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Air pollution is a complex mixture of gaseous and particulate components, each of

which has detrimental effects on human health. While the composition of air pollution

varies greatly depending on the source, studies from across the world have consistently

shown that air pollution is an important modifiable risk factor for significantly increased

morbidity and mortality. Moreover, clinical studies have generally shown a greater impact

of particulate matter (PM) air pollution on health than the gaseous components. PM

has wide-ranging deleterious effects on human health, particularly on the cardiovascular

system. Both acute and chronic exposure to PM air pollution is associated with increased

risk of death from cardiovascular diseases including ischemic heart disease, heart

failure, and ischemic/thrombotic stroke. Particulate matter has also been shown to

be an important endocrine disrupter, contributing to the development of metabolic

diseases such as obesity and diabetes mellitus, which themselves are risk factors for

cardiovascular disease. While the epidemiological evidence for the deleterious effects of

PM air pollution on health is increasingly accepted, newer studies are shedding light on

the mechanisms by which PM exerts its toxic effects. A greater understanding of how

PM exerts toxic effects on human health is required in order to prevent and minimize

the deleterious health effects of this ubiquitous environmental hazard. Air pollution is a

growing public health problem and mortality due to air pollution is expected to double by

2050. Here, we review the epidemiological evidence for the cardiovascular effects of PM

exposure and discuss current understanding about the biological mechanisms, by which

PM exerts toxic effects on cardiovascular system to induce cardiovascular disease.

Keywords: particulate matter, cardiovascular, lung, macrophage, inflammation, interleukin-6, thrombosis,

coagulation

INTRODUCTION

Ambient air pollution is a growing global health problem estimated to contribute to as many as
3.1 million all-cause deaths per year (1–3). Exposure to air pollution is the largest environmental
health risk and ranks ninth among modifiable disease risk factors, above other common factors
such as low physical activity, high cholesterol, and drug use (2). Most of the excess deaths
attributable to air pollution exposure are due to acute ischemic/thrombotic cardiovascular events.
In addition to excess mortality, air pollution is associated with significant reductions in healthy
life years and worker productivity (2, 4). Air pollution may also be an important endocrine
disrupter, contributing to the development of metabolic diseases such as obesity and diabetes
mellitus (5).While the developing world is most burdened by air pollution-associated health effects,
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the association between air pollution and mortality is still evident
in developed countries where pollution levels are well below
target standards (6, 7). The purpose of this article is (1) to
introduce the reader to the major studies that have established
the link between particulate matter (PM) air pollution and
human cardiovascular and metabolic disease and (2) to discuss
the mechanisms by which PM mediates its biologic effects. For
systematic review of the connection between air pollution and
human disease, we refer the reader to several recent systematic
reviews and meta-analyses (8–14).

AIR POLLUTION

Air pollution is a complex mixture of gaseous and particulate
components, each of which has detrimental effects on
cardiovascular and respiratory systems. The composition of
air pollution varies greatly, depending on the source, emission
rate, and sunlight and wind conditions. Gaseous components of
air pollution include nitrogen dioxide (NO2), nitric oxide (NO),
sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)
(2, 15, 16). Particulate matter (PM) components of air pollution
consist of carbonaceous particles with associated adsorbed
organic chemicals and reactive metals. Common components of
PM include nitrates, sulfates, polycyclic aromatic hydrocarbons,
endotoxin, and metals such as iron, copper, nickel, zinc, and
vanadium (2, 15, 17). PM is subclassified according to particle
size into (a) coarse (PM10, diameter <10µm), (b) fine (PM2.5,
diameter <2.5µm), and (c) ultrafine (PM0.1, diameter <0.1µm).
Coarse particles derive from numerous natural and industrial
sources and generally do not penetrate beyond the upper
bronchus. Fine and ultrafine particles are produced through the
combustion of fossil fuels and represent a greater threat to health
than coarse particles as they penetrate into the small airways
and alveoli (16–19). While the organic and metal components
of particles vary with location, levels of PM2.5 have consistently
correlated with negative cardiovascular outcomes regardless of
location (15).

EPIDEMIOLOGICAL STUDIES LINKING PM
EXPOSURE TO MORBIDITY AND
MORTALITY IN HUMANS

The association between high levels of PM air pollution and
adverse health outcomes has been known since the first half
of the twentieth century. Smog incidents in Meuse Valley,
Belgium (1930), Donora, Pennsylvania (1948), and London, UK
(1952) acutely caused increased hospitalizations and deaths,
particularly in the elderly and those with preexisting cardiac
and respiratory diseases. An estimated 4,000 people died as a
direct result of the London smog with 100,000 more suffering
adverse health effects (20, 21). These incidents resulted in policy
changes including the implementation of Clean Air Act in 1970
(22). The reduction in PM levels have led to gradual reduction
in PM-associated morbidity and mortality; however, recent
epidemiologic studies still consistently show a link between PM
exposure and cardiopulmonary mortality.

