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Abstract  

Vascular calcification is implicated as an important factor in major adverse cardiovascular events 
(MACE), including heart attack and stroke.  A controversy remains over how to integrate the diverse 
forms of vascular calcification into clinical risk assessment tools.  Even the commonly used calcium 
score for coronary arteries, which assumes risk scales positively with total calcification, has 
important inconsistencies.  Fundamental studies are needed to determine how risk is influenced by 
the diverse calcification phenotypes. However, studies of these kinds are hindered by the lack of 
high-throughput, objective, and non-destructive tools for classifying calcification in imaging data 
sets. Here, we introduce a new classification system for phenotyping calcification along with a semi-
automated, non-destructive pipeline that can distinguish these phenotypes in even atherosclerotic 
tissues.  The pipeline includes a deep-learning-based framework for segmenting lipid pools in noisy 
μ-CT images and an unsupervised clustering framework for categorizing calcification based on 
size, clustering, and topology. This approach is illustrated for five vascular specimens, providing 
phenotyping for thousands of calcification particles across as many as 3200 images in less than 
seven hours.  Average Dice Similarity Coefficients of 0.96 and 0.87 could be achieved for tissue 
and lipid pool, respectively, with training and validation needed on only 13 images despite the high 
heterogeneity in these tissues.  By introducing an efficient and comprehensive approach to 



   

 

   

 

phenotyping calcification, this work enables large-scale studies to identify a more reliable indicator 
of the risk of cardiovascular events, a leading cause of global mortality and morbidity.  

Significance Statement  

Risk assessment tools for major adverse cardiovascular events (MACE) have recognized 
limitations, including simplistic accounting for calcification. Using high-resolution intravascular 
imaging, it is becoming possible to distinguish diverse calcification forms in vivo.  However, 
fundamental studies of the distinct mechanistic roles of these phenotypes are needed before we 
can leverage this wealth of medical data to improve both risk assessment and treatment. Such 
studies require high-throughput, objective, and non-destructive tools for phenotyping calcification.  
Here, we introduce a framework that meets these criteria along with a new classification system for 
phenotyping calcification. This semi-automated, non-destructive pipeline uses deep-learning-
based segmentation and unsupervised clustering algorithms to provide phenotyping for thousands 
of calcification particles across more than 3200 μ-CT images in less than seven hours. 

 

1- Introduction  

 

Arterial calcifications are linked to major adverse cardiovascular events (MACE) that are 
categorized as the leading causes of mortality and morbidity worldwide (1-4). For instance, in silico 
studies have shown calcifications in fibrous caps within atherosclerotic plaques can impact cap 
vulnerability (5, 6). The rupture of these fibrous caps releases the plaque contents into the 
bloodstream, resulting in the formation of thrombi, which can obstruct blood flow, leading to serious 
health issues, including ischemic stroke and myocardial infarction. Calcifications also play a pivotal 
role in the failure of the aortic valve, culminating in left ventricle hypertrophy and, ultimately, heart 
failure (1, 7).  
 

Arterial calcifications exhibit phenotypes that can significantly modulate the failure of 
diseased tissues (3, 4, 6, 8-10). For example, some computational studies reported 
macrocalcifications can stabilize plaques in coronary arteries (8, 11, 12). On the other hand, a 
recent in silico simulation shows macrocalcifications with jagged edges can create regions of stress 
concentrations in cerebral aneurysms, promoting tissue failure. Therefore, macrocalcifications can 
be either protective or detrimental, depending on their topology. Regarding microcalcifications, in 
silico studies suggest they can induce stress concentrations in the surrounding matrix (13, 14).  
Moreover, an experimental study found an association between high densities of 
microcalcifications and low levels of collagen fibers. Since collagen fibers are the main load-bearing 
components of soft tissues under physiological conditions, this suggests a second mechanism by 
which microcalcifications can lower the load-bearing capacity of these tissues (15). An additional 
calcification phenotype arises from the milieu in which calcifications are embedded. A recent 
experimental analysis shows that ruptured aneurysms with calcification always lacked protective 
lipid pools (only nonatherosclerotic) (3). These calcification phenotypes can act in a coupled 
manner to impact the failure process differently than a simple superposition of individual 
phenotypes. For example, computational studies have reported failure of calcified vascular tissue 
is strongly influenced by the environment neighboring the calcification. When calcifications are 
embedded in lipid pools (atherosclerotic calcifications), the tissue failure process was found to be 
more gradual, potentially enabling tissue repair, in contrast to the abrupt fiber failure found in 
tissues with non-atherosclerotic calcification (16).    

Accounting for the influence of these diverse calcification phenotypes in risk assessment 
tools, for example, for MACE, can potentially overcome the current limitations of these tools.  For 
example, the commonly used calcium score, which assumes risk scales positively with total 
calcification, has important inconsistencies that are the subject of increasing attention (17-20). It is 
found the calcium score increases when statins are used, despite statins being known to decrease 
the risk for cardiovascular disease (21, 22). In this regard, including calcification density in the 
calcium score could significantly improve the accuracy of risk stratification. This underscores the 



   

 

   

 

potential to improve the diagnostic values of such risk assessment tools by integrating additional 
calcification phenotypes (23). 

To incorporate these diverse forms of calcification into risk assessment tools for adverse 
cardiovascular events, an initial step should involve determining the impacts of various calcification 
phenotypes on tissue strength. Computational analyses, while valuable for assessing many of the 
mechanical aspects of vascular tissues, rely on mathematical models and simplifying assumptions 
about the underlying physical processes. Therefore, it becomes crucial to complement these 
computational approaches with experimental investigations aimed at validating the extent to which 
these models accurately reflect the actual mechanical behavior of calcified vascular tissues. These 
experimental analyses can be conducted on dissected samples of calcified vascular tissues, 
allowing for an in-depth exploration of the intricate interactions between realistic combinations of 
calcification phenotypes and other structural components within the tissue, thereby enhancing our 
overall understanding. If conducted on a sufficiently large sample set, such analysis could unveil 
correlations between calcification phenotypes and tissue vulnerability, and ultimately provide the 
required information to improve the diagnostic value of risk assessment tools. 

Novel pharmacological treatments are being developed to reduce calcifications in vascular 
tissues (24). While these treatments have tremendous clinical potential, extensive scientific studies 
are needed to understand how the vascular calcifications change in treated tissues. Such studies 
traditionally were carried out using histological analysis of serial sections (25), a destructive and 
highly laborious approach for heterogeneous tissues, resulting in substantial sectioning artifacts.  
In some cases, high-resolution μ-CT imaging is used, though a typical dissected arterial sample 
can comprise thousands of slices, making the current manual approaches unfeasible for large-
scale studies. Therefore, there is a pressing need to implement automated high-throughput 
approaches to process such large datasets.  

In this work, we present a novel approach that addresses these needs by employing 
advanced machine learning algorithms to high-resolution μ-CT images in a semi-automatic 
pipeline.  We introduce a new categorization system for calcification phenotypes based on size 
(macro/micro), spatial distribution of microcalcifications (clustered/isolated), topology of 
macrocalcifications (sparse/dense) and co-localization with lipid pools (atherosclerotic/non-
atherosclerotic). In the context of macrocalcifications, the term "sparse" pertains to areas that 
exhibit thin or porous characteristics, whereas the term "dense" applies to the remaining regions. 
Sparse regions are distinguished by their thin or porous nature, whereas the remaining portions 
are categorized as dense. This subcategorization of macrocalcifications draws inspiration from the 
model presented by Hutcheson, et al. (15) to explain the genesis of macrocalcifications. This model, 
which is derived from in-vivo experimental analysis, outlines a stepwise progression for the 
formation of macrocalcifications from microcalcifications. 

To classify calcification across specimens, we start with high-resolution μ-CT to obtain 3D 
data for tissue, lipid pools and calcification particles. Then, we apply a semi-automatic deep 
learning-based segmentation algorithm to thousands of μ-CT images to identify tissue and lipid 
pool regions. Despite naturally noisy μ-CT datasets, our algorithm achieved a Dice similarity 
coefficient >0.80 compared to human experts. Finally, we classify calcifications based on size, 
microcalcification distribution, macrocalcification topology, and type via an unsupervised clustering 
algorithm resulting in eight distinct phenotypes (Fig. 1). 

