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Abstract: Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases,
and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among
humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants
offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines.
Current strategies are focused on the production of highly immunogenic structural proteins, which
mimic the organizations of the native virion but lack the viral genetic material. These include
chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their
ability to self-assemble and thus resemble the form of virus particles, are gaining traction among
plant-based candidate vaccines against many infectious diseases. In this review, we summarized
the main zoonotic diseases and followed the progress in using plant expression systems for the
production of recombinant proteins and VLPs used in the development of plant-based vaccines
against zoonotic viruses.

Keywords: recombinant vaccines; zoonotic viruses; virus-like particles; plant molecular farming;
zoonotic influenza; emerging coronaviruses; West Nile virus; dengue virus; Zika virus; yellow fever virus;
Ebola virus; Crimean–Congo hemorrhagic fever virus; Chikungunya virus; HIV; rabies virus;
Hantaviruses; Henipaviruses; Newcastle virus; Hepatitis E virus

1. Introduction

Zoonoses are diseases transmitted from vertebrate animals to humans and are consid-
ered one of the most important threats to Public Health [1]. Zoonotic viruses cause illnesses
with a high death rate and numerous long-term health issues. In addition, zoonotic diseases
also affect the livestock sector and can have a tremendous economic impact [2]. More than
60% of emerging human infectious diseases are zoonoses and 99% of the emerging unknown
viruses are zoonotic with a potentially high risk of spreading globally [3–5]. The recent
outbreak of severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2),
causing more than 5 million deaths worldwide by the end of October 2021, demonstrates
the significance of zoonoses. Domestic and wild animals serve as reservoirs of zoonotic
viruses, which are transmitted via direct or indirect contact [3,6,7]. The indirect trans-
mission occurs by vectors (insects and arthropods), which significantly impacts disease
transmission dynamics and complicates the measures taken to control zoonoses. Viruses,
which have a transmission cycle between animal reservoirs where they primarily amplify,
and their vectors (mosquitoes, ticks, midges) are known as arthropod-borne viruses or
Arboviruses. Before transmission to a susceptible host, arboviruses must replicate in the
arthropod vectors [8].
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Table 1 summarizes important zoonotic viruses with details on the animal reservoirs,
distribution, and fatality rate. It is worth noting that some viruses, such as HIV, began as
zoonotic viruses, but because of mutations, they are no longer considered zoonotic.

Table 1. Partial list of important viral zoonoses.

Virus Family/Name Main Animal Reservoir Distribution Cases/Mortality Rate

Family Orthomyxoviridae
Influenza A virus

Wide variety of birds and
mammals (dogs, cats, pigs,

whales, horses)
Worldwide 3–5 million severe cases

annually, ~2% fatal rate

Family Coronaviridae
Coronavirus
SARS-CoV
MERS CoV

SARS-CoV-2

Bats, pangolins, camels,
monkeys, ferrets, minks, pigs,

horses, dogs, cats, snakes
Worldwide

SARS-CoV~9.6%;
MERS-CoV~34.3%;

SARS-CoV-2 ranging from 2%
to 7.6% depending on

the country

Family Flaviviridae
West Nile virus Birds and horses

Africa, Europe, the Middle
East, North America, and

West Asia

~1% of neuroinvasive disease
and 5% of them are fatal

Zika virus Human and
non-human primates

Spread from Africa to the
Pacific and the Americas

In Brazil, the estimated case
fatality rate is 8.3%

Japanese encephalitis virus Ardeid wading birds and pigs Isolated in Japan. Spread to
Southeast Asia, Australia

35,000–50,000 cases of JE,
with a mortality rate of

10,000–15,000 people per year

Dengue virus Monkeys and dogs

Caribbean, Central Africa, the
Eastern Mediterranean,
Southeast Asia, and the

Western Pacific

390 million dengue virus
infections per year,
1.3% fatality rate

Yellow fever virus Humans and
non-human primates

West, central and east Africa
and in South America

200,000 cases of YFVD and
30,000 deaths annually

Tick-borne encephalitis virus Small rodents and
large woodland animals

Europe, Siberia,
northern China, Japan, and

South Korea

10,000–12,000 clinical cases of
TBE and mortality rate
depending on subtype

(1% to 20%)

Family Filoviridae
Ebola virus

Bats, Humans and non-human
primates, wild antelopes West and Central Africa

2013–2016—28,616 cases.
The fatality is ranging from

27% to 79%

Marburg virus Fruit bats and monkeys Central and South Africa Fatality ratio of up to 88%

Family Nairoviridae
Crime-Congo Hemorrhagic

Fever Virus

Wild and domestic animals
such as cattle, sheep,

and goats
Africa, Asia, and Europe Fatality ratio (10–40%)

Family Peribunyaviridae Rift
Valley fever virus

Buffaloes, camels, cattle, goats,
and sheep

Sub-Saharan Africa and
Arabian Peninsula

Most human cases are mild.
50% mortality within

hemorrhagic form

Family Togaviridae
Chikungunya virus Monkeys, birds, and rodents

Southeast Asia, Europe,
Caribbean, North, Central,

and South America

1 million cases per year, the
hospital mortality rate raging

(10–26%)

Family Rhabdoviridae
Rabies virus

Dogs and cats, foxes, wolves,
mongooses, skunks,

raccoons, bats

95% of cases occurring in
Africa and Asia 59,000 human deaths annually

Family Retroviridae
HIV

Originated in
non-human primates Worldwide 37.7 million people are with

HIV, the fatality rate is 1.8%
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Table 1. Cont.

Virus Family/Name Main Animal Reservoir Distribution Cases/Mortality Rate

Family Paramyxoviridae
Henipaviruses (Nipah virus

and Hendra henipavirus)
Large fruit bats, pigs, horses Southeast Asia, Australia,

Papua New Guinea
The fatality rate is estimated

at 40% to 75%

Newcastle disease virus Poultry and wild birds Mild systemic ND can be
observed in humans

Family Hepeviridae
Hepatitis E virus

Pigs, wild boar, rats, rabbits,
dears, dromedary camel, birds Worldwide

3.3 million symptomatic cases
with a fatality rate up to 4% in

the general population

Family Hantaviridae
Hantavirus

Rodents, bats, and
insectivores

Asia, Europe,
and the Americas Mortality rates of 12%

Vaccination is an essential method in eradicating zoonoses and the spread of highly
pathogenic viruses and is of great importance to the “Global One Health” paradigm.
The Global One Health Initiative’s mission includes efforts to prevent the cross-species
transmission of infectious diseases, assess environmental and social impact, and develop
adequate science-based risk management policies [9]. An important measure in the One
Health Initiative is the creation of widely available vaccines to be used by both humans
and animals. The plant expression systems may offer a successful alternative for vaccine
production compared to conventional expression systems, especially for animal vaccination
(Figure 1).
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Figure 1. Schematic representation of the transmission of zoonotic diseases and the used
plant-based production technologies (stable, transient, and suspension cultures) for recombinant
vaccine production.

