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Identifying the various gene expression response patterns is a challenging issue in expression microarray time-course experiments.
Due to heterogeneity in the regulatory reaction among thousands of genes tested, it is impossible to manually characterize a
parametric form for each of the time-course pattern in a gene by gene manner. We introduce a growth curve model with fractional
polynomials to automatically capture the various time-dependent expression patterns and meanwhile efficiently handle missing
values due to incomplete observations. For each gene, our procedure compares the performances among fractional polynomial
models with power terms from a set of fixed values that offer a wide range of curve shapes and suggests a best fitting model. After
a limited simulation study, the model has been applied to our human in vivo irritated epidermis data with missing observations to
investigate time-dependent transcriptional responses to a chemical irritant. Our method was able to identify the various nonlinear
time-course expression trajectories. The integration of growth curves with fractional polynomials provides a flexible way to model
different time-course patterns together with model selection and significant gene identification strategies that can be applied in
microarray-based time-course gene expression experiments with missing observations.

1. Introduction

The time course experiment is an important experimental
design that permeates throughout biomedical research. With
the recent popularity of high throughput microarray-based
gene expression analysis, the time-course design has been
applied to explore global transcriptional responses to treat-
ment or to biochemical stimulations during in vivo or in
vitro experiments. Analysing the time-course microarray
gene expression data is a new challenge in bioinformatics
and biostatistics [1–6]. Different from ordinary time-course
studies that focus on one or a limited number of outcome

variables, the array-based time-course experiment measures
expression levels for thousands of genes simultaneously [7].
This complicates the model fitting process because it is
impossible to inspect the observed and the fitted time-course
patterns for determining a proper parametric form for the
model (e.g., the order of a power polynomial), for each
of the thousands of genes measured on the arrays. Model
selection can be tedious given the various response patterns
for different genes which cannot be predefined. Besides the
above characteristics in an array-based experiment, time-
course gene expression data are also featured by occasional
missing measurements during the experiment resulting in
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incomplete observations due to various reasons (experimen-
tal, technical, material, etc.). Making use of incomplete data
is an important issue in time-course data analysis [8] because
simply discharging incomplete observations can result in
reduced power and even biased estimates of parameters.

The growth curve model is a popular modern model
for analyzing sequential follow-up data collected in epi-
demiological studies using a longitudinal design [9]. Such
experiments are featured by the repeated measurements
on the same subject over the follow-up time. In these
experiments, the researchers are interested in making infer-
ences on the growth and change patterns in various time-
related measurement variables, for example, physical and
cognitive functions during aging [10], changes in BMI [11],
status of health over time [12], and recovery from diseases
[13]. The growth curve analysis models each individual’s
profile by estimating individual specific slope and intercept
parameters allowing for the study of different aspects of the
process of change concerning patterns of change (linear or
nonlinear) together with their variance and covariance [14].
The individualized parameter estimation in the growth curve
modelling process also enables efficient use of incomplete
observations which can occur during a time-course experi-
ment. Moreover, the growth curve model allows inclusion of
both discrete and continuous covariates in the model to be
analysed simultaneously.

Fractional polynomials (FPs) are an extension of the
well-established polynomial method of modelling with con-
tinuous variables including time. FPs represent a class of
time transformations with power restricted to a special set
of positive or negative integers and fractions [15] with
attractive features including parsimony, a wide range of curve
shapes for low-order models, and the ability to approximate
asymptotes. FPs have been integrated in regression models
to model nonlinear relationships, for example, in logistic
regression [16], in survival analysis [17], and most recently
in mixed effect model [18]. The fixed set of exponents in
FPs enables automatic model selection for the best fitting
model through model performance comparison for each of
the genes in a microarray study.

Generally, researchers conducting a longitudinal epide-
miological study or a time-course microarray experiment
share a common interest, that is, exploring the various
features of change over time. Although the duration of
time for an array-based laboratory experiment is usually
much shorter (can be in hours) than that in a longitudinal
survey (can be in years); however, this should analytically
make no difference in terms of growth curve modelling.
With this consideration, we exemplify application of the
growth curve model with FPs in the analysis of microarray
time-course expression data with missing observations from
an experiment of human in vivo irritated epidermis [19].
We show that our procedure can automatically identify
the significant time trajectories in gene regulatory response
through model comparison and statistical testing while
efficiently handling missing values.