We use two artificial intelligence (AI) algorithms to create a fast and reliable tool for 
phenotyping vascular calcifications in the high-resolution μ-CT datasets. We then apply this tool to 
five vascular samples. Processing a specimen containing more than 5000 calcifications was 
accomplished in under seven hours. We then demonstrate an additional application of the machine 
learning tool to the growing area of biomechanics of collagen fibers in soft tissues (26), finding a 
correlation between clustered non-atherosclerotic microcalcifications and local degradation in the 
structural integrity of collagen fibers. This result is consistent with findings that consider collagen 
fibers as a structural framework for facilitating calcification formation (15). In areas where collagen 
fibers are less concentrated and do not impose significant restrictions, calcifications exhibit a 



   

 

   

 

greater propensity to aggregate densely and fuse together, ultimately forming macrocalcifications 
(15). 

Using high-resolution intravascular imaging tools, it is becoming possible to distinguish 
diverse forms of calcification in vivo (27). However, fundamental studies of the distinct mechanistic 
roles of these phenotypes are needed before we can leverage this wealth of medical data to 
improve both risk assessment and treatment. The machine learning pipeline introduced here makes 
it possible, for the first time, to efficiently and reliably phenotype calcifications across entire intact 
arterial specimens.  These tools can be used in fundamental investigations of the role of 
calcification in soft tissue failure as well as to identify correlations between calcification phenotype 
and patient characteristics.  Such information is vital if clinicians are to be provided with a more 
sophisticated scoring tool that goes beyond total calcification volume by differentiating between 
destabilizing and protective calcification. 

 

2- Results 
 

2.1 Deep learning framework for segmentation of sample and lipid pool  
 

 We introduce a novel hybrid neural network framework designed to accurately and semi-
automatically segment both the sample and embedded lipid pools from the 𝜇-CT datasets for 
vascular tissues (Fig. 2). This approach combines the capabilities of a deep learning model UNet 
designed specifically for segmenting biomedical images (28) with two sequentially connected 
(neural) networks.  The framework aims to efficiently segment diverse vascular specimens with 
highly heterogeneous composition in a semi-automatic fashion using only a few hand labeled slices 
from a stack of thousands of images. 
 

Briefly, the proposed framework utilizes transfer learning, employing UNet as a feature 
extractor to train the initial neural network (sample classifier) responsible for distinguishing 
foreground (sample domain) from the background. Training is performed on a small subset of 
images consisting of 13 slices with manually annotated markings of the sample and lipid pool 
boundaries. During the training process, the kernel weights in the convolutional layers of UNet are 
optimized to assign higher probability values to pixels belonging to sample regions compared to 
other regions. This 2D feature map is then converted to a tall vector and is utilized as input feature 
along with other features, including pixel 3D spatial information (inter and intra-slice coordinates) 
and their grey-scale intensity, to train the sample classifier. The inclusion of pixel 3D spatial 
information enables the framework to leverage the continuity of the volumetric variations across 
regions of interest, enabling automatic identification of intra-slice features shared by foreground 
regions between slices.  The resulting segmentation maps are then utilized to extract sample 
regions from the dark background of the input image, thereby reducing the number of pixels 
involved in the training process of the second dense-layered neural network classifier (lipid pool 
classifier), which is responsible for distinguishing lipid and non-lipid pool pixels within the sample 
region. By filtering out background pixels, manually extracting input features, and considering inter 
and intra-slice coordinates of pixels, our framework empowers the lipid pool classifier with sufficient 
predictive power to accurately classify lipid and non-lipid pixels. 
 

 

2.2 Performance assessment- Reliable segmentation of thousands of high-resolution μ-CT 
images by training on only a few hand-labeled images  
 

The performance of the deep learning framework was evaluated on specimens from three 
intracranial arteries and two cerebral aneurysms. These five samples (denoted 1-5) were scanned 
using high-resolution μ-CT with a three-micron spacing with volumes ranging from 4 – 83 mm3, 
generating a range of stack sizes (3269, 2541, 1601, 161, and 286 images in Samples 1-5, 
respectively). Two experts selected 25 uniformly distributed slices throughout each stack and 
manually marked the boundaries of both sample and lipid pools from each sample. This manual 
segmentation is performed based on the histologically validated characteristics of the sample and 



   

 

   

 

lipid pools visible in micro-CT images (29). The model was trained and validated on just 13 manually 
marked slices. The remaining manually marked slices were used to evaluate performance. At least 
one test slice was positioned between every two consecutive training/validation slices. The impact 
of non-uniform distributions of manual markings and their total number on model performance is 
discussed in the SI Appendix. 
 

Fig. 3 shows some representative test slices from each sample, the corresponding manual 
markings (denoted by yellow borders), and model segmentations (marked by red borders). 
Performance was evaluated based on the Dice and Jaccard similarity coefficients (DSC and JSC, 
respectively) for sample and lipid pool data, (Fig. 3, Fig. 4), Table 1.  Samples 1-4 had mean DSC 
and JSC scores above 0.85 and 0.75, respectively for the lipid pool segmentation and above 0.95 
and 0.91, respectively, for sample segmentations, (Fig. 4 A-D). In contrast, the fifth sample 
exhibited 5 and 7% reduction in the mean DSC and JSC values for the lipid pool segmentation and 
5 and 10% reduction in the mean DSC and JSC values for sample segmentation, respectively. The 
substantially smaller cross-sectional areas of the fifth sample along with the relatively complex 
shape, (Fig. 3 Q1, R1, S1, T1), caused the segmentation scores to be highly sensitive to even small 
mismatches between the segmentation maps and the manual markings, resulting in this reduction 
in segmentation accuracy (30).   
 

Average training times for each sample were less than 45 minutes (Table 1), with 
significantly more time spent on the sample compared with the embedded lipid pool (Expert 1: lipid 
pool mean of 331s versus sample mean 2291s, P = 0.009; two-sided Wilcoxon rank sum test; 
Expert 2 lipid pool mean of 333s versus sample: mean 2309 s, P = 0.009; two-sided Wilcoxon rank 
sum test). The average training time for the two experts was not significantly different (Expert 1: 
mean of 2623s, Expert 2: 2642s P = 0.754; two-sided Wilcoxon rank sum test).  
 

 

2.2.1 Technical challenges for segmenting μ-CT data with calcification and embedded lipid 
pools. 
 

In general, μ-CT images of calcified vascular tissues have several categories of imaging artifacts 
(31).  We briefly review these artifacts and how the framework was designed to address these 
challenges.  
 
Low border contrast between lipid pool and surrounding tissue: While the lipid pool regions 
are darker than the surrounding sample, the interface between the lipid pool and surrounding tissue 
are not distinct, (Fig. 3 Sample 1: A1, C1; Sample 2: E1; Sample 5: Q1- T1), hindering accurate 
segmentation of this boundary in some images.  The lipid pool occupies a 3D volume with gradual 
morphological changes across the sequential 2D μ-CT images (not shown). The shape continuity 
is leveraged through inclusion of the z position as a feature in the neural network classifier, enabling 
linking information in neighboring images with sharper boundaries to improve segmentation in 
those with hazy boundaries, (Fig. 3 A3, C3, E3, Q3- T3), yielding average DSC scores above 0.8 
for the lipid pools and 0.92 for the sample boundary (Table 1 – Expert 1).  
  
Overlap of macrocalcifications and lipid pools: Overlap of macrocalcification with the lipid pool 
borders challenges the automated identification of the lipid pool boundary in some images, (Fig. 3 
J1-P1). The continuity of the lipid pool across the sample was again leveraged to address this issue 
and enabled accurate segmentation of the boundary, (e.g., Fig. 3 J3- P3).  
 
