
REVIEW
 CURRENT
OPINION Recent advances in primary resistance mechanisms

against immune checkpoint inhibitors
1040-8746 Copyright � 2021 The A
Yi-Ze Li and Hong-Mei Zhang
Purpose of review

The resistance of immune checkpoint inhibitors (ICIs) has become an obstacle to further improve the survival
of patients with advanced cancer. This review provides an overview of recent advances in primary
resistance mechanisms of ICIs.

Recent findings

With the improvement of study approach, new characteristics and trends have emerged in the classification
of tumor immune subtypes. The effects of germline genetic on tumor microenvironment and the efficacy of
immunotherapy have been further studied. Exosomal programmed death-ligand 1 (PD-L1) is an increasing
focus of research in primary resistance mechanisms of ICIs. In addition to antibiotics and steroids, the
influence of other concomitant medications on the efficacy of ICIs has recently gained more attention.

Summary

Exploring the resistance mechanisms of ICIs is one of the great challenges in the field of tumor
immunotherapy. Continued work to understand the resistance mechanism of ICIs is ongoing.
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INTRODUCTION urothelial carcinoma (UC) and hepatocellular carci-
Department of Clinical Oncology, Xijing Hospital, The Fourth Military
Medical University, Xi’an, Shaanxi, PR China

Correspondence to Hong-Mei Zhang, MD, Department of Clinical Oncol-
ogy, Xijing Hospital, The Fourth Military Medical University, 127 West
Changle Road, Xi’an, Shaanxi 710032, PR China.
E-mail: zhm@fmmu.edu.cn

Curr Opin Oncol 2022, 34:95–106

DOI:10.1097/CCO.0000000000000802

This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the work
provided it is properly cited. The work cannot be changed in any way or
used commercially without permission from the journal.
The emergence of immune checkpoint inhibitors
(ICIs) has greatly improved the survival of patients
with advanced cancer. However, resistance of ICIs
has created a bottleneck in the application of ICIs.
According to the criterions of the American Society
for Immunotherapy of Cancer [1

&&

], primary resis-
tance for advanced patients receiving ICIs needs to
meet the following three requirements: (1) drug
exposure �6 weeks, (2) progressive disease (PD) or
stable disease (SD) for <6 months as best response,
(3) confirmatory scan for PD is required at least
4 weeks after initial disease progression. An impor-
tant feature of the definition of primary resistance is
to be able to reflect the population that does not
benefit from initial immunotherapy, which is essen-
tial to distinguish patients who do not benefit from
initial and longer exposure to monotherapy of pro-
grammed death receptor 1 (PD-1)/programmed
death-ligand 1 (PD-L1) inhibitors. We only summa-
rized the rate of ‘PD as best response ‘, because it is
difficult to distinguish the patients with the best
response of SD < 6months based on the current
literature. It can be seen that the rate of ‘PD as best
response’ of Hodgkin’s lymphoma is the lowest, less
than 15%, whereas the rates of other tumors, includ-
ing melanoma, nonsmall cell lung cancer (NSCLC),
uthor(s). Published by Wolters Kluwe
noma (HCC) and more, are generally high (Table 1).
It appears to be a negative relationship between the
rate of ‘PD as best response’ and median overall
survival (OS) (Fig. 1). It is important to note that
the actual proportion of patients with primary resis-
tance of ICIs is higher than our data. However, the
response and prognosis of the patients with PD in
our statistics are much worse.

Exploring the mechanisms of ICIs resistance
has become one of the significant challenges in
the field of tumor immunotherapy. The known
and putative mechanisms of primary resistance
to ICIs include: lack of antigen mutations or tumor
r Health, Inc. www.co-oncology.com
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KEY POINTS

� The feature of primary resistance is essential to identify
patients who do not benefit from initial and longer
exposure to PD- (L) 1 inhibitors monotherapy.

� An in-depth understanding of the role of tumor immune
subtype, germline genetic, exosomal PD-L1,
concomitant medications in tumor immunity will serve to
further clarify the mechanism of resistance to ICIs.

� The success of the combination therapy strategy is
inseparable from the in-depth study of the resistance
mechanism of ICIs.