Short-Term Exposure Studies
The increased deaths due to the smog in Meuse Valley, Donora,
and London clearly suggested that acute exposure to air pollution
is associated with adverse health outcomes. These classic cases
of air pollution-induced mortality represent extreme examples,
with the London smog reaching air PM concentrations of 4.5
mg/m3 (World Health Organization current safety guideline is
25 µg/m3) (21). A large number of short-term exposure studies
have evaluated the associations between less extreme levels of
air pollution and daily changes in mortality (15, 18). A recent
meta-analysis of 110 peer-reviewed studies revealed that every
10 µg/cm3 increase in PM2.5 concentration was associated with
a 1.04% (95% CI 0.52%-1.56%) increase in all-cause mortality
(10). Hospitalizations and mortality due to cardiovascular and
respiratory illnesses were positively correlated with increases in
PM2.5 concentrations.

Several large, multi-city studies have been conducted in both
North America and Europe, the largest being the NMMAPS
(National Morbidity, Mortality, and Air Pollution Study) (23–25)
and APHEA (Air Pollution and Health: A European Approach)
(26, 27) studies. Findings from these studies were remarkably
consistent and demonstrated that PM levels are significantly
associated with daily all-cause, cardiovascular, and pulmonary
mortality. Seasonal and regional variations existed in both
studies possibly attributable to different sources of pollutants,
meteorological conditions, and population differences. For
example, the APHEA study found a stronger effect of PM on daily
mortality in cities with a larger contribution of traffic emissions to
total PM. This is in agreement with a recent study on triggers of
myocardial infarction (MI) in which traffic exposure was found to
be as significant of a trigger ofMI as physical exertion and alcohol
use (28). The NMMAPS study also found that the relationship
between PM exposure and mortality was independent of gaseous
co-pollutants, including NO2, CO, and SO2.

Studies carried out in Asia and the developing world have
generally shown smaller effects on daily mortality due to PM
than studies from the United States and Europe. A recent
meta-analysis of 85 studies from 12 low- and middle-income
countries showed a 0.47% (95% CI 0.34-0.61) increase for
cardiovascular mortality and 0.57% (95% CI 0.28-0.86) increase
for respiratory mortality for every 10 µg/cm3 increase in
PM2.5 concentration (14). The cities covered by this analysis
have mean PM2.5 levels ranging from 56 to 179 µg/cm3,
which is significantly higher than the mean the PM2.5 levels
in cities in the US and Europe. The reduced concentration-
response relationship between PM2.5 levels andmortality in these
countries is likely due to the higher baseline PM level seen
in these countries. Indeed, current evidence suggests that the
concentration-response relationship between PM2.5 levels and
mortality is biphasic (29–33). A steep concentration-response
function is observed at lower PM concentrations, while the
curve flattens at higher concentrations. A recent study from
Beijing, China found that while the slope of the concentration-
response curve flattened at higher PM concentrations, there
was no saturation for increased risk of ischemic heart
disease mortality, even at PM concentrations as high as 500
µg/cm3 (33).
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The biphasic relationship between PM concentration and
adverse health outcomes means that the major health benefits
from reducing PM levels will occur in countries with already
cleaner air and that improvements in cardiovascular health will
be more difficult to achieve in countries with higher levels of air
pollution unless they can achieve a drastic improvement in PM
concentrations. The results of the NMMAPS and APHEA studies
suggest that there is no “safe” threshold under which increases in
PM are not associated with increased deaths.

Long-Term Exposure Studies
In addition to studies on the acute effects of PM exposure, studies
on the effect of chronic exposure to PM have revealed negative
effects on long-term health outcomes. The first of these was the
Harvard Six Cities study, which prospectively measured the effect
of air pollution on mortality in a cohort of 8,111 adults while
controlling for individual risk factors, including smoking, body
mass index, occupational exposures, hypertension, and diabetes
(34). The adjusted mortality rate ratio for the most polluted cities
compared with the least polluted cities was 1.26 (95% CI 1.08-
1.47). Air pollution, particularly PM2.5 and sulfates was positively
associated with death from lung cancer and cardiopulmonary
diseases.

A larger study, the ACS Cancer Prevention II study linked
risk factor data for 552,138 adults with air pollution data and
mortality statistics (35, 36). Both PM2.5 and SO2 were positively
correlated with all-cause, lung cancer, and cardiopulmonary
mortality and every 10 µg/cm3 increase in PM2.5 was associated
with a 4, 6 and 8% increased risk of all-cause, cardiopulmonary,
and lung cancer mortality, respectively. Coarse particles and
gaseous co-pollutants other than SO2 were not significantly
related to mortality.

A study on 22 European cohorts within the multicenter
European Study of Cohorts for Air Pollution Effects (ESCAPE)
found an increased hazard ratio for all-cause mortality of
1.07 (95% CI 1.02-1.13) per 5 µg/cm3 PM2.5 (37). Significant
associations persisted even among participants exposed to
PM2.5 levels below the European annual mean limit value of
25 µg/cm3.