Streak artifacts: Large calcifications, due to their denser material compared to the adjacent 
tissues, can induce intense streak artifacts creating dark regions around the calcifications such as 
those identified with red arrows in Sample 3, (Fig. 3 K1, L1), as well as dark/bright ray-like artifacts 
such as those in Sample 4, (Fig. 3 M1- P1). Although these artifacts could severely impact the 
visibility of tissue or lipid pools in the affected regions in some cases, the proposed framework was 
able to effectively identify the sample and lipid pool regions, (Fig. 3 K2- P2, and K3-P3, 
respectively), Table 1. 



   

 

   

 

 
Ring artifacts: The most common artifacts present in μ-CT images that can significantly reduce 
their quality are ring artifacts (31). Their presence hinders accurate segmentation of boundaries of 
ROIs. Samples 3 and 4 are severely affected by ring artifacts (center marked by cyan arrow), (Fig. 
3 K1, L1) and (Fig. 3 M1-P1), respectively. Despite the overlap of ring artifacts and both tissue and 
lipid pool regions, the segmentation results for the sample and lipid pool boundaries are in good 
agreement with the manual markings, (Fig. 3 K2-P2) and (Fig. 3 K3-P3), respectively.  This 
demonstrates the capability of the proposed framework for handling such cases without the need 
for performing any ring artifact reduction techniques. 
 
Undesired presence of sample holder: Sample holders are required to constrain samples inside 
sample container during scans using μ-CT. In some cases, these holders may appear in μ-CT 
images at a grey scale similar to that of the sample, green arrows in (Fig. 3 A1-E1, Q1), hindering 
segmentation of ROIs using the image thresholding approach.   Our segmentation algorithm 
effectively leverages the spatial coordinates associated with each pixel so that pixels outside the 
ROI can be removed, e.g.  (Fig. 3 A2-E2, Q2).   
 

2.3 Calcification phenotyping based on size, topology and clustering using an ML-based 
clustering algorithm 
 

A novel framework is developed to classify calcifications based on size, spatial distribution 
and topology, Fig. 5. First, each calcification particle in the domain is segmented using image 
thresholding and the volume is calculated based on a prescribed volume threshold after performing 
3D reconstructions. In prior work, microcalcifications were defined as having an equivalent diameter 
of less than 500 um based on the imaging resolution of most clinical scanners, (e.g. Gade, et al. 
(3)). Here, we use this same critical diameter and prescribe all larger particles as 
macrocalcifications.  The microcalcifications are then further subcategorized based on spatial 
distribution as either isolated or part of a cluster.  Clusters are detected through the application of 
a machine-learning-based clustering algorithm. The remaining microcalcifications are designated 
as isolated calcifications. In the next step, macrocalcifications are further categorized as sparse or 
dense based on their topology (Methods).   
 

As shown in Fig. 5, the first specimen had two macrocalcifications, each with sparse and 
dense parts, and seven clusters of microcalcifications. The second specimen showed no 
macrocalcifications but had three clusters of microcalcifications. The third sample exhibited two 
macrocalcifications, each with sparse and dense parts, along with two clusters of 
microcalcifications. In the fourth sample, one macrocalcification, with both dense and sparse parts, 
was observed, and this sample did not have any clusters of microcalcifications. The fifth sample 
displayed one entirely sparse macrocalcification and three clusters of microcalcifications.  
 

 

2.4 Application of the proposed pipeline for high throughput phenotyping of vascular 
calcification  

 

The two frameworks introduced in Sections 2.1 and 2.3 were integrated into a single 
pipeline (Fig. 6) to enable phenotyping of samples based on i) co-localization with lipid pools 
(atherosclerotic/nonatherosclerotic), ii) size (micro/macro), iii) distribution of microcalcifications, 
and iv) topology of macrocalcifications.  The pipeline was applied to the five specimens to classify 
every calcification particle within the sample by phenotype.  Briefly, outputs from the first and 
second framework were merged to create 3D volumes in which each calcification is identified as 
within or external to a lipid pool (atherosclerotic/non-atherosclerotic).  Data on volume of each 
calcification enable classification by size (micro/macro).  Microcalcifications were further subdivided 
as part of a cluster or as isolated.  Macrocalcifications were subcategorized by their topology 
(dense/sparse). 
 



   

 

   

 

The pipeline described in this section was successfully applied to five specimens, enabling 
valuable insights into the composition and characteristics of atherosclerotic plaques. Fig. 7 provides 
a visualization of representative outcomes.   High fidelity 3D models of tissues, lipid pools, and 
calcification display the relative position of these components and can be used for further 
biomechanical studies (Fig. 7A). The relative location of these components can be easily visualized 
using computer generated cross sections, (Fig. 7 B). The calcification phenotypes across each 
specimen can be quantified regionally or for each sample, providing essential data for studying the 
relationship between pathology and rupture risk, (Fig. 7C) and further broken down for macro (Fig. 
7D) and microcalcifications (Fig. 7E). 
 

In Fig. 7 C, we present the volumetric ratios of lipid pools to tissue and calcifications to 
tissue, indicating the extent of atherosclerosis and calcification, respectively. Additionally, we 
provide the volumetric ratio of atherosclerotic calcifications to the entire calcification domain, a 
crucial factor for rupture risk assessment (3). This ratio is particularly important, as previous studies 
have suggested tissues with atherosclerotic calcifications tend to exhibit increased stability 
compared to those with non-atherosclerotic calcifications (3). Furthermore, it is known that lipid 
pools can attenuate stress concentrations around calcifications (16), further emphasizing their 
relevance in the context of plaque stability (Fig. 7 C). The proportion of macrocalcifications to the 
entire calcification domain is also presented in Fig. 7 C, highlighting another essential risk factor 
for plaque failure. Previous research has indicated macrocalcifications can stabilize plaques by 
reducing adjacent tissue deformability, while microcalcifications may induce aberrant stresses that 
could lead to rupture (4). 
 

Furthermore, Fig. 7 C presents the volumetric ratio of clusters of microcalcifications to the 
entire calcification domain. This measure is crucial for understanding the amplified deleterious 
impact of densely distributed microcalcifications on the strength of diseased tissues (6). 
 

In Fig. 7 D, we explore the proportion of sparse and dense parts within atherosclerotic and 
non-atherosclerotic macrocalcifications. This information is particularly valuable for studying 
whether the presence of calcifications inside lipid pools is inversely correlated with their topology 
(sparsity). Higher density (less sparsity) is associated with smoother surfaces and fewer sharp 
edges, while sparse macrocalcifications due to their sharp edges may create regions with high-
stress concentrations and promote failure (16). Investigating the association between the presence 
of lipid pools and macrocalcification topology is crucial for understanding plaque stability (Fig. 7.D). 
 

Lastly, Fig. 7 E examines the proportion of isolated and clustered microcalcifications within 
atherosclerotic and non-atherosclerotic macrocalcifications. This data is essential for examining 
correlations between the presence of lipid pools and the distribution density of microcalcifications. 
It also addresses the question of whether the presence of lipid pools facilitates the agglomeration 
of microcalcifications and accelerates micro-to-macrocalcification conversions (15). Additionally, 
while higher distribution density of microcalcifications is linked to amplified deleterious impacts on 
tissue stability (6), the presence of these microcalcification clusters inside lipid pools may reduce 
concerns about their role in the failure process, given that lipid pools can attenuate stress 
concentrations around these particles. Understanding the role of lipid pools in the presence of 
microcalcification clusters is crucial for refining rupture risk assessments (Fig. 7 E). 
 

The time durations required to complete each step of the pipeline after obtaining the μ-CT 
images for each specimen (Fig. 6 D) are presented in Fig. 7 F. The image segmentation time was 
calculated by combining the required training and application time of the proposed segmentation 
framework for sample and lipid pool segmentation with the time needed to perform calcification 
segmentation via image thresholding. The required time for segmentations using the proposed 
framework was presented in Table 1. Additionally, Fig. 7 F displays the time required for 
calcification segmentation. It is evident from this figure that sample segmentation is the most time-
consuming component of the overall segmentation time, whereas calcification segmentation time 
is significantly shorter than that of sample or lipid pool segmentations due to the use of image 
thresholding. Furthermore, for samples with larger macrocalcifications such as the first and the third 



   

 

   

 

samples a significant portion of the overall runtime is allocated to particle identification and the 
classification of macrocalcifications based on their topology (sparse/dense). The runtime required 
to perform these analyses can be substantially improved by vectorizing the developed algorithms 
to harness the power of GPU parallel processing. This project is currently underway and will be 
incorporated into future research endeavors to expedite the analysis. 
 