Table 1. The rate of ‘PD as best response’ and the median overa

Cancer type Trial Name
Group

number Treatment

NSCLC Keynote 001 101 Pembrolizumab
(treatment-naı̈ve)

Keynote 001 449 Pembrolizumab
(previously treated)

Keynote 042 637 Pembrolizumab

OAK 425 Atezolizumab

CheckMate 057
(nonsquamous)

292 Nivolumab

CheckMate 017
(squamous)

135 Nivolumab

CheckMate 026 211 Nivolumab

Javelin 200 Lung 264 Avelumab

Melanoma Keynote 002 180 Pembrolizumab
(2mg/kg)

Keynote 002 181 Pembrolizumab
(10mg/kg)

Keynote 006 277 Pembrolizumab
(10mg/kg Q3W)

Keynote 006 279 Pembrolizumab
(10mg/kg Q2W)

CheckMate 037 272 Nivolumab

CheckMate 066 210 Nivolumab

CheckMate 067 316 Nivolumab

UC Keynote 052 370 Pembrolizumab

Keynote 045 270 Pembrolizumab

IMvigor210 119 Atezolizumab

IMvigor210 Cohort2 310 Atezolizumab

IMvigor211 467 Atezolizumab

CheckMate 275 265 Nivolumab

Study 1108 191 Durvalumab

JAVELIN Solid Tumor 161 Avelumab

HNSCC Keynote 012 45 Pembrolizumab

CheckMate 141 240 Nivolumab

CONDOR 65 Durvalumab

HAWK 111 Durvalumab

NCT01375842 32 Atezolizumab

Lung and mediastinum
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antigen expression, loss of human leukocyte anti-
gen expression, mitogen-activated protein kinase
pathway activation, loss of phosphatase and tensin
homolog (PTEN) expression leads to enhancement
of phosphatidylinositide 3-kinases (PI3K) signaling
pathway; WNT/b-catenin signaling pathway acti-
vation; lack of interferon-g (INF-g) signaling path-
way, mutation or deletion of INF-g signaling
pathway-related receptor chains janus kinase 1
(JAK1), JAK2, signal transducer and activators of
transcription (STAT) and INF regulatory factor 1,
mutation of the epidermal growth factor receptor/
anapastic lymphoma kinase, and constitutive PD-
ll survival of cancer patients treated with ICIs in clinical trials

Line of
Therapy

Median OS
(95% CI), mo

ORR
(%)

PD as best
response (%) Reference

1 22.3 (17.1–32.3) 41.6 9.9 [2,3]

2þ 10.5 (8.6–13.2) 22.9 27.6 [2,3]

1 16.7 (13.9–19.7) 27 21 [4]

2þ 13 8 (11 8–15 7) 14 44 [5,6]

2þ 12.2 (9.7–15.0) 19 44 [7]

2þ 9.2 (7.3–13.3) 20 41 [8]

1 14.4 (11.7–17.4) 26 27 [9]

2þ 11 4 (9 4–13 9) 19 35 [10]

2þ 13.4 (11.0–16.4) 21 47 [11,12]

2þ 14.7 (11.3–19.5) 26 48 [11,12]

1þ 32.7 (24 5–41.6) 36 42 [13,14]

1þ 32.7 (24 5–41.6) 37 38 [13,14]

2þ 16.4 (12.9–20.3) 31.7 35 [15,16]

1 37.5 (25.5-NR) 42.9 33.3 [17,18]

1 36.9 (28.2–58.7) 45 38 [19–21]

1 11.3 (9.7–13.1) 28.6 42.4 [22,23]

2þ 10.3 (8.0–11.8) 21.1 48.5 [24]

1 15.9 (10.4-NE) 23 36.1 [25]

2þ 7.9 (6.6–9.3) 15 51 [26]

2þ 8.6 (7.8–9.6) 13 4 52 [27]

2þ 8.74 (6.05-NR) 19.6 39 [28]

2þ 18.2 (8.1-NE) 17.8 63.4 [29]

2þ 6.5 (4.8–9.5) 17 42 [30]

2þ 13 (5-NR) 18 56 [31]

2þ 7 0.5 (5.5–9.1) 13.3 41.3 [32,33]

2þ 6.0 (4.0–1.3) 9.2 64.6 [34]

2þ 7.1 (4.9–9.9) 16.2 52.3 [35]

1þ 6.0 (0.5–51.6) 22 40.6 [36]
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Table 1 (Continued )