Overall, the evidence from both short-term and long-term
exposure studies demonstrates a consistent association between
increased air pollution exposure and mortality. While the
magnitude of this effect is small, the ubiquity of air pollution
exposure makes it a significant source of early mortality. A
global assessment of mortality attributable to several risk factors,
including air pollution was carried out in the Global Burden of
Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) (38).
This study estimated that PM2.5 is the fifth-ranking mortality
risk factor, leading to 4.2 million deaths and 103.1 million
disability-adjusted life-years in 2015. The largest number of
deaths attributable to air pollution occurred in China with an
estimated 1.11 million deaths. These numbers are similar to the
findings of a recent study from China that attributed 40.3% of
deaths due to stroke, 26.8% of deaths due to ischemic heart
disease, 23.9% of deaths due to lung cancer, and 18.7% of deaths
due to chronic obstructive pulmonary disease (COPD) to PM2.5

exposure (39). According to the GBD 2015 study, these represent

the 1st, 2nd, 4th, and 5th leading causes of death in China,
respectively (12).

Susceptibility to PM-Induced Morbidity
and Mortality
Enhanced risk of cardiovascular death from PM exposure has
been linked to old age, low socioeconomic status, preexisting
heart and lung disease, and smoking. The APHENA (Air
Pollution and Health: A Combined European and North
American Approach) study, which analyzed data from the
NMMAPS and APHEA studies found that the elderly and
unemployed are at higher risk for the deleterious health
effects associated with short-term exposure to PM (40). The
ACS study found that mortality from ischemic heart disease
was positively correlated with chronic PM2.5 exposure among
never smokers, former smokers, and current smokers (41).
However, the risk for death due to arrhythmia, hearth failure,
and cardiac arrest was not elevated by PM2.5 for never
smokers, but significantly elevated for former and current
smokers.

Studies have not shown a clear association between
race and susceptibility to PM-induced health effects (42–
44). However, air pollution in non-white neighborhoods
tends to be higher than in majority-white areas, resulting
in exposure disparities (45). Indeed, inter-city gradients
of PM (i.e., gradients among communities within a
city) are associated with larger negative health effects
than the average PM measurements within a city
(46, 47).

Finally, it has been suggested that women may be more
susceptible than men to the PM-induced health effects.
Particularly, robust risk estimates have been reported for studies
that include only women. The Women’s Health Initiative
Observational Study found that every 10 µg/cm3 increase in
PM2.5 was associated with a 76% increase in fatal cardiovascular
events while the Nurses’ Health Study found that every 10
µg/cm3 increase in PM10 was associated with a 43% increase
fatal coronary heart disease (48, 49). More recent large studies
have given conflicting results (42, 43). On a global scale, exposure
disparities may play a role in increased risk for women as use
of biomass fuels for cooking in sub-Saharan Africa and south
Asia expose women to disproportionately high levels of indoor
air pollution (50).

Interventional Studies
The implementation of the 1970 Clean Air Act and following
amendments resulted in a progressive decline in PM2.5 levels in
the United States. As would be expected from the concentration-
response curve of PM2.5 vs. mortality, extended analysis of the
NMMAPS and Harvard Six Cities Study, among others, have
revealed that reductions in PM2.5 concentrations over time are
associated with reductions in mortality risk (51–53). Pope et al.
showed that a reduction of 10 µg/cm3 in PM2.5 levels increased
the life expectancy by 0.61 ± 0.20 years (54). Similar reductions
in mortality have been seen after policy changes regulating the
use of diesel in Tokyo, Japan and coal in Dublin, Ireland (55, 56).
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EXPOSURE TO PM AND
CARDIOVASCULAR DISEASE

Deaths due to air pollution exposure result primarily from
cardiovascular causes, with stronger associations with adverse
effects of PM compared with gaseous co-pollutants (2, 7, 15).
Chronic and acute exposure to elevated PM2.5 levels is closely
associated with elevated risks for ischemic heart disease, heart
failure, and cerebrovascular disease. Air pollution exacerbates
existing heart conditions and appears to have a role in disease
development.

Both long- and short-term studies have associated PM2.5

exposure with increased risk of fatal and non-fatal ischemic
heart disease (33, 41, 48, 57). Risk of myocardial infarction
is also associated with PM2.5 exposure (28, 58). The ACS
study found increased risk of heart failure with PM2.5

exposure, although to a lesser degree than the association with
ischemic heart disease. Additional studies and meta-analyses
have associated both chronic and acute PM2.5 exposure with
heart failure (9, 41, 59, 60). Significant associations also exist
between PM2.5 exposure and cerebrovascular disease (48, 61).
Short-term studies have shown that elevations in pollution
increase the risk of ischemic, but not hemorrhagic stroke (8,
62).

Subclinical Effects
Exposure to PM air pollution is also correlated with subclinical
pathologies underlying cardiovascular disease. These include
systemic inflammation and oxidative stress, atherosclerosis,
thrombosis, endothelial dysfunction, hypertension, cardiac
remodeling, and arrhythmia.