2. Plants as an Expression System for Vaccine Production

For more than three decades, plants have been used for the production of therapeutic
recombinant proteins, especially subunit vaccines, and VLP vaccines to cope with emerging
and re-emerging diseases. Plants possess great potential in the production of vaccines
because they are a safe, cost-effective, and scalable expression system. The achievements
of plant molecular farming (PMF) and plant-based production of vaccines and diagnos-
tic reagents have been summarized in a number of review articles [10–16]. The ability
of plants to produce candidate vaccines has been demonstrated in several clinical trials,
and two plant-derived vaccines (influenza vaccine and Newcastle disease vaccine) have
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been approved for commercial use [17–19]. Together with the licensing of a plant-derived
recombinant human β-glucocerebrosidase, marketed as ELELYSO [20], these achievements
promoted plant molecular farming and led to the rapid development of plant expression
systems and the overcoming of some of their disadvantages. Increasing the yield [21], modi-
fying plant glycosylation patterns [22], reducing the cost of production and purification [23],
and increasing the recombinant protein stability [24–26] significantly improved the plant
expression systems, making them competitive with the commercially used microbial ex-
pression systems. However, despite these achievements, the PMF has not been able to
become a technology of choice for the production of pharmaceutical recombinant proteins.
There are multiple and complex reasons for the slow progress of PMF. Among them are
the strict regulation of GMO and pharma products. In addition, the industry is reluctant
to restructure its fermentation infrastructure, and the fact that the productivity of plants,
as compared to best practices, is lower also does not help the implementation of PMF in
the production of recombinant protein pharmaceuticals [14]. Still, we may be witnessing a
breakthrough thanks to the Medicago’s success in launching influenza and SARS-CoV-2
vaccines, which have undergone phase-3 clinical trials and are currently awaiting regu-
latory approval. As a result of the rapid production of large quantities of recombinant
proteins within less than one week due to the transient expression approach, plant-based
vaccines are becoming very attractive option when there is urgent need caused by the swift
transmission of emerging pandemic viruses.

The advantages and disadvantages of the most commonly used systems for vaccine
and therapeutic proteins production (Yeast, E. coli, insect cells, Chinese hamster ovary
(CHO) cells, and embryonated hen’s eggs (EHE)), and their comparison with plant ex-
pression systems have been extensively reviewed by several authors [14,27–29]. Figure 2
summarizes the main characteristics of the used bio-pharming systems and highlights the
advantages and disadvantages of plant expression systems.

Life 2022, 12, x FOR PEER REVIEW 4 of 34 
 

 

systems and the overcoming of some of their disadvantages. Increasing the yield [21], 
modifying plant glycosylation patterns [22], reducing the cost of production and purifica-
tion [23], and increasing the recombinant protein stability [24–26] significantly improved 
the plant expression systems, making them competitive with the commercially used mi-
crobial expression systems. However, despite these achievements, the PMF has not been 
able to become a technology of choice for the production of pharmaceutical recombinant 
proteins. There are multiple and complex reasons for the slow progress of PMF. Among 
them are the strict regulation of GMO and pharma products. In addition, the industry is 
reluctant to restructure its fermentation infrastructure, and the fact that the productivity 
of plants, as compared to best practices, is lower also does not help the implementation of 
PMF in the production of recombinant protein pharmaceuticals [14]. Still, we may be wit-
nessing a breakthrough thanks to the Medicago’s success in launching influenza and 
SARS-CoV-2 vaccines, which have undergone phase-3 clinical trials and are currently 
awaiting regulatory approval. As a result of the rapid production of large quantities of 
recombinant proteins within less than one week due to the transient expression approach, 
plant-based vaccines are becoming very attractive option when there is urgent need 
caused by the swift transmission of emerging pandemic viruses. 

The advantages and disadvantages of the most commonly used systems for vaccine 
and therapeutic proteins production (Yeast, E. coli, insect cells, Chinese hamster ovary 
(CHO) cells, and embryonated hen’s eggs (EHE)), and their comparison with plant ex-
pression systems have been extensively reviewed by several authors [14,27–29]. Figure 2 
summarizes the main characteristics of the used bio-pharming systems and highlights the 
advantages and disadvantages of plant expression systems. 

 
Figure 2. Comparison between plant expression systems and conventional expression systems. * N-
linked glycans in humans differ from plant glycans, and the latter’s strong immunostimulatory ef-
fect may cause plant-derived therapeutics to have adverse events; however, these same properties 
are beneficial for vaccines as they enhance immunogenicity. 

The early concept for producing cheap and easy-to-use edible vaccines, created by 
Charles Arntzen [30], has been studied for decades. Edible vaccines were developed, and 
some were used in clinical trials [31–33] but were later dismissed, especially for humans, 
mainly because of the impossibility of precise dosage of the recombinant protein within 
the living plant [14]. This concept of edible vaccines is still being developed for veterinary 
purposes [34–36]. Plant-made vaccines for veterinary use are very promising, mainly be-
cause of the possibility of oral delivery of the recombinant vaccine, at low cost and with a 
long shelf life, especially in cases where cereals are used. 

Figure 2. Comparison between plant expression systems and conventional expression systems.
* N-linked glycans in humans differ from plant glycans, and the latter’s strong immunostimulatory
effect may cause plant-derived therapeutics to have adverse events; however, these same properties
are beneficial for vaccines as they enhance immunogenicity.

The early concept for producing cheap and easy-to-use edible vaccines, created by
Charles Arntzen [30], has been studied for decades. Edible vaccines were developed, and
some were used in clinical trials [31–33] but were later dismissed, especially for humans,
mainly because of the impossibility of precise dosage of the recombinant protein within
the living plant [14]. This concept of edible vaccines is still being developed for veterinary
purposes [34–36]. Plant-made vaccines for veterinary use are very promising, mainly
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because of the possibility of oral delivery of the recombinant vaccine, at low cost and with
a long shelf life, especially in cases where cereals are used.

Plant molecular farming is based on three main technological platforms: transient
expression (generally in Nicotiana benthamiana), stable transgenic plants (transgenic and
transplastomic), and plant cell-suspension cultures [37–40]. Transient expression in plants
provides a higher yield of recombinant proteins within a shorter timeline than the stable
modified plants and has been used successfully as a rapid response platform addressing
emerging viral diseases such as Influenza and COVID 19. The production of recombinant
proteins using transient expression based on RNA viral vectors has gained wide popularity
due to numerous advantages: simple and easy engineering, high level of production of the
protein of interest, scalability, lower risk, and lower costs [41]. Mainly small (+) RNA viruses
such as tobacco mosaic virus (TMV) [42], cowpea mosaic virus (CMV) [43], and potato
virus X (PVX) [40] are utilized as viral vectors for commercial protein production [44,45].
Earlier, the virus-based vectors expressed the gene of interest in addition to the virus’s
own natural genes. Later on, the viruses were modified by removing all unessential
elements for target protein expression, resulting in higher yield and better stability of
the viral complex [46]. Transient expression, also known as agroinfiltration, involves the
introduction of genes into plant leaves by infiltrating them with disarmed Agrobacterium
tumefaciens carrying binary vectors [47]. The advantages of this approach have led several
companies (Medicago Inc. (Québec, QC, Canada); iBio/Caliber Therapeutics (Bryan,
TX, USA); Kentucky BioProcessing Inc. (KBP), Owensboro, KY, USA; Fraunhofer USA
(Plymouth, MI, USA)) to invest in this plant-based platform for rapid and large-scale
production of vaccines and therapeutics [48].

Stable transformation of plants takes longer, but once optimized, the transgenic system
allows long-term and large-scale recombinant protein production. Various plant species
such as tobacco, potato, cereals, lettuce, tomato, carrot, alfalfa, and oilseeds have been
used for stable transformation by nuclear or chloroplast genome manipulation. The main
approaches used to achieve stably transformed plants are Agrobacterium-mediated trans-
formation or biolistic process [39,49]. The chloroplasts are sometimes a preferable target for
stable transformation instead of the nuclei due to their high copy number in the plant cell,
leading to high recombinant protein production.

The choice of technology to achieve a plant-based vaccine depends on the route of
vaccine administration, the ability to achieve high levels of recombinant protein expression,
and a low value of downstream processing. Edible plants (tomato, carrot, lettuce, rice, and
maize) are suitable for oral administration. Cereal crops are preferable for long storage.
Tobacco plants are preferable as model plants and to achieve high levels of expression.