Cancer type Trial Name
Group

number Treatment
Line of

Therapy
Median OS

(95% CI), mo
ORR
(%)

PD as best
response (%) Reference

dMMR Keynote 158 233 Pembrolizumab 2þ 23.5 (13.5-NR) 34.3 39.5 [37]

TNBC Keynote 012 27 Pembrolizumab 1þ 11.2 (5.3-NR) 18.5 48.1 [38]

Keynote 086 cohort A 170 Pembrolizumab 2þ 9.0 (7.7–11.2) 5.3 60.6 [39]

Keynote 086 cohort B 84 Pembrolizumab 1 18 (12.9–23.0) 21.4 58.3 [40]

JAVELIN Solid Tumor 58 Avelumab 1þ 9.2 (4.3-NE) 5.2 65.5 [41]

ESCC ATTRACTION-3 171 Nivolumab 2 10 9 (9 2–13 3) 19 55 [42]

ONO-4538-07 64 Nivolumab 3þ 10.8 (7.4–13.3) 17 45 [43]

ESCC/EAC/
GEJC

Keynote 181 314 Pembrolizumab 2 7.1 (6.2–8.1) 13.1 50.3 [44]

Keynote 180 121 Pembrolizumab 3þ 5.8 (4.5–7.2) 9.9 58.7 [45]

GC/GEJC JAVELIN Gastric 300 185 Avelumab 3 4.6 (3.6–5.7) 2.2 50.8 [46]

Keynote 059 cohort 3 31 Pembrolizumab 1 20.7 (9.2–20.7) 25.8 38.7 [47]

ATTRACTION-2 330 Nivolumab 3þ 5 26 (4 60–6 37) 11.2 46 [48]

Keynote 059 cohort 1 259 Pembrolizumab 3 5.6 (4.3–6.9) 11.6 56 [49]

GC/ESCA/
GEJC

CheckMate 032 59 Nivolumab 2þ 6.2 (3.4–12.4) 7 44 [50]

HCC Keynote 224 104 Pembrolizumab 2 12 9 (9 7–15 5) 17 33 [51]

Keynote 240 278 Pembrolizumab 2 13.9 (11.6–16.0) 18.3 32.4 [52]

CRC (dMMR/
MSI-H)

Keynote 177 153 Pembrolizumab 1 NR 43.8 29.4 [53]

Keynote 164 cohort A 61 Pembrolizumab 3þ 31.4 (21.4-NR) 33 46 [54]

Keynote 164 cohort B 63 Pembrolizumab 2þ NR (19.2-NR) 33 40 [54]

CheckMate 142 74 Nivolumab 2þ NR 32 28 [55]

RCC CheckMate 025 410 Nivolumab 2þ 25.8 (22.2–29.8) 22.9 34.6 [56,57]

SCLC Keynote 028 24 Pembrolizumab 2þ 9.7 (4.1-NR) 33.3 54.2 [58]

CheckMate 032 98 Nivolumab 2þ 4.4 (3.0–9.3) 10 53 [59]

CheckMate 032 109 Nivolumab 3þ 5.6 (3.1–6.8) 11.9 51.4 [60]

IFCT-1603 43 Atezolizumab 2þ 9.5 (3.2–14.4) 2.3 69.8 [61]

cHL CheckMate 039 23 Nivolumab 3þ NR 87 0 [62]

CheckMate 205 243 Nivolumab 2þ NR 69 9 [63]

Keynote 013 31 Pembrolizumab 3þ NR 65 13 [64]

Keynote 087 210 Pembrolizumab 4þ NR 69 14.3 [65]

ICIs, immune checkpoint inhibitors; OS, overall survival; ORR, objective response rate; PD, progressive disease; NSCLC, nonsmal cell lung cancer; UC, urothelial
carcinoma; HNSCC, head and neck squamoucel carcinom; dMMR, deficient mismatch repair tumors; TNBC, triple-negative breast cancer; ESCC, esophageal
squamous cell carcinoma; EAC, esophageal adenocarcinoma; GEJC, gastroesophageal junction cancer; GC, gastric cancer; ESCA, esophageal carcinoma;
HCC, hepatocellular carcinoma; CRC, colorectal cancer; dMMR, deficient mismatch repair; MSI-H, microsatellite instability-high; RCC, renal cell carcinoma,
SCLC, smal cell lung cancer; cHL, classical Hodgkin lymphoma; NR, not rearch; NE, not estimable.