2. Methods

2.1. The Growth Curve Model with Fractional Polynomials.
Starting from time 0, a microarray time-course experiment
measures the expression level for a large number of genes
for individual i (i = 1, 2, 3, . . . ,N) at time point j ( j =
1, 2, 3, . . . ,ni) which we designate as an ni × 1 individual
time series vector Yi for one of the genes on the array. The
expression level over time can be expressed at individual level
as

Yi = Xiβ + Zibi + ei. (1)

Here Xi is the design matrix of size ni × (p + 1) with (p +
1) being the number of terms of fixed effect including the
intercept; β is a (p + 1) × 1 vector of regression coefficients
that are to be estimated by the model; Zi is a matrix of size
ni×(q+1) with (q+1) the number of terms of random effect,
that links bi the unobserved random effects with Yi, and ei

is an ni × 1 unobserved vector of random errors for the ith
individual. Here, bi ∼ N(0, G), where G is a (q + 1)(p + 1)
unknown variance-covariance matrix of random effects to be
estimated; ei ∼ N(0, Ri) with Ri = σ2

e Ini and Ini an ni × ni
identity matrix.

To simplify the description, we assume that each fixed
effect has a corresponding random effect, that is, p are q
equal (in practice q ≤ p) such that

Xi = Zi =

⎡
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In (2), each element is an FP transformation of time with
which (1) can be rewritten as

yi j = β0 +
p∑

b=1

βb fb
(
ti, j
)

+ bi0 +
p∑

g=1

big fg
(
ti, j
)

+ ei, j . (3)

Equation (3) expresses the expression level for individual i at
time point j as the sum of fixed effects and random effects
from the p time transformations in the design matrix, plus
an error term. The group equivalence of (3) can be written
as

E
(
yi, j
)
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βb fb
(
ti, j
)
. (4)

Royston and Altman [15] defined the power function fb(ti, j)
as
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(5)

where the power term, ϕb, can be restricted to a set of values
[15]

ϕ = {−2,−1,−0.5, 0, 0.5, 1, 2, 3} (6)
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with ϕb = 0 denoting a natural log transformation of time,
that is, ln(ti, j). Although the order of the power function p
can be any number, practical applications have shown that
the second-order (p = 2) FP models already offer a wide
range of curvature shapes that capture the applied situations
[20] with the second-order models for (4) as

E
(
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)
=
⎧⎪⎨
⎪⎩
β0 + β1t

ϕ1

i, j + β2t
ϕ2

i, j if ϕ1 < ϕ2,

β0 + β1t
ϕ1

i, j + β2t
ϕ1

i, j ln
(
ti, j
)

if ϕ1 = ϕ2,
(7)

with (ϕ1,ϕ2) ∈ ϕ × ϕ. Equation (7) represents 36 nonlinear
models. By reversing the signs of the βs, the shapes of the
curves can be flipped in that modelling extensive coverage
of time-course patterns can be achieved within a fixed set of
power for transformations.

After the transformation of time as described above, the
growth curve model with FPs can be estimated using the
restricted maximum likelihood (REML) approach imple-
mented in the free R package lme4.

2.2. Best Model Selection. The fixed set of power transfor-
mation enables similar model fitting across thousands of
genes on the array. We suggest choosing model complexity
with consideration of data characteristics (size and number
of time points). For each gene, we can fit different models
and the best fitting model selected using the maximized
likelihood based indices such as the AIC (Akaike Information
Criterion) [21] with the lowest AIC for the best model.
Significant time-course genes are selected if both β1 and β2

are significant in the best-fitting second-order model. Levels
of statistical significance are adjusted for multiple testing by
calculating the false discovery rate (FDR) [22].

2.3. Clustering of Time-Course Patterns. The above proce-
dures identify genes displaying significant monotonous or
nonmonotonous time-course expression patterns. It is thus
necessary to group these genes into different patterns for
further characterization and for visualization. To do that,
we apply the popular hierarchical clustering method [23]
performed using R package gplots and the plot function in R
to examine the various time-course patterns identified using
heatmap and time-course plot.