The use of bioreactors from plant cell cultures in PMF makes it possible to overcome
some of the shortcomings of transgenic crops. In vitro growing of plant cells under con-
trolled conditions allows for the precise monitoring of cell growth and protein production
and the development of good manufacturing practices. The approach of producing valu-
able pharmaceutical proteins in plant cell bioreactors is becoming increasingly common
due to strong restrictive measures on the use of transgenic plants in the field, especially in
Europe [50].

3. Virus-like Particles (VLPs) for Vaccine Development

VLPs are recognized as safe and effective vaccines against viral diseases [11,51]. They
resemble regular viruses’ outer structure, composition, and size, but they lack genetic
material, which makes them non-infectious [52]. Because VLPs retain the native antigenic-
ity of the viruses they mimic, they can efficiently elicit cellular and humoral immune
responses [53]. The virus-like particles can be formed from structural proteins belonging to
one type or multiple types of viruses. Those composed of structural proteins or immuno-
genic epitopes from different viruses are known as chimeric VLPs [54–57]. Such VLPs can
be used as immune modulators and self-adjuvants to provoke strong immune responses
against the presented immunogenic epitopes [58–60]. The use of virus-like particles has also
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been recently utilized by the PMF community [54,61,62]. VLPs-based candidate vaccines
expressed in plants have been developed against several zoonotic diseases and the efficacy
of these vaccines is currently being evaluated. Chimeric plant-derived VLP vaccines are also
being developed against diseases such as cancer, allergies, and autoimmune diseases [63].

4. Influenza Viruses

Influenza viruses are members of the family Orthomyxoviridae and include four genera
(Influenza virus A, B, C, and D) [64]. Only influenza A and B are clinically significant for
human health [65]. While influenza B infects only humans, influenza A infects humans and
a wide variety of mammals and birds. The influenza A virus is zoonotic and can generate
pandemic viruses by switching the host. Influenza is an enveloped virus with a spherical
or pleomorphic shape, and is 80–120 nm in diameter. Its genome contains eight segments
of single-stranded negative-sense RNA. The lipoprotein envelope of the influenza A virus
contains two glycoproteins, hemagglutinin (HA), and neuraminidase (NA) [66]. After
infection, HA and NA are the primary antigens inducing antibody production [67]. To date,
18 HA and 11 NA gene variants have been identified [68]. Of these variants, only four
HA (H1, H2, H3, and H5) and two NA (N1 and N2) are considered as potentially serious
pandemic threats [69]. HA is a stronger antigen than NA; thus, it is the main object of
interest for vaccine development against influenza.

The World Health Organization (WHO) estimated that the flu kills about 250,000 to
500,000 people annually [70]. There is a shortage of influenza vaccines globally, and the
ability for a “rapid response” vaccine production against pandemic influenza strains needs
to improve [13]. Plant molecular farming technology can address these needs because it
provides fast development and manufacturing of vaccines and scalable production. In 2009,
the US Defense Advanced Research Projects Agency (DARPA) invested USD 100 million in
four companies (Fraunhofer USA, the Center for Molecular Biotechnology in Delaware,
Kentucky Bioprocessing, and Medicago Inc.) to produce 100 million influenza vaccines in
plants in a month [71]. In 2012, Medicago produced 10 million doses of the H1N1 vaccine
in a one-month “rapid fire test” [72]. They were able to achieve that due to many years of
scientific development and the use of transient expression vectors [43], providing synthesis
and accumulation of large quantities of recombinant proteins in plants within a week.
D’Aoust et al. [73] demonstrated the production of VLPs composed only of influenza H5
by means of transient expression in N. benthamiana. Animal studies with low doses HA
VLPs showed protective immunity in mice. The development of the candidate monovalent
VLP vaccines against H5N1 pandemic strains [74,75] and the polyvalent HA VLPs for
seasonal flu, which successfully passed phase-3 clinical trials [17,62,76] demonstrate the
great potential plant-based technologies have in the future of vaccine production. These
studies show that plant-derived HA VLPs candidate vaccines can provide protection
against respiratory illnesses caused by influenza viruses in humans. Medicago Inc. has
successfully completed phase-3 clinical studies for a plant-derived VLP quadrivalent flu
vaccine (NCT03321968, NCT03301051, NCT03739112) [77,78]. The reported high efficacy of
this plant-made flu vaccine is an important milestone in the progress of PMF.

In addition, the efficient production of hemagglutinin-based VLP vaccines in
N. benthamiana has been demonstrated in academic studies by Rybicki et al. [13] and
Smith et al. [79]. In Smith’s study, H6-subtype VLPs were transiently expressed and evalu-
ated for efficacy in chickens against the heterologous H6N2 virus. Their findings demon-
strate the potential of the plant-produced H6N2 HA vaccine for poultry. HA from various
influenza strains was expressed in plants, and its immunogenicity was assessed [80–89].
Modifications of the HA structure were made to achieve a high level of recombinant protein
accumulation: the sequences were optimized, the transmembrane domain and native signal
peptide were removed, and an endoplasmic retention signal was inserted at the C terminus.
The yield of the transiently expressed protein was HA variant dependent. The yield of
H3 was 200 mg/kg of fresh weight (FW) tobacco leaves [81], while the yield of H1 was
400–1300 mg/kg FW [82]. Shoji et al. generated trimeric HA, which mimics the authentic
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HA structure, by introducing a trimerization motif from a heterologous protein into the
HA sequence [83]. Immunization with the generated HA induced a protective immune
response upon challenge of mice with a lethal viral dose [83]. Musiychuk et al. developed
a plant expression system that achieved high-level target antigen expression in plants by
engineering a thermostable carrier molecule fused to HA from the influenza A/Vietnam/04
(H5N1) virus [90].

Stable expressions of immunogens from the influenza virus are less used compared
with transient expressions. In a review paper, Redkiewicz et al. summarized the results
achieved from different plant expression systems for the production of HA [91]. Here, we
will only mention some of the latest results achieved by stable expression of HA: avian
H5N1 HA was found to be stably expressed in tobacco seeds [92] with a yield of 3.0 mg
of the viral antigen per g of seed; and H3N2 nucleoprotein was detected in transgenic
maize with a yield of 35 µg of NP/g seed [93]. The relatively low levels of recombinant
protein accumulation in stable transgenic plants indicate that transient expression is more
promising for developing an influenza vaccine in plants.

The feasibility of plants for the production of chimeric VLPs presenting the extracellu-
lar domain of the M2 influenza protein (M2e) as a candidate for universal influenza vaccines
has also been investigated. Hepatitis B core protein (HBcAg), Hepatitis E open reading
frame 2 (ORF2) capsid protein, Human papillomavirus 16 (HPV-16) L1 protein, Cowpea
Mosaic Virus (CPMV), and tobacco mosaic virus (TMV) have been used as scaffolds of the
M2e influenza peptide [60,94–99]. The immunogenicity of some of the chimeric VLPs pre-
senting M2e was assessed in mice, and they often demonstrated a high immune response
with protective activity [88,91–93]. Blokina et al. developed a chimeric protein combining
the M2e and HA2 influenza A antigens with bacterial flagellin, which has adjuvant proper-
ties. The chimeric recombinant protein was expressed using a highly efficient PVX-based
expression system in N. benthamiana, resulting in protein accumulation of up to 300 µg/g of
fresh leaf tissue. Mice that were intranasally immunized with the purified chimeric protein
survived a lethal challenge with the influenza A virus strain A/Aichi/2/68 (H3N2) [100].