Inflammation, Oxidative Stress, and Atherosclerosis
PM inhalation induces inflammatory responses both within
the lung and systemically. Exposure of human volunteers to
PM via inhalation for 2 h resulted in increased pulmonary
neutrophil numbers (63). Circulating levels of C-reactive protein,
fibrinogen, IL-1β (interleukin-1β), IL-6 (interleukin-6), GM-
CSF (Granulocyte-Macrophage Colony Stimulating Factor),
and TNF-α (Tumor Necrosis Factor-α) have been shown
to correlate with environmental PM exposure levels (63–
66).

PM exposure is also associated with systemic markers of
oxidative stress, including atherogenic precursors such as
oxidized lipids (67–70). Using carotid artery intima-media
thickness as a surrogate for atherosclerotic progression, several
studies, including the Multi-Ethnic Study of Atherosclerosis
(MESA) have shown that intima-media thickness correlates
positively with long-term exposure to PM (71–74). Other
studies have shown that coronary artery calcification
correlates with residence in a city center or near a major
roadway (75, 76).

Studies in the atherosclerosis model apolipoprotein E (ApoE)
knockout mice have shown that exposure to PM results
in elevated levels of oxidized low-density lipoproteins, lipid
peroxidation, and systemic oxidative stress. This is associated

with increased atheroma burden, and increased plaque cellularity
and lipid content (77–80).

Hypercoagulability and Thrombosis
Exposure to PM has been shown to induce a prothrombotic state,
which may play a role in its ability to cause arterial thrombotic
(myocardial infarction, ischemic/thrombotic cerebrovascular
events) and venous thrombotic events (deep venous thrombosis)
(81, 82). Exposure to PM induces the production of fibrinogen,
and other factors that play a role in hemostasis including Von
Willebrand factor, sCD62P, and sCD40L (65, 83–85). In addition
to prothrombotic pathways, antifibrinolytic pathways are also
activated by PM exposure. Plasminogen Activator Inhibitor-1
(PAI1) has been shown to be upregulated by PM exposure and
tissue Plasminogen Activator (t-PA) activity is inhibited (85–88).
These findings correlate with previous reports of PM-associated
increases in plasma viscosity, platelet activation, and ex vivo
coagulation (89–92).

The 2008 Summer Olympics in Beijing, China offered
a unique opportunity to study the effects of PM exposure
on cardiovascular biomarkers. As government-mandated
restrictions on industrial and vehicular emissions were
enacted, particulate and gaseous pollutants decreased.
In test subjects, this corresponded with decreases in
circulating levels of sCD62P and Von Willebrand
factor. When restrictions were eased after the games,
levels of these factors increased to pre-Olympic levels
(84).

Endothelial Dysfunction, Increased Blood Pressure,

and Cardiac Remodeling
Both short- and long-term exposure to PM has been correlated
with changes in vascular function. Controlled exposure to diesel
exhaust or concentrated ambient particles leads to vascular
dysfunction characterized by acute arterial vasoconstriction and
inhibition of response to vasodilators (86, 93–96). The MESA
study found that chronic exposure to PM2.5 correlated with
decreased flow-mediated dilation of the brachial artery and
retinal arteriolar narrowing (97, 98).

Several studies have reported associations between chronic
PM exposure and development of hypertension (99, 100).
Controlled-exposure studies using acute exposure of humans
to concentrated ambient particles or diesel exhaust have
demonstrated rapid increases in systolic blood pressure following
exposure (101, 102). Exposure to PM has also been shown to
increase the risk of gestational hypertension and pre-eclampsia
(11, 103, 104).

Finally, traffic exposure has been associated with both left
and right ventricular hypertrophy, suggesting that pollution-
associated vasoconstriction and hypertension may exacerbate
congestive heart failure (105, 106). Similar results have been
found in mice. A 3-month exposure of mice to concentrated
ambient particles exacerbates cardiac hypertrophy and fibrosis
in response to angiotensin II infusion (107). A longer, 9-month
exposure of mice to concentrated ambient particles was sufficient
to result in increased ventricular size, systolic and diastolic
dysfunction, and myocardial fibrosis (108).
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Cardiac Electrical Changes and Irregular Heart

Rhythm
In patients with implantable cardioverter defibrillators, positive
associations have been made between short-term increases in air
pollution and incidence of cardiac arrhythmias including atrial
fibrillation, ventricular fibrillation, and ventricular tachycardia
(109–112). Exposure to air pollution is also associated with,
increased heart rate, electric instability, ectopic beats, ST-segment
depression, repolarization irregularities, and changes in heart-
rate variability (65, 113–120).

The strongest correlations between arrhythmia and pollution
exposure have been found when analysis was restricted to
a subgroup of patients with frequent arrhythmias, suggesting
that risk of arrhythmia is restricted to the most susceptible
individuals (109). Similarly, a murine study found that wild-
type mice did not exhibit arrhythmias after exposure to PM;
however, significant arrhythmias were seen in mice engineered to
exhibit cardiomyopathic changes that closely resemble congestive
heart failure (121). In rats, greater effects of PM exposure on
arrhythmogenesis were seen in animals previously injected with
monocrotaline to induce pulmonary vascular inflammation and
hypertension (122).