Recent advances in primary resistance mechanisms Li and Zhang
L1 expression. Tumor immune microenvironment
components, such as myeloid-derived suppressor
cells, regulatory T cells (Tregs), M2 type macro-
phages and immunosuppressive substances. In
addition, many host factors have been identified
to be associated with the efficacy of ICIs.
MECHANISMS OF PRIMARY RESISTANCE
OF IMMUNE CHECKPOINT INHIBITORS

The underlying reason for primary resistance of
ICIs is that immunotherapy cannot initiate an
antitumor immune response, or tumor-induced
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
immunosuppression cannot be relieved. In this
review, we summarize the latest advances in mech-
anisms of primary resistance of ICIs and some other
factors which are relatively easy to ignore (Fig. 2).
Tumor immune subtype

Since tumor immune response is a dynamic and
complex process, it is difficult to rely on any single
immune biomarker to accurately predict the prog-
nosis of patients and chose suitable treatment plan.
The nature of immune microenvironment is closely
related to treatment response and prognosis, and
r Health, Inc. www.co-oncology.com 97



FIGURE 1. The rate of ‘PD as best response’ and the median overall survival of cancer patients treated with immune
checkpoint inhibitors (ICIs). The colored circles represent different tumor types, and the size of the circles represents the
number of cancer patients. Trials that did not reach the median overall survival in Table 1 are not included in the figure.

Lung and mediastinum
immunosuppressive microenvironment is currently
recognized as a major factor that mediates the pri-
mary resistance of tumor to ICIs. Researchers have
divided tumor immune subtypes from different per-
spective, such as tumor immunogenicity or PD-L1
expression and tumor infiltrating lymphocytes
(TILs) or characteristics of tumor tissue sections
[66–68]. In 2018, based on immunogenomic analy-
sis, researchers divided the tumor microenviron-
ment (TME) into six immune subtypes [69].
Recently, by integrating transcriptomic and geno-
mic data, researchers have described tumor struc-
ture, mutation burden, immune composition,
antitumor immunity, immune suppression or
escape mechanisms, and divided tumors into four
different microenvironments [70

&&

]. The character-
istic of immune-enriched, fibrotic (IE/F) melanomas
subtype is that the high expression of functional
gene expression signatures (FGES) related to angio-
genesis and activation of cancer-associated fibro-
blasts (CAFs). The immune-enriched, nonfibrotic
(IE) subtype is characterized by high degree of
immune infiltration and significantly elevated
cytolysis scores, the highest mutation burden,
CD8þ T cell/Tregs ratio and M1/M2 macrophage
ratio, JAK/STAT pathway activation increased.
Fibrotic (F) and depletion (D) subtype have little
or no leukocyte/lymphocyte infiltration, and D sub-
type contains the highest percentage of malignant
cells. In contrast, melanoma classified as subtype F
98 www.co-oncology.com
shows increased expression of FGES and increased
CAF associated with angiogenesis. Fibroblasts
become powerful immunosuppressive agents by
secreting transforming growth factor-b (TGF-b).
Patients with subtype IE melanoma have signifi-
cantly longer OS and progress free survival (PFS)
than subtype F and D, and patients with subtype
F have the worst OS. Interestingly, the researchers
dynamically observed the evolution of TME during
treatment and found that people who responded to
anti-PD-1 treatment mainly had IE/F and IE sub-
types which remained unchanged during treatment
or became immune enriched environment. In con-
trast, the TME of most patients who did not respond
to PD-1 treatment seemed to maintain or tend to be
immune-unfavorable TME, with weaker immune
function and increasing fibrosis [70

&&

]. With the
improvement of analysis methods and continuous
increase of integrated factors, tumor immune sub-
types have been further refined and the accuracy of
prediction of therapeutic response and prognosis
has been improved. What is more, the character-
istics of tumor immune subtypes with poor progno-
sis can enable us to understand the resistance
mechanism of ICIs more deeply, and it may be a
breakthrough for researchers to find more efficient
strategies to overcome resistance of ICIs.

