, stria vascularis and modiolus. Each tissue was further
microdissected into between five and seven separate pieces, and DNA extraction
was performed separately for each sample, followed by high-throughput
sequencing as described above. The data presented in Fig. 5 and Supplementary
Figure 5 show sequencing data resulting from extraction of one microdissected
sample for each cochlear region.

Microinjection of base editor RNP into zebrafish embryos. Zebrafish
(Tuebingen strain) were maintained under standard conditions in compliance with
the internal regulatory review at Boston Children’s Hospital. One-cell stage
zebrafish embryos were injected with B2 nl of BE3 protein pre-complexed with
the appropriate sgRNA or an unrelated sgRNA control in a 1:1 molar ratio
(4.5mM final concentration). Four days post fertilization, DNA was extracted from
larvae as previously described43; in brief, each larva was resuspended in 50 mM

NaOH for 30 min at 95 �C and the resulting solution was neutralized with Tris-
HCl. Genomic DNA was quantified, amplified by PCR and sequenced as described
above.

Protein gel analyses. All protein gels shown were precast 4–12% polyacrylamide
Bis-Tris Plus (Thermo Fisher). They were run in MOPS buffer (Thermo Fisher) at
180 V for 50 min. Samples were prepared for loading by heating to 99 �C in
100 mM DTT and 1� lithium dodecyl sulfate Sample Buffer for denaturation
(Thermo Fisher) for 10 min. Gels were stained using Instant Blue Protein Stain
(Expedion) according to the manufacturer’s instructions.

For cell lysate analysis, 2 ml of post-induction overnight culture was pelleted at
15,000g before lysis in 100 ml B-PER (Thermo Fisher) according to the
manufacturer’s instructions.

Data availability. High-throughput sequencing data that support the findings of
this study have been deposited in the NCBI Sequence Read Archive database under
Accession Number SRP097884. Plasmids encoding HF-BE3 and BE3 for protein
expression, as well as HF-BE3 for mammalian expression, are available from
Addgene with Accession IDs 87439 (pCMV-HF-BE3), 87438 (pET42b-HF-BE3),
87437 (pET42b-BE3).
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