 

2.5 Extending the clustering algorithm to analyze the coupling between collagen fibers and 
microcalcification density 
 

Collagen fibers are the central load bearing component in soft biological tissues such as 
arteries.   However, the integrity of the fibers cannot be imaged in vivo and therefore, it is important 
to identify surrogate markers for collagen integrity that are measurable in patients. A recent in vivo 
experimental study has demonstrated a tendency for microcalcifications to coalesce within areas 
of fibrous tissue lacking a dense collagen fiber distribution (15). However, it is not yet well-
understood whether the dense distribution of microcalcifications degrades collagen fiber network 
(causative), or these micro particles amalgamate only in regions with diminished collagen fiber 
distribution density. In any case, there should be an inverse correlation between the distribution 
density of microcalcifications and that of collagen fibers. Identifying such correlations requires 
quantifying the distribution density of both collagen fibers and microcalcifications.  
 

Here, we extend the prior clustering algorithm to collagen fibers to explore the relationship 
between density of collagen fibers and calcification. In particular, we identify a distribution density 
threshold for microcalcifications above which collagen fiber content is diminished (Fig. 8). A 
multiphoton microscopy (MPM) dataset for Sample 1 is used for this example, as this modality can 
image both collagen fibers and calcification (3), (Fig. 8 A). In the first step, each of the collagen and 
calcification channels were extracted (Fig. 8 B and 8 C, respectively) from the input dataset and 
their 3D models were reconstructed by applying 3D triangulation algorithm (Fig. 8 D and 8 E, 
respectively).  

 
The 3D model of collagen channel is first divided into regions of low and high fiber density 

using the machine-learning-based algorithm, (Fig. 8 D).  Next, the 3D model of calcifications is 
superimposed on that of the collagen channel, (Fig. 8 E), and calcifications are labeled C1 and C2, 
based on their co-location with the low and high-density collagen domains, respectively. 
Qualitatively, regions of low collagen density appear to coincide with regions of high calcification 
density. The ML-based clustering algorithm is then applied to the calcifications to cluster them into 
regions of low and high density. The calcifications within these regions are labeled as D1 and D2, 
respectively, (Fig. 8 F). The ML-based clustering algorithm parameters are iteratively adjusted to 
obtain an accuracy of 80% or more for the match between D1-C1 and D2-C2 particles, collectively, 
providing a threshold for calcification density corresponding to diminished collagen content.  
 

 

3. Discussion 
  

There is a strong association between the presence of arterial calcification and major 
adverse cardiovascular events (MACE) such as stroke and heart attack as well as to other 
cardiovascular diseases such as intra and extracranial aneurysms, and aortic valve diseases (2, 3, 
9, 19, 32-40). However, substantial controversy exists over the mechanistic role of calcification in 
these diseases and how to effectively integrate clinical measurements of calcification into risk 
assessment for these diseases. For example, the calcium score, commonly used in clinical 
practice, assumes increased total calcification corresponds to an elevated risk of adverse events. 
However, even this foundational assumption is inconsistent with important findings such as 
evidence that large calcifications (macrocalcifications) can be protective (8, 11, 12). Moreover, 
statins are associated with increased calcification, yet are known to lower risk of MACE (21, 22, 
41), Research to understand these contradictions points to the need to account for the diverse 



   

 

   

 

presentations of calcification, including factors such as size, spatial distribution, topology and 
nature of the surrounding tissue (4-6, 15, 16, 23).   

 
Therefore, in this work we introduced a new system for categorizing calcification 

phenotypes.  Motivated by studies that provide either direct evidence (mechanistic) (6, 8) or indirect 
evidence (associative) (3) of the roles of calcification in adverse cardiovascular events, we selected 
four calcification categories for a total of eight distinct phenotypes.   The first category distinguishes 
calcification by size into micro and macrocalcifications. Concerning macrocalcifications, 
computational studies suggest they shield arterial plaques by reducing their deformability (4, 8, 12).  
Conversely, comprehensive studies have consistently provided compelling evidence showing 
microcalcifications can promote tissue failure (6, 13, 14). In a computational simulation, the 
presence of even a single spherical microcalcification within the plaque fibrous cap was shown to 
amplify plaque stresses by a factor of 2.5 (5). Another computational analysis demonstrated that 
the existence of two microcalcifications positioned in close proximity, regardless of their location 
within the arterial wall, can significantly elevate intramural stresses, driving the tissue toward failure 
(6). Therefore, calcifications size is an important factor determining their role in the failure process.  

 
The second and the third categories focus on macrocalcification topology (sparse or 

dense), and microcalcification spatial distribution (isolated or clustered), respectively. Regarding 
macrocalcification topology, a recent in silico simulation showed the sharp edges of 
macrocalcifications can lead to abnormal stress concentrations in surrounding tissues, thereby 
compromising tissue stability (16). Regarding microcalcification spatial distribution, an in-vivo 
experimental study found a direct correlation between the locations of the dense distributions of 
microcalcifications and regions of tissue with diminished collagen fiber density (15). While it is not 
yet well known if the presence of dense distributions of microcalcifications degrades collagen 
networks or if these particles coalesce only in regions with lower density of collagen fibers, such 
focal changes in the collagen fibers density will certainly culminate in lower tissue strength in these 
locations as these fibers are the main load-bearing components of soft tissues in physiological 
loading conditions. Therefore, it is important to consider the impacts of macrocalcification topology 
and microcalcification spatial distribution as phenotypes that can substantially modulate the tissue 
failure process. 
 

  Prior research also suggests that the detrimental impact of calcifications can be 
diminished when they are embedded within lipid pools (10, 37). Furthermore, in calcified soft 
tissues such as aortic valve leaflets and arteries these “atherosclerotic calcifications”, i.e., 
calcifications embedded in lipid pools, are believed to have a different etiology compared with those 
distinct from lipid pools (42). For this reason, we included a fourth calcification category of 
atherosclerotic/non-atherosclerotic calcification.  

 
Having identified these categories, we then developed a framework that makes it possible 

to phenotype thousands of individual calcification particles across vascular specimens. This 
objective was achieved using two machine-learning-based frameworks. The first framework 
leverages deep learning approaches to perform the segmentation of tissue components. The 
second framework is designed to classify calcifications based on their size, spatial distribution and 
topology. Together, these two frameworks provide a powerful and automated means of 
distinguishing all 8 phenotypes in diseased tissues, which can have significant implications for the 
study and diagnosis of calcification-related diseases.  

 
Regarding the first framework, the segmentation of lipid pool regions in μ-CT images of 

calcified vascular tissues can be challenging due to their lower contrast and blurred boundaries 
compared to other regions. Traditional histological analysis is labor-intensive and destructive. Our 
high-throughput pipeline offers a more efficient, and accurate analysis of intact specimens, 
improving calcification phenotype quantification. While a research letter published in 2021 also 
endeavored to present a fully automated segmentation methodology for dissected atherosclerotic 
tissue based on UNet, the segmentation accuracy for the lipid pool measured by the dice similarity 
coefficient was 0.41 (43). Furthermore, the impact of CT artifacts and the issue of overlapping 



   

 

   

 

macrocalcifications and lipid pools were not discussed, and the segmentation maps were not 
presented. The low segmentation score for the lipid pool, despite the using 1601 training slices, 
highlights the importance of employing a semi-automated segmentation approach for accurate 
segmentation of tissue components in these μ-CT images. 