Different tumors may have their own character-
istics in the tumor immune microenvironment,
which is of great importance for elucidating the
Volume 34 � Number 1 � January 2022



FIGURE 2. Novel hot spots in tumor and TME, host, concomitant medications related to the efficacy and resistance of ICIs.
�The current classification methods are no longer limited to traditional methods, such as tumor immunogenicity or PD-L1
expression and tumor infiltrating lymphocytes (TILs) or characteristics of tumor tissue sections. Multiple omics analysis has also
become a very promising method. # Germline genetic has recently become a research hotspot that affects the efficacy of
immunotherapy, we only list a few gene polymorphisms directly related to ICIs resistance. $ There is controversy about the
effects of the above-mentioned drugs on the efficacy of ICIs. ICIs, immune checkpoint inhibitors; PD, progressive disease; TME,
tumor microenvironment.

Recent advances in primary resistance mechanisms Li and Zhang
distinction in the effects of different tumor types of
ICIs. Many studies are trying to classify different
immune subtypes for specific tumors to reveal the
reasons for the differences in efficacy. Some research-
ers have classified lung adenocarcinoma into two
distinct subtypes which were characterized by signif-
icant differences in survival outcomes. High-risk sub-
type is more likely to respondto ICIs treatmentwhich
is characterized by lower tumor immune dysfunction
and exclusion score, up-regulated expression of PD-
L1, higher tumor mutation burden, and significantly
increased mutations in cell cycle regulatory factors
CDK4/CDK6 and TP53 [71]. In gastroesophageal ade-
nocarcinoma (GEA), the subtypes of severely inflam-
matory microsatellite instability (MSI) or Epstein–
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
Barr virus positive respond well to treatment with
ICIs, whereas chromosomal instable (CIN) and dif-
fuse/genome-stable (GS) have a significantly lower
response to ICIs. Further studieshave found thatCIN-
GEAs not only have a lower density of CD8þ T cell,
but they are mainly present at the invasive edge,
whereas CD68þmacrophages were more evenly dis-
tributed within the tumor, indicating that T cell
exclusion is the main mechanism of immunosup-
pression but not T cell suppression. In addition, the
immunological ‘cold’ CIN GEAs was characterized by
the enrichment of MYC and cell cycle pathways
including CCNE1 amplification. The GS subtype
showed enrichment of CD4þ T cells, macrophages
and B cells, and tertiary lymphoid structure was seen
r Health, Inc. www.co-oncology.com 99
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in about 50% of cases [72
&&

]. These may provide new
directions for overcoming resistance of ICIs. Gastric
cancer is classified into immune-activation, immu-
nosuppressive and nonimmune subtypes. Immuno-
suppressive subtype has high immune infiltration,
stromal enrichment and activation of TGF-b signal-
ing pathway, which is related to the nonresponse of
checkpoint blocking therapy, and may be suitable for
anti-PD-L1 and anti-TGF-b combined therapy [73].
The above results not only illustrate the heterogene-
ity of the immune environment of different tumors,
but also provide opportunities for more personalized
targeted or combined immunotherapy.
GERMLINE GENETIC

There is growing evidence that host immunity is
affected by inherited factors. Genetic germline fac-
tors may affect cancer immune responsiveness
(CIR) in many ways, such as mutations in gene
involved in life style habits or DNA repair genes,
polymorphisms of genes related to INF signaling, T
and B cell differentiation, variants in genes control-
ling antigen presentation and related to the func-
tion of macrophages, natural killer (NK) cells and
granulocyte [74]. Recently, the question of whether
PD-(L)1 gene polymorphism affects the efficacy of
ICIs has received much attention. It has been
reported that the OS of patients with the germline
variant PDCD1804C>T (rs2227981) deteriorated
significantly, and the 3-year survival rate was
51.8%, whereas that of wild-type patients was
71.0% (OR 2.366; 95% CI 1.111–5.036; P¼0.026).
Initial studies on mechanism have shown that this
single nucleotide polymorphism may affect the
clinical efficacy of ICIs by reducing the transcrip-
tion initiation and expression of PD-1 in T cells [75].
Compared with A/G genotype, patients with PD1.3
(rs11568821) G/G genotype have a higher complete
response (16.5% vs. 2.6%) [76]. PD-L1 rs4143815 G/
G and rs2282055 T/T are associated with worse
objective response rate (ORR) and PFS in NSCLC
patients receiving nivolumab [77–79]. Aldehyde
dehydrogenase 2 (ALDH2) serves a key role in the
detoxification of endogenous acetaldehyde.
ALDH2�2 is a variant allele of ALDH2 polymor-
phism rs671, which provoked reduced enzyme
activity. ALDH2�2 can enhance the presentation
of tumor antigens caused by acetaldehyde-induced
DNA damage, whereas inhibiting peripheral blood
T cell count and T cell activation. ALDH2�2 may be a
negative predictor of the short-term prognosis of
ICIs in thoracic malignancies. The best response
rate of rs671(�) patients to ICIs (PR/SD/PD) was
36%/50%/14%, whereas that of rs671(þ) patients
was relatively lower (27%/29%/45%) (P¼0.002),
102 www.co-oncology.com
the hazard ratio of disease progression within
6 months of rs671(þ) patients was much higher
than rs671(�). Researchers speculated that
ALDH2�2 inhibited the PI3K-Akt pathway in T cells
through the accumulation of endogenous alde-
hydes, which negatively affected the initial efficacy
of ICIs [80]. Recent studies have shown that germ-
line gene variations impact the richness of immune
cells and infiltration in tumor, which significantly
affect the composition and functional localization
of tumor immune microenvironment. Some loci of
immune traits with significant heritability are
related to leukocytes subset enrichment and IFN
signal, which may affect the effect of immunother-
apy [81