5. Emerging Coronaviruses

Within the last twenty years, the emergence of three novel coronaviruses causing
severe acute respiratory syndrome was observed: SARS-CoV-1, MERS-CoV, and SARS-
CoV-2. They have the crown-like protruding knobs on their surface that are typical for all
coronaviruses, a large, positive-strand RNA genome of approximately 30,000 nucleotides,
and are classified in the genus Betacoronavirus [101]. Genus Betacoronavirus also harbors the
so-called “common cold” human coronaviruses hCoV-OC43 and hCoV-HKU [102]. The
virion is composed of four structural proteins, spike (S), envelope (E), membrane (M), and
nucleocapsid (N), all of which are immunogenic, but only the spike (S) protein gives rise to
neutralizing antibodies [103,104]. The swift spread of the SARS-CoV-2 virus worldwide,
infecting billions of people with millions of fatalities, sent an alarming message to the
scientific community that there is a need for rapid development of effective vaccines against
viruses such as the SARS-CoV-2. Researchers working in plant molecular farming have been
prompted to analyze how plant-based production systems can meet this need [28,105–107].
The urgent need for a COVID-19 vaccine and diagnostic reagents has been addressed by
the rapid and large-scale production of SARS-CoV-2 structural proteins in plants.

The first report of a successful plant-produced vaccine candidate against SARS-CoV-2
was from the Canadian company Medicago Inc. [108]. The strategy included transient
expression in N. benthamiana of the modified SARS-CoV-2 S protein with stabilizing point
mutations, a plant signal peptide, and the influenza HA transmembrane domain and
cytoplasmic tail replacing the equivalent sequences in SARS-CoV-2. Medicago successfully
produced and purified modified VLPs built from the S protein. Following positive Phase-1
results, Medicago has launched Phase-2/3 (ClinicalTrials.gov Identifier: NCT04636697)
and Phase-3 clinical trials (NCT05040789) (Table 2). Recently, Medicago Inc. and Glaxo-
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SmithKline announced a 71% efficacy rate of their plant-based vaccine against all variants
of SARS-CoV-2 [109].

Table 2. Clinical trial studies with the plant-based vaccine against the COVID-19 disease [110,111].

NCT Number Study Title Phase Responsible Party

NCT04450004

Safety, Tolerability and Immunogenicity
of a Coronavirus-Like Particle

COVID-19 Vaccine in Adults Aged
18–55 Years

1 Medicago

NCT04636697
Study of a Recombinant

Coronavirus-Like Particle COVID-19
Vaccine in Adults

2/3 Medicago

NCT05040789

Phase-3 Study to Evaluate the Lot
Consistency of a Recombinant

Coronavirus-Like Particle COVID-19
Vaccine

3 Medicago

NCT05065619 Safety Immunogenicity Study of
MT-2766 in Japanese Adults (COVID-19) 1/2 Medicago

NCT04473690 KBP-201 COVID-19 Vaccine Trial in
Healthy Volunteers 1/2 KBP

NCT04953078
A Study to Evaluate Safety, Tolerability,
and Reactogenicity of an RBD-Fc-based

Vaccine to Prevent COVID-19
1 Baiya Phytopharm

The American biotech companies iBio [112] and Kentucky BioProcessing (KBP) [113]
also announced that they have produced subunit vaccines against SARS-CoV-2 based on
plants. KBP used transient expression in N. benthamiana plants for the KBP-201 vaccine
production. The KBP-201 with CpG oligonucleotides as an adjuvant is currently in phase-
1/2 clinical trials (Table 2; ClinicalTrials.gov Identifier: NCT04473690). iBio produced
a VLPs-based vaccine (IBIO-201) containing S protein linked to the LicKMTM booster
molecule. IBIO-201 demonstrated that it can elicit an anti-SARS-CoV-2 immune response
in preclinical studies [114].

Baiya Phytopharm, a biotech company in Thailand, used N. benthamiana for developing
a subunit-based vaccine against SARS-CoV-2. Their candidate vaccines were tested for
immunogenicity in mice and monkeys. The Baiya SARS-CoV-2 Vax 1 candidate vaccine is
currently in phase-1 clinical trials (Table 2; ClinicalTrials.gov Identifier: NCT04953078) [115].

The Lomonossoff group, John Innes Center, Norwich, also announced SARS-CoV-2
candidate vaccine production based on plants expressing the S, E, and M proteins. They
purified “crown-shaped” particles from plant leaves infiltrated with the S protein [116].
Pogrebnyak et al. were also successful in generating S1 protein composed of the N-terminal
and the receptor-binding domains in tobacco and tomato plants and observed robust im-
mune response upon immunization of mice [117]. Another study described the expression
of the S1 protein in lettuce and transplastomic tobacco. However, immunological studies
have not yet been reported [118]. Zheng et al. [119] expressed the SARS-CoV N protein, and
Demurtas et al. [120] expressed the M and N proteins in N. benthamiana and demonstrated
their immunogenicity in animal models. Mamedov et al. co-expressed the N protein
with the receptor-binding domain (RBD) in N. benthamiana to produce the SARS-CoV-2
antigens in plants. The cocktail of these two antigens elicited high-titer antibodies against
SARS-CoV-2 [121]. Maharjan et al. also expressed RBD and proved that the plant-derived
recombinant RBD elicited a humoral immune response in mice [122]. The overall effort
to produce plant-derived SARS-CoV-2 VLPs suitable for vaccine development in a short
period of time is unprecedented [123–126].
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6. Filoviruses
6.1. Ebola Virus (EBOV)

EBOV causes severe hemorrhagic fever in humans and non-human primates. It has
been associated with periodic outbreaks in Central Africa, and it also has the potential to be
used as a bioterrorism agent [127]. The Ebola virus belongs to the family Filoviridae, genus
Ebolavirus [128]. EBOV virion has a negative-sense RNA genome encoding seven gene prod-
ucts: four nucleocapsid proteins (NP, VP35, VP30, L); two membrane-associated proteins
(VP24, VP40); and a transmembrane glycoprotein (GP) [129–131]. The GP mediates the viral
entry process into cells and is the key immunogenic protein in vaccine protection [132,133].
In recent years, remarkable success has been achieved in developing candidate vaccines
against filoviruses in non-human primate models and clinical trials [134–137]. Plant expres-
sion systems offer cost-effective alternatives to conventional vaccine production systems
against EBOV. Nieto-Gómez et al. designed a multiepitopic protein called Zerola, carrying
epitopes from the EBOV glycoprotein (GP) [138]. They demonstrated the ability of nuclear-
transformed tobacco lines to produce Zerola antigenic protein and created a plant-based,
low-cost candidate vaccine against EBOV. Phoolcharoen et al. developed a novel approach
by fusing EBOV glycoprotein to the heavy chain of 6D8 mAB and co-expressing it in
N. benthamiana [139]. After purification, this product formed immune complexes (EIC).
Mice immunized subcutaneously with plant-derived EIC produced anti-EBOV antibodies
at levels comparable to those obtained with GP1 virus-like particles, demonstrating the
effectiveness of the plant-expressed EIC as a vaccine candidate [139,140].

6.2. Marburg Virus (MV)

The Marburg virus is a part of the same family as the Ebola virus, causing a highly
infectious zoonotic hemorrhagic fever. It also has the potential to be used as a biological
weapon. To date, there is no published evidence on the creation of a plant-made vaccine
against the Marburg virus. Future efforts exploring the generation of such a vaccine can be
based on and expand the current knowledge of EBOV candidate vaccines.