 
Our frameworks enable more precise investigations into the effects of different treatments 

on the development of calcifications and lipid pools within vascular tissues, such as those aimed at 
reversing the calcification process in artery walls (24). It is crucial to acknowledge that not all 
calcification phenotypes are harmful, and eliminating all calcifications may not necessarily improve 
tissue stability. For example, if removal of macrocalcifications in arterial stenosis through 
treatments outpace the natural tissue remodeling process, a void or area incapable of bearing 
normal loading conditions can be created where macrocalcifications once existed. This situation 
can transfer excessive stress onto fibrous caps and contribute to their failure. Therefore, it is 
essential to measure the pace of calcification elimination by these treatments and quantify their 
impact on intramural stresses associated with different calcification phenotypes. 
 

The pipeline supports both computational and experimental analyses aimed at 
understanding the complex interplay of various calcification phenotypes on intramural stress within 
vascular tissues. Such information is needed to improve risk assessment for MACE and other 
diseases as well as to assess the potential of novel therapies. For computational studies, the 
pipeline provides detailed 3D subject-specific tissue, lipid pool and calcification models to create 
necessary computational domains. In experimental analyses, it facilitates selection of regions of 
interest for mechanical testing and enables the quantification of dissected vascular tissue samples 
based on calcification phenotypes. This assessment can serve two primary purposes: first, to 
investigate the relationship between calcification and tissue strength through mechanical testing, 
shedding light on the role of calcification in tissue failure; and second, to evaluate the efficacy of 
innovative therapeutic interventions designed to target vascular calcifications (24). 
 

Here, we focused on eight phenotypes to demonstrate the approach and methodology.  
This approach can easily be adapted to increase or even decrease these categories as scientific 
studies proceed and more direct and indirect evidence is available as to the role of calcification in 
MACE. For example, here we utilize two size categories using a threshold for microcalcifications 
motivated by the resolution of clinical scanner (44). Additional subcategories can be introduced and 
the threshold size for microcalcifications can be modified depending on the application and future 
findings. Previous studies have reported a correlation between the presence of micro and 
macrocalcification and location within the vascular wall (3). While we have not introduced a 
category for the physical location of calcifications across the wall thickness, we have considered 
this in a prior study (45) and it can be useful for future investigations (3).  

 
Currently, standard clinical CTA scanners cannot detect microcalcifications due to 

resolution limitations on the order of 0.5 mm (44). Therefore, tools such as the calcium scoring 
(CAC) with the current clinically implemented measurement techniques, cannot incorporate the 
impact of the microcalcifications and their phenotypes such as clustered or isolated (based on their 
spatial distributions). This may constitute one of the reasons for CAC inconsistencies such as the 
high false positive rate (46) and diminished accuracy for younger patients (20). Among the calcified 
vascular tissues considered in this study (Fig. 7 C), sample 3 had a greater calcification extent 
compared to sample 1, which is evidenced by their calcification to tissue volumetric ratios (11.5% 
vs 2.1%), while sample 1 had substantially more microcalcifications than sample 3 (5509 vs 104). 
Furthermore, as illustrated in Fig. 7 E, sample 1 had more non-atherosclerotic clusters of 
microcalcifications than sample 3 (17.8% vs ~0%). Evaluating the vulnerability of these samples 
using the current calcium scoring, these samples will be stratified equally as high-risk, due to its 
sensitivity to only macrocalcifications and ignoring the impact of microcalcification. However, based 
on the most-recent findings, sample 3 has a significantly lower risk of failure (6, 12, 16). 

 
Recently, new intravascular imaging modalities have been introduced with the capability of 

imaging the inner wall of larger arteries (27). One such modality, intravascular micro-optical 



   

 

   

 

computed tomography (μ-IVOCT) enables in-vivo detection of microcalcifications and therefore has 
the potential to provide the necessary data to improve the calcium scoring index. In particular, our 
high throughput quantification tool could be implemented for these datasets and provide the 
corresponding calcification phenotypes along the vasculature. Such phenotyping could be used  to 
enhance the diagnostic value of risk assessment tools once a mechanistic understanding of the 
role of the calcification phenotypes has been determined. While we have motivated the present 
work by applications to MACE, calcification is also found in heart valves, peripheral vessels and 
many other soft tissues across the circulatory system (1, 43, 47).  The approach introduced here is 
equally applicable to calcification in other areas and can be tailored to the relevant phenotypes for 
a particular disease.   
 

In summary, the presented classification system for vascular calcifications and the novel 
quantification tool enable analysis of calcification in diseased tissues and represent an important 
step towards improving risk assessment tools for MACE and other calcification-related diseases. 
Specifically, the proposed pipeline quantifies specimens based on type, size, topology, and spatial 
distribution of calcifications. Our AI tool simplifies information extraction for objective analysis of 
numerous specimens, aiding studies exploring the relationships between calcification phenotypes 
and disease progression and treatment. High-throughput quantification combined with mechanical 
testing can be used to identify the role of each calcification phenotype in the failure process. 
Applying these insights to in-vivo IVOCT imaging (48) will enhance the diagnostic value of risk 
assessment tools such as calcium scoring, potentially reducing the economic burden of 
cardiovascular disease. 

 
4- Methods 
4.1- The volumetric μ-CT image segmentation framework  
 

The neural networks employed in this study consisted of a single hidden layer with 500 
neurons. For training, we utilized the pixel-wise cross-entropy loss function, as defined in Eq. 1. 
 

Cross entropy loss = − ∑ ∑ 𝑡𝑖𝑗 ln 𝑦𝑖𝑗
𝐾
𝑗=1

𝑁
𝑖=1          (Eq.1) 

 
where N is the total number of pixels and K is the number of classes, 𝑡𝑖𝑗 is determined by the ground 

truth and is a binary indicator of whether pixel i belongs to class j, and 𝑦𝑖𝑗 is the model-predicted 

probability for pixel i belonging to class j. The cross-entropy loss outperforms other loss functions, 
such as the dice loss, in cases where the size (surface area) of the foreground experiences 
significant variations compared to the background (49), as is typically observed in μ-CT stacks of 
dissected atherosclerotic vascular specimens. For the hidden layers and output layer, we employed 
the ReLU and SoftMax activation functions, respectively. To prevent overfitting, we implemented 
an early stopping convergence criterion based on validation accuracy, halting the training process 
if there was no improvement in validation accuracy over 45 and 15 consecutive epochs for sample 
and lipid pool segmentations, respectively. The limited-memory Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm (LBFGS) (50) was employed to minimize the cross-entropy loss 
function for both networks. 

 
The segmentation of calcifications is carried out by image thresholding approach. A global 

threshold was applied to the color intensity of pixels in the input grayscale images, with all pixels 
exhibiting a color intensity greater than this threshold being labeled as calcifications. 
 

4.2- Evaluation Metrics 
 

We considered the Dice similarity coefficient (DSC) and Jaccard similarity coefficients to evaluate 
the sample and lipid pool segmentation accuracy, which is defined as: 
 
 

DSC =
2×TP

2×TP+FP+FN
            (Eq.2) 



   

 

   

 

 
The value of a DSC ranges from 0, indicating no spatial overlap between two sets of binary 
segmentation results, to 1, indicating complete overlap. 
 

JSC =
TP

TP+FP+FN
            (Eq.3) 

 
The range of JSC span values between 0 and 1, in which JSC = 0 means there is no overlap 
between the segmentation map and the ground truth and the value of 1 indicates perfect match. 
 

 

4.4- Quantification and Statistical Analysis.  
 

The statistical analysis of the model performance comparisons in this study was conducted 
using either the two-sample t-test or two-sided Wilcoxon rank sum test depending on the number 
of measurements. Unless otherwise stated, results were considered statistically significant only if 
the calculated P values were less than 0.05. 
 