&&

]. The above-mentioned initial research
results aroused our keen interest to explore the
key molecular mechanisms of germline genetic var-
iation that may regulate antitumor immunity. In
the future, combining germline data with somatic
alterations, epigenetics and other information may
improve the accuracy of CIR prediction and provide
new targets for immunotherapy.
EXOSOMAL PROGRAMMED DEATH-
LIGAND 1

Many studies have shown that exosomal PD-L1
derived from tumor cells can also inhibit the activa-
tion of CD8þ T cells. In addition, the exosomal PD-
L1 acquired more characteristics than PD-L1 on the
surface of tumor cells and may play a role in tumor
lymphatic metastasis [82–85]. Some studies have
suggested that the exosomal expression of PD-L1
is one of the mechanisms of primary resistance of
ICIs. On one hand, PD-L1 inhibitors can bind to
exosomal PD-L1, resulting in inability to inhibit PD-
L1 on the surface of tumor cells or weakening of the
inhibitory effect, and on the other hand, exosomal
PD-L1 can directly bind to PD-1 on effector T cells.
Both of the above conditions will affect the blocking
effect of the antibody, leading to the persistence
of PD-L1-mediated immunosuppression [86

&&

]. A
recent study revealed that in addition to tumor cells,
exosome of bone marrow-derived cells (BMDCs) can
also carry PD-L1 in tumor-bearing mice, which has
biological functions and can inhibit the prolifera-
tion and activation of CD8þ T cells both in vivo and
in vitro, playing a major role in tumor immunosup-
pression. This may be useful to understand that
some patients whose tumor cells do not express
PD-L1 can also respond to anti-PD-1 treatment.
Anti-PD-L1 therapy can abolish immunosuppres-
sion caused by exosomal PD-L1 of BMDCs, thereby
activating antitumor immunity [87

&

]. However, the
PD-L1 expressed by exosomes derived from tumor
cells has not always been the same as the PD-L1
Volume 34 � Number 1 � January 2022
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expressed on tumor cells [83,88–92]. Whether the
factors that regulate the expression of PD-L1 on the
surface of tumor cells will regulate the level of
exosomal PD-L1, and how to regulate it also need
more research to clarify.
CONCOMITANT MEDICATIONS

Antibiotics and steroids are the most investigated
concomitant medications during ICIs therapy. It is
currently accepted that antibiotics use is an inde-
pendent risk factor for primary resistance of ICIs
[93], which leads to worse OS and PFS [94,95,96

&&

,
97,98

&

], lower ORR [99
&&

]and higher risk of progres-
sion and death [100

&

]. The time window [101
&

,102–
111] and course [112] of antibiotics use may have
varying degrees of impact on the efficacy of ICIs.
Previous studies have shown that baseline or early
use of steroids (equivalent to>10 mg of prednisone/
d) was associated with worse ORR, OS and PFS [113–
116,117