7. Bunyavirales
7.1. Crimean–Congo Hemorrhagic Fever Virus (CCHFV)

CCHFV causes tick-borne zoonosis in over 30 countries in Africa, Asia, and
Europe [141,142]. Humans are infected mainly by tick bites, particularly from the Hyalomma
genus, and by exposure to the tissue and blood of infected animals, which are asymptomatic [143].
The CCHFV is an enveloped single-stranded negative-sense RNA virus with a tri-segmented
genome. It belongs to order Bunyavirales, family Nairoviridae, Orthonairovirus genus [144].
The RNA segments, S (small), M (medium), and L (large), encode the viral nucleoprotein (N),
the glycoproteins Gn and Gc, and the RNA-dependent RNA polymerase [145]. Due to the
lack of approved vaccines, high pathogenicity, and the increasing spread of CCHFV, the
development of a vaccine and the use of plants for its production is a viable alternative.
Ghiasi et al. expressed the Gn/Gc glycoproteins in transgenic tobacco leaves and hairy
roots. Oral immunization of mice with transgenic leaves and roots elicited specific IgA and
IgG production [146]. The use of an edible animal vaccine may reduce the risk of zoonotic
transmission of CCHFV. An attractive antigen for CCHFV vaccine production is the nucleo-
protein (N) [147]. To date, no expression of the N protein in plants and assessment of its
immunogenicity have been reported.

7.2. Rift Valley Fever Virus (RVFV)

RVFV causes severe epidemics among ruminants and humans in Africa and the Ara-
bian Peninsula [148]. In animals, RVFV is a vector-borne infection mainly transmitted by
the Aedes and Culex mosquito [149,150]. Humans are often infected by close contact with
infected animals and rarely through bites from infected mosquitoes [151,152]. The RFV
disease symptoms range from uncomplicated acute febrile illness to severe hemorrhagic
disease and death [149]. Similarly to the other arboviruses (Zika virus, Chikungunya virus,
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and Dengue virus), RVFV may emerge worldwide due to the widespread distribution of
arthropod vectors. RVFV belongs to the family Peribunyaviridae, genus Phlebovirus [153].
The RVFV genome contains three single negative-stranded RNA, packaged into viral nucle-
ocapsid protein (N) and enveloped by a lipid bilayer containing two viral glycoproteins
(Gn/Gc) [154,155]. The main targets for vaccine production are the Gn and N proteins. The
Rybicki group described the production of chimeric RVFV virus-like particles transiently
expressed in N. benthamiana [156]. They replaced Gn’s ectodomain (Gne) and fused it to the
transmembrane domain of avian influenza H5N1 HA, which allowed the chimeric VLPs
to be produced and purified. The generation of Gn-HA chimeric RVFV VLPs in plants
was the first demonstration of its kind to elicit a specific antibody response in mice [156].
Kalbina et al. expressed the N and Gn proteins in Arabidopsis thaliana and demonstrated
that the orally administrated proteins are immunogenic in mice. No VLP formation has
been reported [157].

7.3. Hantaviruses

Hantaviruses (HVs) are emerging pathogens belonging to family Bunyaviridae and are
known for causing hantavirus pulmonary syndrome or hemorrhagic fever with renal syn-
drome depending on the geographical location (North America, or Europe and Asia) [158].
HVs are transmitted to humans from their natural reservoirs, rodents, through contact
with infected animals and their excrements. Annually, these viruses cause approximately
200,000 infections in humans worldwide [159,160]. The Hantavirus genome comprises
three segments, named small (S), medium (M), and large (L). The L segment encodes the
viral polymerase, the M segment encodes the envelope glycoproteins Gn and Gc precursor
(GPC), and the S segment encodes the viral nucleocapsid protein (N) [161]. The N protein
and the Gn and Gc glycoproteins are promising candidates for vaccine development against
HVs [159,162]. Kehm et al. generated transgenic tobacco and potato plants expressing the
Hantavirus Puumala N protein and observed specific IgG and IgA immune responses upon
oral or intraperitoneal immunization of rabbits [163]. Mice that were orally immunized
with recombinant Puumala virus N protein did not induce an immune response. Khattak
et al. demonstrated that the recombinant viral protein was completely degraded by trypsin
and/or pepsin [164], which could explain the negative outcomes of the oral immunizations.

The Hepatitis B nucleocapsid tolerates the insertion of foreign sequences at its c/e1
region and was used to display several immunogenic epitopes for vaccine development in
plants [56,94,98,165]. A number of research teams have used a similar approach to create
chimeric HBc VLPs presenting various HV immunogenic epitopes, which have never been
used in plants [166–170]. Geldmacher et al. successfully inserted a gene fragment encoding
120 amino acids of the N gene from two different hantavirus strains (Dobrava and Hantaan)
into the hepatitis B nucleocapsid gene, resulting in a chimeric formation of VLPs exposing
the inserted foreign protein segment on the surface [167]. These chimeric VLPs elicited
cross-reactive antibody responses to the two HV strains [167,171]. Plant molecular farming
researchers can use similar approaches for the generation and production of vaccines
against HVs.

8. Togaviruses
Chikungunya Virus (CHIKV)

CHIKV is an arbovirus transmitted by mosquitoes. It causes fever, joint pain, and
acute polyarthritis [172,173]. Although the CHIKV disease is non-lethal and self-limiting,
more than 30% of infected individuals can develop chronic joint pain [174]. In 2004 the
CHIKV had a major outbreak spreading from sub-Saharan Africa and Southeast Asia [175].
The virus is classified as a member of the Togaviridae family, genus Alphavirus [176]. The
RNA genome has two open reading frames (ORF); ORF2 encodes five structural proteins
(capsid (CP), three envelope glycoproteins (GPs E1, E2, and E3), and 6K viroporin) [177,178].
Since there are no vaccines or treatments against the CHIKV infection, the use of plants can
offer a fast and cost-effective platform for vaccine production. The CHIK-VLPs expressed
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in yeast and insect cells have been explored as vaccine candidates against CIKV. The
CHIK-VLPs are morphologically identical with the native virion, and they induce cellular
and humoral immune responses [179–183]. These studies were taken a step further by
expressing ORF2 in plants to produce CHIK-VLPs. The Lomonossoff group produced
capsid-like particles (CLPs) in N. benthamiana through transient expression of ORF2 or a
fragment of the ORF2 coding capsid protein [116]. The results show that C proteins can
be produced in plants following autoproteolytic cleavage of the expressed polyprotein.
Not all envelope glycoproteins could be expressed in plants, only E2 was detected, and no
structures resembling full CHIK-VLPs were observed [116].

9. Flaviviruses

The viruses from the genus Flavivirus, family Flaviviridae, cause many diseases trans-
mitted to humans through vectors such as mosquitoes and ticks. West Nile virus (WNV),
Dengue virus (DENV), Zika virus (ZIKV), Yellow fever virus (YFV), Japanese encephali-
tis virus (JEV), and Tick-Borne encephalitis virus (TBEV) are causing the most common
flaviviral infections [184,185].

9.1. West Nile Virus (WNV)

West Nile virus is an emerging mosquito-borne flavivirus with a wide geographical
distribution that includes part of Europe, Africa, the Middle East, south and central Asia,
and Australia [186]. The transmission cycle of WNV is birds–mosquitos–birds, with migra-
tory birds being primarily responsible for the virus dispersal, including the reintroduction
of WNV from endemic areas into areas with sporadic outbreaks [186–188]. The WNV infec-
tion is usually asymptomatic (in around 80% of the infected people), or it could develop
into a West Nile fever (headache, sore throat, backache, and diarrhea) or a severe West Nile
disease [189–191]. WNV is a small (40–50 nm) spherical icosahedral virus. The outer protein
shell is enveloped by a lipid membrane derived from the host cell [192]. The RNA genome
is enclosed into a polyprotein that is cleaved post-translation to yield three viral structural
proteins: nucleocapsid (C), pre-membrane (prM), and envelope glycoprotein (E), and seven
nonstructural proteins (NSPs) [193–195]. The envelope glycoprotein that mediates viral
entry into host cells by binding to cellular receptors is also the major antigenic determinant
targeted by the host [196,197]. The WNV E protein shares a similar structure with the fla-
vivirus E glycoproteins. With its C-terminal DIII (wDIII) domain, which contains epitopes
recognized by neutralizing antibodies, the E proteins interact with cell receptors during
viral transmission [198,199].