Metabolic Syndrome and Insulin Resistance
Several clinical studies have linked PM with insulin resistance
and type II diabetes mellitus (DM) suggesting PM as a modifiable
risk factor for DM, an important risk factor for cardiovascular
disease. Significant positive correlations between PM exposure
and fasting insulin levels and insulin resistance have been found
in both adults and children (123–125). A large study conducted
using data from both the United States Centers for Disease
Control and Prevention and the Environmental Protection
Agency found that diabetes prevalence increases by 1% with each
10 µg/m3 PM2.5 (126). Another study of over 3,500 individuals
in Germany revealed that each 1 µg/m3 of traffic-related PM2.5

was associated with a relative risk for type II DM of 1.36 (95%
CI.97-1.89) after adjusting for variables including age, gender,
BMI, and socioeconomic status (127). This effect size was similar
to that obtained by comparing individuals living close to a major
road with those that live farther than 200 meters from a major
road (127). A recent meta-analysis suggests that the correlation
of PM with DM is stronger in women (13). How PM-associated
insulin resistance and type II DM may interact with other PM-
associated health effects to affect cardiovascular system is a
complex question. For example, diabetics have been shown to be
more susceptible to PM-associated endothelial dysfunction (128).

Animal studies have confirmed the effect of PM exposure
on insulin sensitivity. Mice genetically susceptible to type II
DM, or mice fed high-fat diet and exposed to PM exhibit
increased insulin resistance, glucose intolerance, elevated fasting
glucose, and increased visceral adiposity when compared with
mice exposed to filtered air (129–131). Interestingly, young
mice exposed to PM beginning at 3 weeks of age developed
homeostatic insulin resistance after 10 weeks of exposure
without additional stress indicating a developmental window of
susceptibility to the effects of PM (132).

BIOLOGICAL MECHANISMS

Recent controlled exposure studies in both humans and animals
have shed light on the biological mechanisms behind PM-
induced cardiovascular disease (Figure 1). There are presently
three hypotheses on the mechanisms by which PM exposure
exerts its biological effect (7, 15, 16, 133). The first hypothesis
proposes that PM inhalation activates inflammatory responses in
the lung leading to a “spillover” effect and systemic inflammation,
which promotes thrombosis, endothelial dysfunction, and
atherosclerosis. The second hypothesis suggests that inhaled
PM activates sensory receptors in the lung, leading to
imbalance of the autonomic nervous system (ANS), favoring
sympathetic pathways and leading to alterations in heart rate,
vasoconstriction, endothelial dysfunction, and hypertension.
The third hypothesis proposes that some particles, particularly
ultrafine particles (PM0.1) can enter the circulation from the lung
and interact directly with target tissues; however, this mechanism
remains controversial. Recent evidence suggests that majority
of ultrafine particles are cleared from the lung in a similar
manner as larger particles (i.e., alveolar macrophage-mediated
clearance to the larynx) (134, 135). Nevertheless, soluble material
adsorbed to the surface of inhaled particles may pass into
the circulation. Further studies will be required to determine
whether any portion of inhaled particles is translocated into
the bloodstream and if so, whether these translocated particles
contribute to PM-associated pathologies. We will discuss the
evidence for inflammatory and ANS signaling as regulators of
the biologic effects of PM exposure. It should be noted that these
pathways are not mutually exclusive. In fact, there is significant
evidence that while each plays an important role in mediating
the cardiovascular effects of pollution exposure, they may also
interact to drive the PM-induced health effects.

Reactive Oxygen Species and
Mitochondria
It is widely accepted that PM exerts many of its biologic effects via
the generation of reactive oxygen species (ROS) and induction of
oxidative stress responses (19, 136). Exposure to air pollution is
associated with systemic markers of oxidative stress (67, 69, 70).
At the cellular level, many cell types have been shown to respond
to in vitro PM exposure with elevations in cellular ROS levels and
oxidative stress. This includes nasal, airway, and lung epithelial
cells (137–141), macrophages (142–144), endothelial cells (145,
146), cardiomyocytes (147, 148), gastrointestinal epithelial cells
(149), epidermal keratinocytes (150), and corneal epithelial cells
(151). Moreover, elevated ROS levels are required for PM-
induced biologic effects as antioxidant treatment or inhibition of
oxidant production is sufficient to inhibit downstream pathways
including proinflammatory cytokine production and induction
of apoptosis (137, 138, 152–155).

While PM-adsorbed chemicals and metals are capable
of generating free radicals inside cells, cells can respond
to stimuli with generation of ROS as signaling molecules
(156). Mitochondrial generation of ROS has been found to
be an important signaling regulator of the cellular response
to PM. Indeed exposure to PM has been found to alter
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FIGURE 1 | Current evidence for the mechanisms by which particulate matter air pollution causes cardiovascular health effects.

Exposure Level: PM exposure is hypothesized to exert its effects on the cardiovascular system by three routes: (1) PM induces an inflammatory response in the lung.