&

]. However, recent studies suggest that only
patients treated withsteroids for tumor-relatedsymp-
tomshavedeleterious effectsonOSand PFS inNSCLC
[118], intercurrent introduction of steroids for the
treatment of cancer unrelated symptoms or immune-
related adverse events (irAE) has no harmful effect on
clinical outcomes [119–121,122

&

].
Many other nononcological medications have

been speculated to influnce the TME, and then
affect the depth, duration of response, and survival
of patients receiving ICIs (Table 2). Proton pump
inhibitors (PPI) may cause immunosuppression by
reducing the expression of adhesion molecules of
inflammatory cell or changing the secretion of pro-
inflammatory cytokines. On the other hand, PPI use
can affect the intestinal microbiota composition,
reduce the diversity of intestinal microbiota and
induce positive and negative selection of specific
bacterial species. For example, the use of PPI is
related to the greater species abundance of bifido-
bacteria, which may increase the effectiveness of
ICIs, but it also leads to the decrease of the alpha
diversity of the gut microbiota, which seems to be
related to the higher response rate of melanoma
patients treated with ICIs [96

&&

,97,98
&

,100
&

,128,
129]. The analgesic effect of opioids is achieved by
targeting m receptors in the central nervous system,
but opioid receptors are also expressed on intestinal
epithelial cells and immune cells, which means that
opioids may cause changes in the intestinal micro-
flora and alter immune response. Therefore, it is not
surprising that the exposure of opioids during ICIs
treatment will impact the effect of immunotherapy.
However, it is also necessary to consider that
patients taking opioids may have lower body mass
index, higher prevalence of alcohol consumption
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
and, and worse Eastern Cooperative Oncology
Group performance [97]. The impact of antihyper-
tensive drugs on the efficacy of ICIs is not consistent
in the literature [123,124,125

&

]. One of the papers
reported that patients using angiotensin-converting
enzyme inhibitors (ACEI) were in an immunosup-
pressive state with decrease of M1 macrophages,
activated mast cells, NK cells and memory activated
T cells. Captopril induced the expression of M2
marker CD206, when monocytes were involved in
the differentiation of M1 macrophages in vitro. Ani-
mal experiments showed the same results that the
therapeutic effect of anti-PD-1 monoclonal anti-
body was inhibited when used in combination with
captopril [125

&

]. Current research is mainly focused
on observing the effect of concomitant medications
on the efficacy of ICIs. However, there are few
studies describing the biological mechanism of
these drugs affecting the effect of ICIs. It is urgent
to clarify the possible mechanisms of the interaction
between ICIs and concomitant medications.

Additionally, inter- and intra-class differences
between PD-1 inhibitors and PD-L1 inhibitors,
including molecular, pharmacodynamics and phar-
macokinetics characteristics, will affect their effi-
cacy [130–138]. For example, pembrolizumab
seems to have the best affinity and engagement
among PD-1 inhibitors. Avelumab seems to have
the best affinity, and atezolizumab has the longest
half-life among the PD-L1 inhibitors [130]. In some
cases, antidrug antibody will neutralize the activity
of the antibody, which is also a reason for resistance
of ICIs in some patients [137].
CONCLUSION

The huge advantages of immunotherapy over tradi-
tional treatment have made it an effective treatment
for various malignant tumors. However, drug resis-
tance has created a bottleneck in the application of
immunotherapy. At present, there are endless com-
bination treatment strategies for drug resistance, but
the successful clinical application is quite limited. In
the future, it will be necessary to deeply understand
the mechanism of resistance and adopt appropriate
methods to avoid resistance in order to achieve
better treatment effects.
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115. Fucà G, Galli G, Poggi M, et al. Modulation of peripheral blood immune cells
by early use of steroids and its association with clinical outcomes in patients
with metastatic nonsmall cell lung cancer treated with immune checkpoint
inhibitors. ESMO Open 2019; 4:e000457.

116. Svaton M, Zemanova M, Zemanova P, et al. Impact of concomitant medica-
tion administered at the time of initiation of nivolumab therapy on outcome in
nonsmall cell lung cancer. Anticancer Res 2020; 40:2209–2217.

117.
&

Iorgulescu JB, Gokhale PC, Speranza MC, et al. Concurrent dexamethasone
limits the clinical benefit of immune checkpoint blockade in glioblastoma. Clin
Cancer Res 2021; 27:276–287.