3.5- Data and software availability 
 

The entire proposed pipeline is developed in MATLAB programming language. The 
proposed semantic segmentation framework in this study is also developed in Python using both 
TensorFlow and PyTorch libraries. The full code used in the experiments isn't publicly accessible 
at this time, but the network design details are included in the results and Materials and Methods 
sections. The source code can be obtained upon request, with approval from the University of 
Pittsburgh. 
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Figures and Tables 
 

 

 
 
Figure 1. A classification system for phenotyping calcifications in human vascular tissues. This process begins 
by categorizing calcifications into two groups based on their size: microcalcifications and macrocalcifications. 
Macrocalcifications are further examined for their topology and sorted into either sparse or dense categories. 
The next step involves evaluating microcalcifications based on their spatial distribution, utilizing an 
unsupervised clustering algorithm to differentiate between clustered and isolated occurrences. Lastly, these 
categories are all further sub-categorized based on their colocation with lipid pools as athero- or non-
atherosclerotic leading to eight distinct phenotypes. 
 

  



   

 

   

 

 

 
Figure 3. Comparison of the model segmentations with manual markings in representative cross sections 
from the five samples. Column 1 and 4:  raw input μ-CT slices, Column 2, 5, and 3, 6: manual markings 
(yellow) and model segmentation output (red) for the sample and lipid pool boundaries, respectively. Bright 
white regions are calcification. Artifacts include streak artifacts due to large calcifications (red arrows), ring 
artifacts (cyan arrow at ring center), undesired presence of sample holder (green arrows). Ring and streak 
artifacts can significantly hinder accurate segmentation, particularly for lipid pools. The algorithm performance 
was robust despite the significant presence of these artifacts.   



   

 

   

 

 

 
Figure 4. Overall performance of the proposed segmentation framework for sample and lipid pool regions 
measured by the Dice and Jaccard similarity coefficients for Expert 1 (A and B, respectively) and Expert 2 (C 
and D, respectively). Experts manually marked 25 uniformly distributed slices in each stack, of which 13 
uniformly distributed slices were dedicated to training and validation. The remaining slices were used to test 
the model performance. Mean DSC and JSC values for the four samples (1-4) were over 0.85 and 0.75 for 
lipid pool segmentation and over 0.95 and 0.91 in sample segmentation. The fifth sample had a very small 
cross-sectional area, making the performance metrics highly sensitive to slight non-overlapped pixels between 
the segmentation and the manual markings. As a result, mean DSC and JSC scores were 0.81 and 0.69 for 
lipid pool and 0.90 and 0.81 for sample segmentation in this sample, respectively, Table 1.   
 

 

 

  



   

 

   

 

 

 

 
 
Figure 5. Calcification classification based on size and distribution density using the proposed framework for 
the five samples. The input calcification domains are analyzed to identify microcalcifications (cyan) and 
macrocalcifications (multiple colors except cyan), (column 1). The microcalcifications are inspected for the 
existence of the clusters of microcalcifications (column 2, distinct colors for each cluster, isolated particles in 
cyan), and each macrocalcification is then further processed to assess topology (column 3, sparse parts in 
transparent colors, and non-transparent colors for the dense parts). 
 

 

  



   

 

   

 

 

 
 
Figure 6. Pipeline for quantification of calcification based on size, spatial distribution of microcalcifications, 
topology of macrocalcifications and co-localization with lipid pools. (A) Vascular specimens are harvested from 
surgical procedures or from cadavers. (B) Representative cadaveric cerebral artery sample. (C) Samples are 
scanned via high-resolution μ-CT imaging to generate (D) stacks of reconstructed grey scale images. (E,G,H) 
Sample and lipid pool regions are semi-automatically identified across the entire stack via the segmentation 
framework. (F) Calcifications are segmented using image thresholding. (J) 3D reconstruction of the tissue, 
lipid pools and calcifications are performed for each sample using the 3D triangulation algorithm. (K) 
Atherosclerotic and non-atherosclerotic calcifications are identified based on their co-localization with lipid 
pools. (L) All classifications are categorized by size as micro or macrocalcifications. (M) Microcalcifications 
are further categorized as isolated or as part of cluster. (N) The volume of each of the identified 
macrocalcifications are further classified as sparse or dense. 
 

  



   

 

   

 

 

 
 
Figure 7. The outcomes of deploying the proposed pipeline to quantify the calcified vascular specimens 
considered in this study. (A) the 3D reconstructions of the sample (white color), lipid pools (yellow regions), 
and calcifications (red for non-atherosclerotic calcifications and green particles for atherosclerotic ones). (B) 
the cross sections of the 3D models using the planes shown in the first row are displayed, showing the location 
of lipid pools, atherosclerotic and non-atherosclerotic calcifications with the tissue walls. (C-E) Representative 
compiled data resulting from applying pipeline to five samples. (F) The required time to complete each step of 
the proposed pipeline (after acquiring high-resolution μ-CT images) to perform specimens quantifications. The 
segmentation time comprises the time required to train the proposed semi-automatic segmentation framework 
to segment sample plus lipid pool regions, application, and performing calcification segmentation. This panel 
also presents the proportion of time allocated to training the segmentation model for sample, lipid pool, and 
calcification within the overall segmentation time. Particle identification presents the required time to detect 
each calcified particle in the input calcification domain obtained by applying 3D reconstructions to the 
calcification segmentation results. The required time to classify calcifications based on their size was negligible 
compared to other steps and is not included in this figure. 



   

 

   

 

 

Figure 8. Identification of the critical calcification density threshold above which the microcalcifications 
presence corresponds to regions with diminished collagen fiber structural integrity. (A) Input multiphoton 
dataset showing the collagen (red) and calcification (magenta) domains. (B and C) The extracted collagen 
and calcification domains, respectively. (D) Low- and high-density parts of the 3D reconstruction of collagen 
domain identified using the ML-based clustering algorithm. (E) Identification of calcification particles in domain 
of low/high collagen density- denoted as C1/C2. (F) Iterative application of the ML-based clustering algorithm 
to divide calcification into low/high density clusters (D1,D2, respectively). Identification of optimal values of 
ML-based clustering algorithm parameters to minimize the mismatch between calcification particles labeled 
C1- D1 and C2 - D2. These parameters provide insights into the correlations between the microcalcification 
distribution density and locally diminished collagen fiber integrity. 
 

 

 

  



   

 

   

 

 

 

 

 

 

Table 1. Summary of the segmentation framework performance for sample and lipid pools  
Expert 1 

Sample # Score (Mean ± STD) Time (s) 

Lipid Sample Overall Lipid Sample 

DSC JSC DSC JSC 

Sample 1  0.858 ± 0.026 0.752 ± 0.04 0.967 ± 0.005 0.936 ± 0.010 2635.9 281.8 2354.1 

Sample 2 0.883 ± 0.040 0.793 ± 0.062 0.971 ± 0.005 0.943 ± 0.009 2497.0 137.5 2359.5 

Sample 3 0.885 ± 0.034 0.805 ± 0.060 0.954 ± 0.009 0.918 ± 0.017 2689.0 238.0 2451.0 

Sample 4 0.888 ± 0.028 0.800 ± 0.046 0.991 ± 0.003 0.983 ± 0.006 2446.9 276.3 2170.6 

Sample 5 0.814 ± 0.068 0.692 ± 0.094 0.922 ± 0.009 0.855 ± 0.016 2843.6 723.0 2120.6 

Expert 2 

Sample # Score (Mean ± STD) Time (s) 

Lipid Sample Overall Lipid Sample 

DSC JSC DSC JSC 

Sample 1  0.878 ± 0.030 0.777 ± 0.063 0.968 ± 0.005 0.938 ± 0.009 2919.4 346.7 2572.7 

Sample 2 0.884 ± 0.049 0.796 ± 0.074 0.968 ± 0.006 0.939 ± 0.010 2304.1 136.0 2168.1 

Sample 3 0.862 ± 0.040 0.760 ± 0.061 0.955 ± 0.013 0.914 ± 0.024 2605.6 200.0 2405.6 

Sample 4 0.867 ± 0.031 0.767 ± 0.050 0.990 ± 0.003 0.980 ± 0.006 2674.0 536.9 2137.1 

Sample 5 0.834 ± 0.053 0.720 ± 0.077 0.898 ± 0.014 0.816 ± 0.024 2708.2 445.8 2262.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

SI Appendix  

The impact of the number and distribution of training/validation slices on performance 
scores 