The envelope protein and its DIII domain are in the main focus for vaccines against
WNV. Vaccines have been developed for horses, but there is no approved vaccine against
WNV for human use. As reviewed by Filette et al. [195], the development of a cost-effective
vaccine for veterinary use could be a solution to eradicate the virus spread and to control
WNF disease in humans and animals. Therefore, many research groups explored making
WNV recombinant vaccines made in plants as a safe and cost-effective means of production.
The Qiang Chen research group from Arizona State University has a number of candidate
vaccines developed against WNV based on the DIII domain of the E protein (wEDIII) [200].
They demonstrated that plants successfully produced wEDIII domains with an average
level of 100 µg/g leaf fresh weight. The plant-derived wEDIII protein was immunogenic
and potentially protective in mice [201–203]. Chen et al. also produced the entire E protein-
and prM-E-based WNV VLPs in plants. Only the results of sucrose gradient centrifugation
suggested the assembly of prM-E VLPs [51]. They also fused wEDIII to HBcAg, and
produced chimeric VLPs, which elicited strong B and T-cell responses against WNV in
mice [204].

The latest study of the Rybicki group reported the development of chimeric AP205
phage virus-like particles displaying WNV envelope EDIII domains. They used the Spy-
Tag/SpyCatcher (ST/SC) conjugation system [205] to generate a virus-like particle-display-
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based vaccine candidate in N. benthamiana. A quantity of 5 µg of purified chimeric VLPs
subcutaneously applied in mice elicited a potent antibody response to WNV EDIII [206].

9.2. Dengue Virus (DENV)

Dengue Virus is an emerging arbovirus that is distributed in tropical and subtropical
areas of the world by mosquitos (Aedes aegypti and A. albopictus). The WHO estimates that
worldwide, more than 3.6 billion people are at risk of being infected by DENV. Of them,
annually, more than 200 million will be infected, with 21,000 fatalities [207]. Dengue is
an acute febrile viral disease that may proceed asymptomatically or result in self-limited
dengue fever, but it could also escalate into severe dengue hemorrhagic fever and dengue
shock syndrome [208]. Therefore, the development of a scalable and safe vaccine is needed,
and plants may offer the solution. Similar to all other Flaviviruses, DENV’s genome is made
up of a positive-sense single strand RNA, which has a single ORF encoding all structural
and non-structural proteins into one polyprotein. The polyprotein is then proteolytically
cleaved into three structural proteins (capsid, precursor membrane, and envelope) and
at least seven non-structural (NS) proteins [209]. DENV has four antigenically distinct
serotypes (DENV-1-4) [210]. The dengue DIII domain of the E protein (dEDIII) can induce
neutralizing antibody responses and is the main target for vaccine development [211,212].
There are several examples of expression of dEDIII from different serotypes and prM in
plants [213–218]. dEDIII was expressed in N. tabacum by stable nuclear [219] or chloroplast
transformation [216]. Transient expression of dEDIII in N. benthamiana leads to higher re-
combinant protein quantities than stable expression, 0.28% [212,219] vs. 0.13 to 0.25% [216],
respectively [212,216,219]. The development of oral vaccination through the expression
of tetravalent EDIII in lettuce chloroplasts was explored by van Eerde et al., showing that
EDIII-1-4 can induce an immunogenic effect in rabbits [217].

Martínez et al. [215] used a strategy to display epitopes of dEDIII on the surface of
HBcAg capsid-like particles. Using the same strategy, Pang et al. [220] inserted a consensus
sequence of dEDIII into the immunodominant c/e1 loop region of tandem HBcAg and
demonstrated the production of chimeric VLPs (tHBcAg-cEDIII) in N. benthamiana [165].
A recent study conducted by the Lomonossoff group (Ponndorf et al. [221]) described the
production of DENV VLPs in N. benthamiana. Using the transient co-expression of DENV
structural proteins (SP) and truncated versions of the non-structural proteins (NSPs), they
successfully purified DENV VLPs. Immunogenicity assays revealed that the plant-made
DENV VLPs led to a high antibody response in mice.

Existing Ebola recombinant immune complex (RIC) technology [139] was used by
Kim et al. to develop a Dengue RIC technology (DERIC). A dEDIII gene fragment was
fused with the heavy chain of 6D8 mAB to prepare a chimeric Dengue–Ebola recombinant
immune complex. DERIC induced a strong virus-neutralizing anti-cEDIII humoral immune
response without using adjuvants in subcutaneously immunized mice and showed the
potential to be a candidate vaccine [218].

9.3. Zika Virus (ZIKV)

The vector for Zika virus transmission is primarily Aedes aegypti mosquito, albeit
several other species are also involved (A. africanus, A. albopictus, A. hensilli) [222]. Zika
virus is also transmitted through sexual contact, blood transfusions, and from mother to
fetus during pregnancy [223]. The greatest danger for humans is the vertical transmission
during pregnancy, resulting in the development of fetal microcephaly [224]. In 2016, the
WHO declared the Zika virus a “public health emergency of international concern” when
Brazil reported an association between Zika virus infection and microcephaly [225]. ZIKV
infections in humans are usually asymptomatic or characterized by fever and cutaneous
rash [226]. Two genotypes of ZIKV are distinguished, African and Asian [227]. ZIKV is a
Flavivirus with a genome organization and virion structure similar to the other flaviviruses.
The flaviviruses’ genetic similarity can provoke the antibody-dependent enhancement
of infection (ADE), and thus, can present challenges for vaccine development [228,229].
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The major virion surface glycoprotein E is responsible for attachment to cellular receptors,
membrane binding and fusion for viral entry, and mediating viral assembly [230]. The zE
glycoprotein, with its DIII domain, has great potential to induce potent neutralizing anti-
bodies, making it a principal candidate for a subunit vaccine [231]. Chen et al. developed
a zE-based candidate subunit vaccine by means of transient expression in N. benthamiana
plants. The plant-derived envelope protein elicited potent zE-specific antibodies and cel-
lular immune responses that correlate with protective immunity against the Zika virus
in mice [232]. Chen et al. also devised VLPs carriers based on the HBcAg that presented
zDIII, showing that chimeric VLPs can be easily purified in large quantities from plants
and can elicit a potent humoral and cellular immune response in mice [233]. Diamos et al.
demonstrated that recombinant immune complexes (RIC) are a potent platform to improve
the immunogenicity of weak antigens by fusing a ZIKV envelope domain III (ZEIII) to the
IgG heavy chain (N-RIC) [234]. In mice, the IgG fusions elicited up to 150-fold high titers
of Zika-specific antibodies, compared to the ZEIII antigen alone, which neutralized ZIKV
using only two doses without an adjuvant [234].

Interestingly, codelivery of hepatitis B nucleocapsid/zEDIII VLPs with RIC zEDIII was
capable of producing a synergistic effect in terms of enhancing the immune response [235].

The Lomonossoff group transiently expressed ZIKV prM-E proteins in N. benthamiana
and showed that plants successfully expressed and accumulated E proteins. The protein
yield was low, which led to limited VLP purification due to poor VLP formation [116].