PM acts on the cells of the lung, including alveolar macrophages, leading to mitochondrial reactive oxygen species (mROS)-dependent pro-inflammatory cytokine

production. (2) Inhaled PM acts on sensory receptors in the lung, promoting activation of the hypothalamic pituitary adrenal (HPA) axis and sympathetic pathway

activation in the autonomic nervous system (ANS). (3) Other effects of PM exposure may be mediated by translocation of particles into the circulatory system, or by

particle ingestion, which may promote inflammation in the gut.

Signaling Level: Cytokines produced into the lung “spillover” into the circulation, leading to a systemic state of inflammation. Translocated particles as well as

inflammation resulting from particle injection may also contribute to a general state of systemic inflammation. Sympathetic activation leads to elevated levels of

circulating catecholamines.

(Continued)
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FIGURE 1 | Subclinical Level: Systemic inflammation and elevated catecholamine levels act on target cells leading to acute phase response, hypercoagulable state

(activation of coagulation, and suppressed fibrinolysis), vasoconstriction, increased blood pressure, cardiac electrical changes, endothelial dysfunction, and increased

adiposity and insulin resistance complicated by adipose tissue inflammation. Elevated catecholamine levels due to ANS imbalance further increase inflammation.

Sympathetic activation leads to increased catecholamine production, which increases heart rate and promotes vasoconstriction, endothelial dysfunction, and

hypertension.

Clinical Level: The combined effects of systemic inflammation and sympathetic activation on their cellular targets lead to the clinical effects of PM on cardiovascular

disease. These effects are seen at both the acute level (acute ischemic/thrombotic events, cardiac arrhythmias, or acute heart failure), or at the chronic level

(atherosclerosis, hypertension, and chronic heart failure).

mitochondrial morphology and function (142, 151, 157, 158). PM
exposure leads to oxidation of redox probes specifically targeted
to mitochondria (149, 159). Furthermore, cells genetically
engineered to lack mitochondrial ROS production or cells treated
with mitochondria-targeted antioxidants or respiratory chain
inhibitors have inhibited responses to PM, strongly supporting
the role of mitochondria-derived ROS in PM-induced biologic
effects (138, 153, 159–161).

Alveolar Macrophages
Alveolar Macrophages (AMs) reside on the luminal epithelial
surface of alveoli and are crucial for lung development, surfactant
homeostasis, and immune surveillance (162). These cells also
represent a critical signaling node for the effects of PM on target
organs such as heart and vasculature. Treatment of AMs in vitro
with PM elicits a transcriptional upregulation of inflammatory
cytokines including TNFα, IL-1β, IL-6, IL-8 and GM-CSF (64,
163). Lung epithelial cells also respond to PM treatment in vitro
and the interaction betweenAMs and epithelial cells may regulate
their response to PM (164, 165); however, studies in animals
suggest that the response of AMs to PM exposure is required and
sufficient for downstream cardiovascular effects.

Elimination of AMs in mice using liposomal clodronate
inhibits both pulmonary and systemic accumulation of IL-
6 or TNFα protein after exposure to PM (166, 167). The
prothrombotic and endothelial-activating effects of PM exposure
were also inhibited by clodronate, suggesting that the pro-
inflammatory responses initiated by AMs in the lung promote the
systemic and cardiovascular effects of PM exposure (166, 167).
The ability of AMs to influence systemic responses to PM is
supported by studies on bone marrow activation in rabbits.
Instillation of PM into the lungs of rabbits results in increased
release of polymorphonuclear leukocytes from bone marrow,
with elevated numbers of circulating band cells, a marker of
bone marrow activation (168). Similar responses have been seen
in humans (169). Instillation of supernatants from human AMs
treated with PM ex vivo has a similar ability to activate rabbit
bone marrow as instillation of PM suggesting that PM-induced
inflammatory responses in AMs regulate the systemic effects of
PM on target cells and organs (170).

Pro-inflammatory Cytokines
Interleukin 6
Initially identified as a regulator of T cell activation and B
cell differentiation, IL-6 is a pleotropic cytokine with key roles
in diverse biological processes such as immune responses, the
acute phase response and inflammation, hematopoiesis, vascular

function, lipid metabolism, and neuroendocrine regulation (171,
172).

IL-6 is a major regulator of the acute phase response
and stimulates hepatocytes to synthesize acute phase proteins,
particularly C-reactive protein and coagulation factors (173, 174).
IL-6 has been shown to increase the expression of coagulation
factors including fibrinogen, tissue factor, Factor VIII and
von Willebrand factor, and decrease anticoagulants including
protein S and antithrombin (174). Recent reports in IL-6-
deficient mice have demonstrated the critical role of IL-6 in
promoting thrombotic events downstream of PM exposure.
Exposure of wild-type mice to PM led to accelerated blood
clotting and vascular thrombosis after FeCl3 application (166,
175). This accelerated clotting was associated with increased
platelet count, increased Factor VIII activity, increased plasma
thrombin antithrombin complexes, increased lung tissue factor
levels, reduced prothrombin time, and reduced activated partial
thromboplastin time. In IL-6 deficient mice, no increase in
clotting capability was seen after exposure to PM, demonstrating
the key role that IL-6 plays in regulating the prothrombotic effects
of PM exposure.