The impact of the number and location of training slices (i.e., expert's manual markings) 
on sample 3, which is known to be challenging in terms of CT artifacts, is shown in Fig. S1, and the 
statistical comparisons are presented in Table S1. As illustrated in Fig. S1. A, increasing the 
number of training slices from 5 to 9 had negligible impacts on segmentation scores in slices 1-18 
but resulted in a noticeable improvement in the remaining slices. This discrepancy arises from the 
significant influence of CT artifacts on the latter portion of the stack, whereas the initial half of the 
stack experienced a comparatively milder impact from these artifacts. In the absence of such 
artifacts and any other noises, such as the presence of sample holders, the application of image 
thresholding can present accurate sample segmentations. In the proposed framework (the sample 
segmentation part, Fig. 1 C), one of the input features of the neural network classifier is generated 
by thresholding the input images thus, it will be a strong predictor of the correct labels for sample 
regions, rendering it straightforward for the framework to gain high segmentation scores in cases 
void of artifacts by training on a few (in this case, five) training slices. However, accurate sample 
segmentations in the second half required more training efforts, as evidenced by the substantial 
improvement in the segmentation scores in this part of the stack by increasing the number of 
training slices from five to nine.  
 

Table S1 presents the results of the experiment that investigated the impact of the number 
of training/validation slices on the segmentation scores for sample and lipid pool regions. The 
results show that increasing the number of training/validation slices from 5 to 9 significantly 
improved the sample segmentation score (P = 4E-04; two-sample t-test). However, further 
increasing the number of manual markings did not lead to a significant increase in the model's 
sample segmentation performance (P = 0.16, P = 0.36, and P = 0.36 for increasing the number of 
manual markings from 9 to 13, from 13 to 16, and from 16 to 19, respectively). This indicates that 
a mean DSC of 96.6% for sample segmentation for such cases with substantial presence of CT 
artifacts was achieved by using only nine hand-labeled slices. 
 

Regarding lipid pool segmentation, increasing the number of training/validation slices from 
5 to 9 and from 9 to 13 significantly improved the segmentation score (P = 9.4E-11 and P = 0.01, 
respectively; two-sample t-test). However, further increasing the number of manual markings did 
not lead to a significant increase in model performance for lipid pool segmentation (P = 0.80 and P 
= 0.56 for increasing the number of manual markings from 13 to 16 and from 16 to 19, respectively). 
This suggests that a mean DSC of 87.0% for lipid pool segmentation was achieved by using 13 
hand-labeled slices.   
 

Comparing the number of hand-labeled slices to converge the performance score for lipid 
pool and sample segmentations, it is evident that the segmentation of lipid pools is more 
challenging compared to that of sample regions due to their complex morphological characteristics. 
This was the main motivation for developing the segmentation framework for the sample and lipid 
pool segmentation in a serial uncoupled fashion (Fig. 2). As mentioned earlier, in cases where the 
sample-background borders are not significantly affected by artifacts, sample segmentation can be 
performed via image thresholding, which is a considerably faster approach than performing this 
task using a semi-automatic deep-learning-based segmentation algorithm. This is evidenced by 
the substantially shorter segmentation time of calcifications compared to those of the sample and 
lipid pool regions shown in Fig. 7 F. This serial architecture provides users with the flexibility to 
perform sample segmentation with fewer training/validation slices or to replace it with the image 
thresholding approach, resulting in a substantial reduction in segmentation time and overall pipeline 
runtime. 
 

Achieving model accuracy beyond the converged value depends on two key factors: (1) 
The consistency and accuracy of the user’s manual markings that were assigned to training and 
test sets, which can be negatively affected by the CT artifacts, (2) the extent of morphological 



   

 

   

 

variations of ROI between two consecutive training slices in the input stack, which is a factor of 
scan resolution and the specimens length scales.   
 

In cases where increasing the number of training slices does not significantly improve 
model performance, the first source of error, namely inconsistencies in users' manual markings, is 
likely to be the dominant factor. These inconsistencies can have varying impacts on segmentation 
accuracy. When present in the training set, they may challenge the deep-learning model's ability to 
recognize patterns accurately. Conversely, if present in the test sets, they may reduce the model's 
prediction accuracy by providing an inaccurate ground truth for comparison. Despite these 
challenges, our developed segmentation framework achieved satisfactory performance using only 

13 training/validation slices on a stack of 1601 highly noised -CT images, with mean scores of 
96.6% and 87.0% for sample and lipid pool segmentation, respectively.  
 

The second source of error in our segmentation framework arises from substantial 
morphological variations in regions of interest (ROI) between consecutive training slices. To 
address this issue, we propose two strategies: increasing the number of training slices uniformly or 
locally. The effect of increasing the number of training/validation slices uniformly was elaborated 
previously in Fig. S1 (A and B). The impact of the non-uniform distribution of training slices on the 
performance of our model is depicted in Fig. S1 C and analyzed statistically in Table S1. We 
employed a total of 13 training slices for all cases with non-uniform distributions. Our results 
indicate that the distribution of training slices does not significantly affect the model's ability to 
segment the sample (P = 0.42 for bias towards the beginning of the stack, and P = 0.11 for bias 
towards the end of the stack). Regarding lipid pool segmentation, the non-uniform distribution of 
training slices biased towards the beginning of the stack did not result in significant changes in 
segmentation accuracy (P = 0.67). However, for the bias towards the end of the stack, deviation 
from uniform distribution significantly affected lipid pool segmentation accuracy (P ~ 0.05). This is 
mainly due to the greater morphological variations in lipid pools near the beginning of the stack 
compared to the ending slices. As previously noted, lipid pool segmentation is more challenging 
than sample segmentation due to their morphological differences. When training slices were biased 
towards the end of the stack, the segmentation framework had insufficient training data to capture 
the morphological variations in lipid pool regions near the beginning of the stack, leading to a 
reduction in segmentation accuracy for these regions. 
 
 

Performance evaluation of the proposed framework in contrast to alternative segmentation 
models 

We compared the performance of our proposed segmentation framework with other 
commonly used deep-learning models for medical image segmentation, namely, UNet2D and 
UNet3D, and image thresholding. The results of this comparison are presented in Fig. S2, and the 
mean segmentation scores and required segmentation times are summarized in Table S2.  
 

Our study demonstrates the superiority of our proposed segmentation framework over 
other commonly used deep-learning models for image segmentation of dissected vascular 
specimens, as evidenced by the results presented in Fig. S2 and Table S2. Remarkably, our 
framework achieved the highest mean scores for both sample and lipid pool segmentation using 
16 and 32 training/validation slices. Statistical analysis further confirms the superiority of our 
framework's segmentation performance in lipid pool and sample segmentations using 16 
training/validation slices when compared to other deep-learning models (Fig. S2). However, when 
32 training/validation slices were implemented, UNet2D demonstrated comparable performance to 
our framework in lipid pool segmentations, and our model's performance in sample segmentation 
was not significantly different from that of UNet2D, UNet3D and image thresholding, as expected.  
 

Our study endeavored to create a robust segmentation framework for a high-throughput 
specimen quantification tool, guided by three primary objectives. First and foremost, our aim was 



   

 

   

 

to establish a segmentation framework that could reliably perform segmentations with minimal 
manual input from users across all atherosclerotic samples. Secondly, we sought to reduce the 
time required for segmentation (Fig. 7 F), as this plays a significant role in the overall runtime of 
the proposed pipeline, and any enhancements in this area could substantially improve the pipeline's 
speed. Lastly, our objective was to ensure that the application of this framework does not 
necessitate any prior knowledge beyond the ability to mark lipid pools and sample regions. 
 