9.4. Yellow Fever Virus (YFV)

The mosquito-transmitted yellow fever virus causes high fatality outbreaks in South
America and Africa [236]. According to the WHO, annually, YFV causes 200,000 severe cases
of yellow fever (YF) and up to 60,000 deaths [236,237]. The RNA genome of YFV encodes
seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) and three structural
proteins (envelope (E), membrane (M), and capsid (C)) [238]. Although there is an effective
live attenuated vaccine against YFV (YF-Vax®, Sanofi-Pasteur, Lyon, France, and 17DD-
YFV, Bio-Manguinhos, Rio de Janeiro, Brazil), the increased demand and reports of severe
reactions associated with the live vaccines have provoked interest in the development of
safer subunit vaccines against YFV.

Two different constructs, (a) the gene coding for the envelope (E) protein alone or
(b) a fusion of E with enzyme lichenase gene (YFE LicKM), were transiently expressed in
N. benthamiana. Both plant-derived proteins, YFE and YFE-LicKM, elicited virus-neutralizing
antibodies in mice and protected over 70% of them from a lethal challenge infection [239].
Currently, there are no reports describing the development of a safe and efficacious vaccine
against YFV in plants using the VLP approach. In their review, Hansen et al. describe, in
detail, the different platforms for creating a vaccine against YFV [240].

9.5. Japanese Encephalitis Virus (JEV)

Japanese encephalitis is an arbovirus that causes 45,000 human encephalitis cases
and 10,000 deaths globally [241]. The primary amplifying hosts are pigs, while water
birds are carriers and mosquitoes are vectors [185]. JEV is an enveloped virus with a
positive single-stranded RNA genome. The JEV genome has a single ORF encoding three
structural proteins (C, prM, and E), and seven non-structural proteins (NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5) [242]. The envelope protein (E) is the primary target of
neutralizing antibodies. The recombinant JEV E protein, expressed in the baculovirus
expression system, induced a neutralizing antibody response and protective immunity
against a lethal challenge with JEV [243]. Plants’ expression systems have been used
successfully for the production of the E surface glycoprotein. Wang et al. developed
transgenic rice expressing the E protein with a yield of 1.1–1.9 µg/mg of total soluble
protein. Intraperitoneal administration in mice of plant-derived E protein elicited specific
neutralizing antibodies. In addition, also in mice, the oral administration of the E protein
induced a mucosal immune response [244]. Chen et al. used a different approach. They
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created chimeric virus-like particles (CVPs) based on the bamboo mosaic virus (BaMV) to
present domain III of the E protein. The CVPs were found to elicit neutralizing antibodies
against JEV infection in mice [245].

9.6. Tick-Borne Encephalitis Virus (TBEV)

Tick-Borne encephalitis virus is transmitted by Ixodes spp ticks and causes a potentially
fatal neurological infection known as tick-borne encephalitis (TBE). The virus is endemic
to Europe, Siberia, northern China, Japan, and South Korea [246]. Each year, more than
10,000 cases of TBE are registered, of which 3000 in Europe, and in terms of morbidity,
this frequency is second only to JEV among the neurotropic flaviviruses [247,248]. TBEV
has the same genome organization as the other Flaviviruses. The TBEV genome in one
open reading frame codes for the expression of three structural (C, prM, and E) and seven
non-structural proteins. Specifically, for TBEV, prM and E form smaller, capsid-less virus-
like icosahedral particles. These particles do not have the structural protein C and RNA,
and they are non-infectious [247]. The recombinant prM and E VLPs and virion-derived
particulate immunogens are highly immunogenic and can protect animals. In addition, the
M/E protein has also been used in diagnostic assays [249–251].

No studies have been reported on the M and E expression in plants, with the ex-
ception of the announced project “Development of edible vaccines against Tick-Borne
encephalitis” [252] of Örebro University, Sweden.

10. Human Immunodeficiency Viruses (HIV)

Human immunodeficiency virus (HIV) is classified as a member of the Lentivirus
genus of the Retroviridae family [253,254]. Phylogenetical analysis showed close simian
relatives of HIV-1 in chimpanzees [255] and sooty mangabeys [256], demonstrating the
zoonotic origin of this virus [257]. Genetically, there are two types of HIV (HIV-1 and
HIV-2). Of the two, HEV-1 has spread rapidly worldwide, and it is the primary cause of the
global HIV pandemic [258].

Vaccine development against HIV is still a challenge due to the hyper-variability of the
viral envelope (Env) glycoprotein, which results in immune evasion [259]. To address the
global needs for HIV prevention, plants represent a viable option as a protein expression
system [13,260,261].

A promising approach for an HIV vaccine is the development of artificial proteins
based on conservative T-cell and B-cell epitopes. Notably, the gp41 and gp120 regions of
HIV-1 are crucial to virus function and immune protection, making them valuable targets
for vaccine investigation [262]. Multiple polyvalent HIV proteins have elicited immuno-
logical responses in animals (Table 3). For example, the C4(V3)6 protein, based on gp120,
expressed in lettuce, induced an immune response in mice [263]. The p24 protein, expressed
transiently or via transplastomic or transgenic transformation, induced a humoral immune
response [264–266]. A small epitope from gp41 displayed on the surface of CPMV stimu-
lated an antibody response in mice [267]. HBsAg has also been utilized as a carrier for HIV
polyproteins, providing excellent immunogenic characteristics while being stably expressed
in N. benthamiana [268,269]. Soluble gp140 was produced and successfully co-expressed
with a human chaperone protein to achieve higher yields of the viral protein [270]. gp40,
produced via transient expression in N. benthamiana, formed a trimeric structure and elicited
a robust immunological response in rabbits [271]. Despite the substantial number of studies
on this topic, none of the HIV plant-based vaccine candidates have reached the clinical
trial stages.
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Table 3. Examples of plant-produced HIV proteins that have shown immunogenic effects in animals.

Antigen Production System
and Expression Level Immunogenicity References

22 aa epitope from gp41 Cowpea; CPMV-HIV chimera; n/a.
Mice; Stimulated a strong serum
neutralizing antibody response in three
strains of mice.

[267,272,273]

CTB-P1
N. benthamiana (transient); >80% of the
CTB and CTB-P1 were assembled into
functional oligomers.

Mice; Serum IgG response;
mucosal IGA response; induction of
immunological memory.

[274]

p24 N. benthamiana (transient); 100 µg/g FW. Rabbit; Induced specific humoral
immune response. [266]

NV and GAG

Tomato (transgenic); VLPs composed
of the major antigenic protein
for the hepatitis B virus (HBV);
0.3 ng/mg powder.

Mice; Induced a humoral
immune response. [275]

polHIV-1.op

Nicotiana tabacum (transgenic); VLPs
composed of the major antigenic protein
for the hepatitis B virus (HBV);
2–26 ng/g FW.

Mice; Elicited anti-HIV-1 specific CD8+
T cell activation detectable in mesenteric
lymph nodes.

[268,269]

Tat Tomato (transgenic); 1 µg/mg fruit
(dry weight).

Mice; A strong anti-Tat immunological
response after either intraperitoneal,
intramuscular, or oral application.

[276]

p17/p24 Nicotiana tabacum (transient);
>1 mg p24/kg of FW.

Mice; Induced humoral and T cell
immune response. [277]

CTB-MPR N. benthamiana (transgenic);
1–2 mg/kg FW.

Mice; Induction of serum and
mucosal antibodies. [278]

p24 Nicotiana tabacum L. (transplastomic); n/a. Mice; Serum IgG response. [265]

C4(V3)6 Lettuce (transgenic); 240 µg/g
freeze-dried leaves.