Elevations in IL-6 may also promote vascular dysfunction
after PM exposure. Administration of IL-6 to mice promotes
endothelial dysfunction and impaired endothelium-dependent
vasodilation (176). As in humans, exposure of mice to PM
impairs vasodilation in response to acetylcholine. No significant
change in vascular response was noted in IL-6 deficient mice
after exposure to PM (177). Interestingly, in this same report, the
authors demonstrated that instillation of recombinant IL-6 into
the lungs of IL-6 knockout mice resulted in systemic elevations
in IL-6 after endotoxin-mediated lung injury (177). While
endotoxin is a stronger inducer of lung injury than PM, this
finding provides support for the hypothesis that inflammatory
cytokine induction in the lung can spillover into the circulation
to promote systemic effects.

Tumor Necrosis Factor-α
TNFα is a pleiotropic cytokine originally identified as an
endotoxin-inducible molecule with anti-cancer activity (178).
TNFα has since been shown to be a critical regulator of
the cytokine cascade in many inflammatory diseases and is a
therapeutic target for a number of chronic inflammatory diseases
(179, 180). Similar to IL-6, TNFα expression is induced in both
AMs and lung epithelial cells after exposure to PM (64, 163, 165).
TNFα also accumulates in both the lung and systemically after
exposure of mice to PM (167, 175, 181, 182). Elimination of AMs
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with liposomal clodronate inhibited the accumulation of TNFα
in plasma after exposure of mice to PM.

Surprisingly, studies in TNFα-deficient mice demonstrate
that PM-mediated recruitment of neutrophils to the lung, as
well as induction of cytokines, including IL-6, IL-8, and MCP-
1 (monocyte chemoattractant protein 1), are independent of
TNFα. (183, 184). This is despite the fact that TNFα is a known
regulator of IL-6 expression (185, 186). TNFα was shown to
be required for accumulation of PAI1 after exposure of mice
to PM; however, TNFα remained dispensable for PM-mediated
pro-thrombotic effects (175). More recent studies have shown
that pulmonary T-cell recruitment is impaired after PM exposure
in TNFα deficient mice (182) and that endothelial activation
and impaired cardiac contractile function after PM exposure
can be rescued by treatment with a TNFα-neutralizing antibody
(167, 181).

Sympathetic Activation and Endogenous
Catecholamines
The effects of PM exposure on heart rate variability and
blood pressure indicate that air pollution may regulate the
balance between the sympathetic and parasympathetic arms of
the autonomic nervous system. Indeed, a study of Brazilian
sugarcane harvesters found that during harvest time, when
ambient PM is high due to sugarcane burning, workers’ blood
pressure and heart rate variability measurements correlated
significantly with sympathetic nerve activity measured by
microneurography (187). A more recent study found that
elevated exposure to PM was associated with increased serum
levels of norepinephrine and epinephrine, among other stress
hormones (188).

Increased catecholamine levels have also been found in mice
exposed to PM and this sympathetic activation has been shown
to augment the inflammatory response and prothrombotic
effects downstream of PM exposure (153). Deletion of β-
adrenergic receptors either globally or in AMs alone resulted
in reduced IL-6 accumulation after PM exposure. Inhibition of
β-adrenergic receptors either genetically or pharmacologically
prevented the prothrombotic effects of PM exposure while
treatment ofmice with the β-agonist formoterol further increased
IL-6 accumulation and thrombosis after PM exposure (153).
These findings from an experimental study have recently been
confirmed in humans (188). Collectively, these results suggest
that the PM-induced inflammation and modulation of the
autonomic nervous system both contribute to the prothrombotic
effects of PM exposure.

Increased Adiposity and Adipose
Inflammation
Animal studies have shown that long-term PM exposure leads
to increased adipocyte size and increased visceral fat mass (129,
189). PM exposure induced genes associated with lipogenesis
in adipose tissue, impaired adipose mitochondrial function, and
led to changes in circulating levels of leptin and adiponectin
(130, 189–191). This increased adiposity was also associated with

associated with increased macrophage infiltration into adipose
tissue and induction of pro-inflammatory programs (129, 189).

Adipose inflammation is linked with insulin resistance (192).
Indeed mice deficient for the NADPH oxidase subunit p47phox
exhibited improved adipose inflammation and insulin resistance
in response to PM exposure (132). Similar findings were found in
mice deficient for the chemokine receptor CCR2 (131)

In humans, living near a major roadway (<60m) is associated
a 0.37 kg/m2 (95% CI: 0.10 to 0.65 kg/m2) increase in body mass
index (BMI) when compared with those who live over 440m
away from a major road (193). The finding that inflammation
is associated with PM-induced insulin resistance in mice is
consistent with the findings of the SALIA (Study on the Influence
of Air Pollution on Lung Inflammation and Aging), which
demonstrated that Complement C3c, a marker of subclinical
inflammation, is associated with PM exposure in a cohort of
non-diabetic women. Elevated C3c was a strong independent
predictor of diabetes development (194).