With regards to the primary objective, the superior performance of our framework 
compared to UNet2D at smaller training set sizes can be attributed to the application of transfer 
learning, which enables the combination of the ability of UNet2D to detect common intra-slice 
features of regions of interest (ROIs) among training slices and the ability of the fully connected 
neural network classifier to identify the gradual volumetric development of ROIs throughout the 

stack of -CT images. While UNet2D alone is unable to perceive the volumetric variations of ROIs 

in the stack of -CT images, UNet3D possesses such ability, albeit with a higher computational 
cost due to the increased dimensionality of the input data. The application of a fully connected 
network in conjunction with the UNet2D in our segmentation framework allowed linking the correct 
labels to the pixels’ spatial features within the stack of μ-CT images. This is especially helpful in 

cases where the -CT artifacts locally impact the visibility of ROIs in the input stack. In such cases, 
our proposed framework automatically reduces the weights of features influenced by pixels’ color 
intensities and instead increases the weights of spatial features to detect the ROIs in problematic 
regions of the stack with diminished visibility by performing interpolations on the adjacent training 
slices.  
 

Regarding the image thresholding approach, it has been observed that it is not a 
dependable model due to its inability to effectively differentiate between the sample or lipid pool 
regions and other undesirable regions that may be introduced by the sample holder or due to CT 
artifacts. The inadequacy of this technique is further illustrated in Fig. S2 (B and C). In these figures, 
a comparative analysis is presented between the performance of the proposed framework and the 
image thresholding approach with regard to sample segmentation in two exemplary slices - one 
without the presence of any artifacts that may impede the visibility of sample borders (Fig. S2 B) 
and another with the significant presence of such artifacts (Fig. S2 C). These slices correspond to 
the maximum (Fig. S2 B) and minimum (Fig. S2 C) segmentation scores attained by the image 
thresholding approach. As depicted in Fig. S2 B, there exist no noteworthy disparities in the 
segmentation performance between the proposed framework and the image thresholding 
approach, notwithstanding the slightly lower segmentation score of the proposed framework in the 
artifact-free slice. However, in the presence of CT artifacts, the proposed model exhibits a markedly 
superior segmentation performance as compared to the image thresholding approach. The 
inaccuracies associated with the image thresholding technique can significantly compromise the 
precision of 3D reconstructions that are generated from segmentation results. Consequently, 
despite its speed, the image thresholding approach is deemed unsuitable as a reliable 
segmentation model for atherosclerotic samples that are frequently afflicted by CT artifacts. 
 

Considering the second objective, in terms of the segmentation time (Table S2), the 
proposed framework could outperform UNet2D and UNet3D when the number of training/validation 
slices was increased from 16 to 32 while presenting comparable segmentation accuracies. Using 
32 training/validation slices, the proposed segmentation framework’s run time was equal to 45.6% 
and 31.6% of UNet2D’s and UNet3D’s run time. As reported in Table S2, the proposed framework 
required more time to perform sample segmentation compared to UNet2D. This is due to combining 
the UNet2D and a neural network classifier in the proposed framework (Fig. 2 (B and C)). However, 
for the lipid pool segmentation, the implementation of convolutional layers with predefined weights 
and excluding the background pixels from the training process of the second neural network 
classifier (lipid classifier) (Fig. 2 K) via the foreground-pass filter in the proposed framework (Fig. 2 
F), resulted in a substantial reduction in the segmentation time. Therefore, the improved run time 
for lipid pool segmentation via the proposed framework outweighs its extended runtime for sample 
segmentation and results in its superior overall runtime compared to UNet2D and UNet3D. 
 



   

 

   

 

Considering the last objective, both the proposed framework and UNet2D provide a 
straightforward application procedure for users. However, the utilization of UNet3D requires the 
users to meticulously arrange the 3D blocks of the test slices in a particular sequence, which 
conforms to the arrangement of the 3D training and validation blocks. This requirement limits the 
applicability of UNet3D to situations where the training/validation slices are uniformly distributed; 
otherwise, the complete coverage of the test sets through the 3D blocks might not be feasible. The 
rationale behind this issue is the incorporation of max-pooling layers in UNet3D's architecture with 
a stride of 2 in all directions, which can be resolved by reducing the stride size to 1 along the inter-
slice direction. However, applying such modification to the UNet3D architecture will inevitably result 
in a substantial increase in its overall segmentation time. 
 
 
 
 
  



   

 

   

 

 

Fig. S1. The effect of increasing the number of manually marked training slices on proposed framework 
performance measured by the dice similarity coefficient. (A and B) The performance score when the number 
of training slices is increased uniformly from 5 to 19 for the sample and lipid pool segmentation, respectively. 
(C) The performance score, considering a non-uniform distribution of training slices (the number of training 
slices in all cases is 13).   

 



   

 

   

 

 

Fig. S2. Comparison of the performance of the proposed model with three common segmentation models, 
including non-volumetric and volumetric UNet and image thresholding approach (A). In terms of lipid pool 
segmentation, the proposed framework, using 16 training\validation slices, achieved a comparable 
performance score to the non-volumetric UNet with even 32 training\validation slices. In terms of sample 
segmentation, using 16 training\validation slices, the proposed framework outperformed other segmentation 
models at the significance level of 0.1. At the significance level of 0.01, the image thresholding approach had 
comparable performance to that of the proposed framework. The segmentation maps for two slices 
corresponding to the maximum and minimum segmentation scores of the thresholding approach are 
compared to those of the proposed framework in (B) and (C), respectively. As illustrated in these figures, there 
were no noticeable differences in the segmentation maps for high scores (B). However, for low scores, the 
segmentation maps were significantly different (C). Such inaccurate segmentations presented by the image 
thresholding approach, despite having a marginal impact on the mean segmentation score across all slices, 
hinder precise 3D reconstruction and accurate quantifications. 

 
  



   

 

   

 

 
 
 

Table S1. Evaluation of the dependence of model performance on the number and distributions of training 
slices 

 Mean DSC ± SD 

 Uniform distribution Uniform vs. non-uniform distribution 
Manual 
markings 

5 9 13 16 19 13 (uniform) 13 (biased to 
the  

beginning of 
stack) 

13 (biased to 
the end of 

stack) 

Sample 0.942 ± 
0.034 

0.962 ± 
0.012 
(**) 

0.966 ± 
0.011 
(n.s.) 

0.963 ± 
0.012 (n.s.) 

0.966 ± 
0.010 (n.s.) 

0.966 ± 
0.011 

0.964 ± 0.012 
(n.s.) 

0.963 ± 0.010 
(n.s.) 

Lipid 0.766 ± 
0.060 

0.848 ± 
0.035 
(**) 

0.869 ± 
0.038 (*) 

0.867 ± 
0.035 (n.s.) 

0.872 ± 
0.041 (n.s.) 

0.875 ± 
0.036 

0.872 ± 0.035 
(n.s)  

0.861 ± 0.034 
(*) 

(n.s.) Not significant, (*) P < 0.05, (**) P < 0.01. For uniform distribution, the significance levels are compared to the previous column. 
For non-uniform distributions, comparisons are made with respect to the uniform distribution. 

 
  



   

 

   

 

 
 

Table S2. Comparative analysis of semantic segmentation models: training time and segmentation scores. 

 
Algorithm Number of 

training/validation 
slices 

Score (Mean ± STD) Time (s) 

Lipid Sample Overall Lipid Sample 

Proposed 
framework  

8 Tr, 8 Val 0.868 ± 0.034 0.951 ± 0.010 3067.31 236.43 2830.88 

Proposed 
framework 

16 Tr, 16 Val 0.879 ± 0.033 0.954 ± 0.011 5995.94 526.96 5468.98 

UNet2D 8 Tr, 8 Val 0.828 ± 0.053 0.915 ± 0.011 4707.04 2603.30 2103.74 

UNet2D 16 Tr, 16 Val 0.876 ± 0.036 0.944 ± 0.011 13155.51 7905.95 5249.56 

UNet3D 8 Tr, 8 Val 0.798 ± 0.098 0.913 ± 0.040 9287.94 6224.73 3063.21 

UNet3D 16 Tr, 16 Val 0.831 ± 0.047 0.943 ± 0.015 18,978.63 13156.89 5821.74 

Thresholding 16 Tr, 16 Val 0.620 ± 0.169 0.925 ± 0.987 75.67 36.06 39.61 

 
 
 
 