3. Simulation Study

We conducted a limited simulation study to examine the
performance of the model in dealing with missing observa-
tions. To simplify the simulation, we limited the simulation
model to order one and fix ϕb to 1 which resulted in a simple
linear model comparable to ANOVA. In the simulation,
we assigned 6 time points spanning 10 hours and specify
4 groups of genes with fold changes of 2, 2.5, 3, and
3.5, respectively, with each group containing 10 genes. In
addition, on each microarray chip, we also assumed that
there are 9960 genes with random effects. A total of 20
individuals were generated, and for each of them expression
levels of 10,000 genes were measured across the six time
points. Statistical significance for each gene tested was

Table 1: Power assessment for different proportion of randomly
missing observations.

Fold change
Missing proportion

0% 5% 10% 25% 50% 70%

2 0.62 0.60 0.53 0.40 0.19 0.08

2.5 0.97 0.97 0.96 0.91 0.64 0.27

3 1.00 1.00 1.00 1.00 0.94 0.58

3.5 1.00 1.00 1.00 1.00 1.00 0.83

adjusted for multiple testing in the large number of genes
on the array. For that purpose, we calculated the popular
false discovery rate (FDR) [22] and define significance for
FDR < 0.1. Different proportions of missing observation
(5%, 10%, 25%, 50%, and 70%) were specified and assigned
randomly in the 20 individuals and across time points.
With this setting, we assessed the power for detecting genes
with different fold changes under varying proportion of
missing observations. Table 1 presents the power for different
combinations of fold change and proportion of missing
estimated from 100 replicates. As can be seen, for the simple
linear model, low proportions of missing only have minor
effects on power estimates for genes with twofold changes.
For genes with more than 3-fold changes, the influence of
missing observations is limited even as high as over half of
the observations are missing. Overall, our simulation study
indicated that the method makes efficient use of incomplete
observations in capturing significant time-course patterns.

4. Model Application

The epidermal response to chemical irritants was inves-
tigated by Clemmensen et al. [19] using genome-wide
expression analysis for 47,000 transcripts or genes in a time-
course design applied to human in vivo irritated epidermis.
We apply our method to a subset of their data as an example.
In the subsample, epidermal biopsies were taken from 9
human volunteers before and at 0.5, 4, and 24 hours after
exposure to sodium lauryl sulphate (SLS). Although biopsies
were collected for all 9 participants at initial time, that is,
before exposure, complete data were not available for the
subsequent experiments resulting in considerable portion
of missing observations (Table 2) for which gene expression
data were not measured.

With the data analysis method described above, we fitted
the first-order models to each of the genes considering the
limited number of time points due to missing observations
at individual level. In the analysis, we assumed both random
and fixed effects for the intercept and only fixed effect for β1.
Since the values for time start from zero, we added a value
of one to each time measurement to facilitate model fitting
as power transformation includes log and inverse exponents.
AICs were calculated and compared to assign a best fitting
model to each gene. For the best fitting model assigned to
each gene, we assessed the statistical significances for β1. A
total of 15 genes showed FDR < 0.05. Figure 1 is a heatmap
displaying the identified time-course expression patterns
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Table 2: The incomplete structure of example data. Many obser-
vations were missing during the time-course experiment for which
gene expression data were not available. A total of 21 observations
were available from 9 subjects.
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Figure 1: Heatmap showing the mean expression levels for the
15 genes with significant time-course patterns clustered using the
hierarchical clustering method and ordered sequentially with time.

clustered using the hierarchical clustering method. As can be
seen in Figure 1, the expression trajectories are dominated
by a large cluster of genes to the right of the figure that are
downregulated over time (13 genes). These genes are further
divided into subclusters depending on their variations in
their patterns of decline. In contrast, the small cluster to
the left of Figure 1 contains 3 genes that are upregulated
during the time-course. In Figure 2, the observed expression
patterns for the 15 significant genes are further plotted
according to the estimated power of transformation and the
sign (− or +) for β1. As can be seen, the combination of
the power and the sign groups the genes into subclusters

that correspond to those displayed in Figure 1. Finally we
performed a gene ontology enrichment analysis to examine
the functional clusters of the identified genes using the online
analytical tool g:Profiler at http://biit.cs.ut.ee/gprofiler/. The
list of 15 genes give statistically significant enrichment score
for a functional cluster of vesicle-mediated transport (p =
0.030) and borderline significance for functional groups
including protein transport (p = 0.055), establishment of
protein localization (p = 0.056), and membrane (p =
0.059).