This article suggests that simultaneous dexamethasone treatment may be detri-
mental to immunotherapy for GBM patients.
118. Ricciuti B, Dahlberg SE, Adeni A, et al. Immune checkpoint inhibitor out-

comes for patients with nonsmall-cell lung cancer receiving baseline corti-
costeroids for palliative versus nonpalliative indications. J Clin Oncol 2019;
37:1927–1934.

119. De Giglio A, Mezquita L, Auclin E, et al. Impact of intercurrent introduction of
steroids on clinical outcomes in advanced nonsmall-cell lung cancer
(NSCLC) patients under immune-checkpoint inhibitors (ICI). Cancers
2020; 12:2827.

120. Petrelli F, Signorelli D, Ghidini M, et al. Association of steroids use with
survival in patients treated with immune checkpoint inhibitors: a systematic
review and meta-analysis. Cancers 2020; 12:546.

121. Marinelli D, Giusti R, Mazzotta M, et al. Palliative- and nonpalliative indications for
glucocorticoids use in course of immune-checkpoint inhibition. Current evidence
and future perspectives. Crit Rev Oncol Hematol 2021; 157:103176.

122.
&

Skribek M, Rounis K, Afshar S, et al. Effect of corticosteroids on the outcome
of patients with advanced nonsmall cell lung cancer treated with immune-
checkpoint inhibitors. Eur J Cancer 2021; 145:245–254.

The results of this study show the complexity of the effects of steroids, and different
reasons for medication may have distinct effects on clinical outcomes.
123. Kichenadasse G, Miners JO, Mangoni AA, et al. Effect of concomitant use of

antihypertensives and immune check point inhibitors on cancer outcomes. J
Hypertens 2021; 39:1274–1281.

124. Tozuka T, Yanagitani N, Yoshida H, et al. Impact of renin-angiotensin system
inhibitors on the efficacy of anti-PD-1/PD-L1 antibodies in NSCLC patients.
Anticancer Res 2021; 41:2093–2100.

125.
&

Medjebar S, Truntzer C, Perrichet A, et al. Angiotensin-converting enzyme
(ACE) inhibitor prescription affects nonsmall-cell lung cancer (NSCLC)
patients response to PD-1/PD-L1 immune checkpoint blockers. Oncoimmu-
nology 2020; 9:1836766.

This article suggests that ACEI may be related to the impaired prognosis and tumor
immunosuppressive status of advanced NSCLC patients treated with ICIs.
126.
&

Wang DY, McQuade JL, Rai RR, et al. The impact of nonsteroidal anti-
inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1
therapy in advanced melanoma. Oncologist 2020; 25:e602–e605.

127.
&

Cantini L, Pecci F, Hurkmans DP, et al. High-intensity statins are associated
with improved clinical activity of PD-1 inhibitors in malignant pleural me-
sothelioma and advanced nonsmall cell lung cancer patients. Eur J Cancer
2021; 144:41–48.

This study shows that statins may be related to the better clinical efficacy of ICIs.
128. Li M, Zeng C, Yao J, Ge Y, et al. The association between proton pump

inhibitors use and clinical outcome of patients receiving immune checkpoint
inhibitors therapy. Int Immunopharmacol 2020; 88:106972.

129. Hussain N, Naeem M, Pinato DJ. Concomitant medications and immune
checkpoint inhibitor therapy for cancer: causation or association? Hum
Vaccin Immunother 2021; 17:55–61.

130. Banna GL, Cantale O, Bersanelli M, et al. Are anti-PD1 and anti-PD-L1 alike?
The nonsmall-cell lung cancer paradigm. Oncol Rev 2020; 14:490.

131. Zhang N, Tu J, Wang X, Chu Q. Programmed cell death-1/programmed cell
death ligand-1 checkpoint inhibitors: differences in mechanism of action.
Immunotherapy 2019; 11:429–441.

132. Zalba S, Contreras-Sandoval AM, Martisova E, et al. Quantification of
pharmacokinetic profiles of PD-1/PD-L1 antibodies by validated ELISAs.
Pharmaceutics 2020; 12:595.

133. Ponce LF, Garcı́a-Martı́nez K, León K, Valiente PA. Exploring the conforma-
tional dynamics of PD1 in complex with different ligands: What we can learn
for designing novel PD1 signaling blockers? Proteins 2021; 89:141–148.
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