Animal studies have confirmed the effect of PM exposure
on insulin sensitivity. Mice genetically susceptible to type II
DM, or mice fed high-fat diet and exposed to PM exhibit
increased insulin resistance, glucose intolerance, elevated fasting
glucose, and increased visceral adiposity when compared with
mice exposed to filtered air (129–131). Interestingly, young
mice exposed to PM beginning at 3 weeks of age developed
homeostatic insulin resistance after 10 weeks of exposure
without additional stress indicating a developmental window of
susceptibility to the effects of PM (132).

Epigenetic Changes
How the effects of air pollution exposure may endure after
exposure is not clear; however studies from mice suggest that
exposure early in life can have long lasting effects. Exposure
of pregnant mice to diesel exhaust resulted in an increased
susceptibility to pressure overload-induced heart failure in pups
raised to adulthood (195). While the mechanisms behind this
susceptibility is unknown, a potential mechanism for long-term
disease susceptibility may lie in epigenetic changes that occur
during exposure.

Epigenetic regulation of gene expression can result in
transient, and potentially permanent changes in tissue function.
Although studies are limited, air pollution exposure has been
shown to affect multiple epigenetic mechanisms, including
alterations in DNA methylation and histone modifications.
Hypermethylation was observed in the DNA from sperm
collected from mice exposed to particulate air pollution for
10 weeks when compared with mice exposed to filtered air
(196). These changes were still evident when mice were
examined 6 weeks after termination of exposure. In humans,
hypomethylation in DNA repetitive elements has been seen
in circulating leukocytes after exposure to particles (197, 198).
Furthermore hypomethylation of LINE-1 elements correlates
with increased risk for ischemic heart disease, stroke, and all-
cause mortality (199).

Epigenetic regulation of certain genes by PM has been seen in
cultured lung epithelial cells (200, 201); however, a genome-wide
assessment of epigenetic changes induced in various tissues by
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PM exposure is yet to be carried out. A new large-scale study,
sponsored by the National Institute of Environmental Health
Sciences seeks to determine the genome-wide epigenetic effects
of exposure to various environmental pollutants, including
PM, on multiple tissues (202). The data collected by the
TaRGET II (Toxicant Exposures and Responses by Genomic
and Epigenomic Regulators of Transcription) Consortium will
greatly advance the knowledge of the effects of air pollution
exposure on the epigenome.

CONCLUSIONS AND FUTURE
DIRECTIONS

There is abundant evidence that air pollution is a major
contributor to cardiovascular morbidity and mortality. Exposure
to pollution is a major modifiable risk factor in the prevention
and management of cardiovascular disease; however, the health
effects of air pollution are not limited to the cardiovascular
system. PM also appears to be an important contributor to
development of metabolic diseases including obesity and type
II diabetes. Emerging evidence suggests that PM exposure
affects timing of puberty and reproductive health in both men
and women (203–208). Furthermore, air pollution exposure
may affect other systems including the central nervous system
as well as the gastrointestinal tract and microbiome. (149,
209, 210). At current projections, premature mortality due
to air pollution exposure is expected to double by 2050
(1). Reducing the effect of air pollution on public health
will require both policy efforts to reduce production of air
pollution as well individual efforts to limit exposure, particularly
for those with preexisting susceptibility to cardiovascular
disease.

The effects of PM exposure on catecholamine levels, insulin
resistance, adiposity, and reproductive health, suggest that PM
exposure is an important endocrine disruptor. Mechanistically,
little is known about how PM exposure affects the endocrine
system. Endocrine disrupting compounds are found in both

the gaseous and particulate components of air pollution (211–
214), however, further research will be required to determine if
these compounds are the specific causes for the adverse health
outcomes associated with PM exposure.

The totality of the evidence suggests that there is no “safe”
level of PM exposure. Therefore, in addition to efforts to reduce
PM production and exposure, future studies should increasingly
focus on mechanistic investigations to better understand how
PM causes adverse health effects. Further exploration of the
signaling mediators and epigenetic regulators of the effects of air
pollution on health may lead to pharmacological agents capable
of mitigating the detrimental effects of air pollution on health.
This effort will require cell-based and animal studies utilizing
real-life exposures to PM as well as translational research in
humans.

Finally, there should be increased efforts at public education
on the harmful effects of air pollution exposure, particularly by
physicians with at risk patients. Air pollution exposure should be
seen as a major modifiable risk factor for cardiovascular disease.
The United States Environmental Protection Agency provides
daily ozone and PM level readings for cities in the US, Canada,
and Mexico. Greater dissemination of these readings may not
only help those at risk for PM-related health effects, but also
increase awareness of the impact of PM exposure on health,
possibly increasing demand for policy changes to reduce air
pollution production.
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