5. Discussion and Conclusions

We have shown through example application, that the
growth curve models with fractional polynomials can be
applied to analyze time-course microarray gene expression
data with incomplete observations. As can be seen, the
growth curve analysis of microarray time-course data is
characterized by the following features. First, the method
provides an elegant way for handling missing observations
and makes efficient use of available data by growth curve
modelling. Second, the use of fractional polynomials for
analysis of microarray data offers a flexible way for capturing
various time-dependent expression trajectories for different
genes. Third, within a fixed set of exponents for power
transformation, the fitting of FPs can be automated and best
performance model selected for each gene on the array. This
is important because, in practice, it is impossible to manually
examine each polynomial pattern fitted across thousands
of genes. Finally, for the identified significant time-course
genes, our analytical strategy makes use of popular gene
clustering methods for time-course pattern characterization
and for visualization. As shown by our example application,
various time-dependent expression profiles can be revealed
and easily perceived.

In theory, nonlinear patterns can be modelled by high-
order polynomial functions. High-order modelling can lead
to over fitting and at the same time reduces the power of
analysis when sample size is limited which is usually the
case for most microarray studies. The order two FPs restrict
the number of estimating parameters while discriminate
the powers for polynomials within a fixed set of power
transformations. Although this way of model building could
miss the exact polynomial function if it existed, it offers a nice
and economic way to capture various nonlinear patterns in
small-scale studies.

The purposes of a microarray time-course experiment
are not only identifying significant genes but most impor-
tantly how these genes are regulated over time during
the experiment. The flexible model selection procedure in
our method allows both monotonous and nonmonotonous
patterns be fitted through combinations of estimated coef-
ficients for the polynomials and the 36 sets of power
transformations which is followed by model selection based
on goodness of fit. With help of popular data visualization
methods, important time-course patterns for the identified
genes can be examined for biological interpretations.

Ernst et al. [24] analyzed the length of time series in
microarray time-course studies and found that the published

http://biit.cs.ut.ee/gprofiler/
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Figure 2: Time-course expression patterns for the 15 significant genes plotted according to the estimated power for transformation and sign
of the regression coefficient.

literature is dominated by experiments with small number of
time points. We emphasize that the choice of models (first-
or second-order models) should be made in consideration of
the number of time points in the experiment and proportion
of time points missing by patients during the experiment. We
suggest using the first-order models (including the simplest
linear model) when proportion of missing is high, for
example, when only a couple of time points are available
at patient level. According to our simulation study, missing
observations can strongly reduce the power in detecting
genes with relatively low regulation levels. On the other hand,
the power for identifying highly regulated genes (over 3-fold
changes) is not affected except in extreme situations (more
than half observations missing). The fitting of second-order
models requires sufficient time points (>3) at patient level to
ensure model identification. One should keep in mind that
complex time-course patterns can only be captured when
sufficient time-points are observed across patients.

Although not illustrated in our example, it is necessary
to mention that, similar to conventional regression analyses,
the growth curve model also allows inclusion of covariates
in the modelling process. This helps to balance the effects
of additional factors that also influence gene expression
such that the response trajectories can be more clearly
characterized. For example, Tan et al. [25] showed that there
are a large number of genes that are differentially regulated by

age. Except age, a microarray experiment can be confounded
by patients’ clinical characteristics, treatment received, and
so forth. More importantly, this feature can help to extend
growth curve model to microarray studies in, for example,
case-control design in time-course experiments, and even
account for interaction effects [26].

In summary, our proposed method makes use of the nice
features of the growth curve model in analyzing time-course
expression data especially in dealing with missing observa-
tions. The integration of growth curves with fractional poly-
nomials provides a flexible way to model various time-course
patterns together with model selection and significant gene
identification strategies that can be applied in microarray-
based time-course gene expression experiments.
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