Mice; Induction of humoral and
cell-mediated immune response. [263]

p24 Arabidopsis thaliana (transgenic);
0.2 µg–0.5 µg/g FW. Mice; Serum IgG response. [264,279]

C4V3 (Multi-HIV) Tobacco (transplastomic); 16 µg/g FW. Mice; Induction of systemic mucosal,
humoral, and T cell immune response. [263,280,281]

Poly HIV Physcomitrella patens (transgenic);
3.7 µg/g−1 FW.

Mice; Induction of specific
antibody response. [282]

Dgp41 and Gag
N. benthamiana (transient and transgenic
respectively); ~9 mg/kg FW and
~22 mg/kg FW, respectively.

Mice; Serum antibodies against both the
Gag and gp41 antigens were produced.
CD4 and CD8 T cell response.

[283,284]

gp140 N. benthamiana (transient); 21.5 mg/kg FW.

Rabbits; High titers of binding
antibodies, including against the V1V2
loop region, and neutralizing antibodies
against Tier 1 viruses.

[270,271]

11. Rabdoviruses
Rabies Virus (RABV)

Rabies virus is a neurotropic agent that causes acute infection of the central nervous
system (rabies) in mammals. This can be transmitted to humans by bites of infected animals.
The host range predominantly includes carnivores and bats. In humans, mortality is nearly
100% once clinical symptoms of rabies appear [285,286]. Mortality is much lower for the
animals that carry the rabies virus; 14% of dogs survive, and bats can survive too [287]. The
viral RNA genome encodes five viral proteins: the nucleoprotein (N), phosphoprotein (P),
matrix protein (M), glycoprotein (G), and a large RNA polymerase protein (L) [288]. The
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surface-exposed G protein is responsible for the induction of virus-neutralizing antibodies.
There are numerous examples of candidate vaccines based on the G protein or nucleopro-
tein produced in plants. Many review articles discuss the progress in the development
of plant-based vaccines against RABV [13,116,289,290]. Transgenic tobacco plants have
been modeled to produce rabies G protein at 0.38% of the total soluble leaf protein, which,
upon purification and immunization, provided complete protection in mice after a lethal
challenge [291]. Since tobacco cannot be used as an edible vaccine, efforts have been made
to use edible plants as potential alternatives for a Rhabdovirus vaccine. Tomato [292–294],
carrot [295], spinach [296,297], and corn [298] have been used to produce edible vaccines
against rabies. Serological studies have shown that oral administration of plant-produced
viral proteins caused antigen-stimulated IgG and IgA synthesis and improved the over-
all health of mice intranasally infected with an attenuated rabies virus [296]. Parenteral
immunization of mice with purified N protein produced in transgenic tomato achieved
partial protection, while oral immunization with the same product failed [293]. Orally
administrated G protein (50 µg in transgenic corn) induced viral neutralizing antibodies
and protected 100% of the treated mice against a challenge [298,299]. Loza-Rubio et al.
demonstrated that the degree of protection achieved after 2 mg of G protein adminis-
trated orally was comparable to that conferred by a commercial vaccine [299]. This study
demonstrates that cereals are an attractive platform for oral vaccine production due to the
relatively high recombinant protein accumulation and the possibility for long-term storage
under ambient conditions.

Oral vaccination with the plant-produced chimeric peptides, containing antigenic
determinants from glycoprotein G and nucleoprotein N fused with the alfalfa mosaic virus
coat protein (AlMV CP), improved weight gain in mice following a challenge with an
attenuated virus strain [296]. Yusibov et al. described the expression of a similar chimeric
protein (epitopes from G and N fused with the AlMV coat protein) in tobacco and spinach
plants. Studies in human volunteers showed a specific response against the rabies antigens
after ingesting raw spinach leaves infected with the recombinant virus [297].

12. Hepatitis E Virus

Hepatitis E virus (HEV) HEV is a positive-sense, single-stranded quasi-enveloped
RNA icosahedral virus from the Hepeviridae [300]. Genus Orthohepevirus unite all virus
isolates from mammals and birds organized into eight genotypes. Genotypes 1 and 2 are
specific for humans, while 3–8 are spread mainly in animals. The main animal reservoir of
HEV is the domestic swine, but other animals such as wild boar, dear, camel, etc. can be
reservoirs as well [301–305].

HEV ORF2 encodes the viral capsid protein, which is a major immunogenic factor, and
for that reason, it is of great interest for anti-HEV vaccine development [306]. Earlier PMF
studies were based either on nuclear or plastid stable transformations [307–309]. The E2
fragment (394–607 aa) from ORF2 was cloned into a plasmid and successfully transformed
into tomato plants using Agrobacterium tumefaciens. Although normal immunoactivity
of the recombinant protein was detected, the stable nuclear transformation resulted in
low accumulation of the desired product—61.22 ng/g fresh weight (FW) in fruits and
6.37–47.9 ng/g FW in leaves—which makes the methodology unsuitable for scalable
production [307]. In another study, the E2 fragment was cloned into a plastid-targeting
vector and delivered in tobacco via biolistic particle bombardment. Application of the
plastid transformation approach resulted in an increased yield of 13.27 µg/g FW.

The generated recombinant protein was able to elicit a positive antibody response
in mice [309]. In the pursuit of an oral vaccine, transgenic potatoes were developed by
Agrobacterium-mediated delivery of two truncated ORF2 fragments, truncated 111N and
111N/54C. A yield up to 30 µg/g FW was observed with very few VLPs. The absence of an
immune response in mice highlighted the importance of VLP formation for the induction
of a proper immune response [308].
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The transient expression approach was used in conjunction with the highly productive
vectors pEAQ-HT and pEff, based on the Cowpea mosaic virus (CPMV) and the potato
virus X (PVX), respectively. When a truncated ORF2 (110–610 aa) sequence, cloned into
the pEAQ-HT vector, was expressed, it resulted in a protein production rate of 100 µg/g of
FW [310], whereas the same sequence cloned into the pEff vector yielded up to 200 µg/g of
FW [311,312]. Both products confirmed that the truncated HEV capsid proteins expressed
in plants are suitable for diagnostic purposes [310,312]. VLP formation was also examined
by atomic force and electron microscopy. The collected data confirmed self-assembled VLP
particles with very heterogeneous sizes [95,312]. The immunogenicity of the plant-produced
HEV 110–610 protein was examined in mice, and it was concluded that immunizations
with the recombinant protein induced high titers of specific IgG antibodies in comparison
to the negative control group [311]. Additionally, HBcAg was used to present an HEV
immunogenic epitope. The amino acids 551–607 of the HEV ORF2 capsid protein were
successfully inserted into HBV nucleocapsid gene and upon expression in plants, chimeric
“ragged” VLPs were produced, which reacted with HEV antibodies [56].

13. Newcastle Disease Virus (NDV)

The NDV belongs to the Paramyxoviridae family and its single-stranded, negative
sense RNA genome encodes six structural proteins: nucleocapsid (N), phosphoprotein (P),
matrix protein (M), fusion protein (F), haemagglutinin-neuraminidase protein (HN), and
large polymerase protein (L) [313]. The surface glycoproteins F and HN are the major
immunogenic proteins [314,315] and targets for vaccine design. NDV is highly infectious
and often fatal in birds, including domestic poultry [316]. Humans can be infected by NDV
through direct contact with infected poultry, which is usually presented as conjunctivitis.
No human cases of Newcastle disease have occurred as a result of consuming poultry
products [317]. ND severely impacts the poultry industry worldwide because it causes sig-
nificant morbidity and mortality [318]. To control spreading, prophylactic and emergency
vaccination against ND is applied on a large scale in many countries. Various plant systems
have been used for NDV vaccine production, focused primarily on the expression of the F
and HN glycoproteins (Table 4).

Table 4. Plant-based candidate vaccines against Newcastle disease virus.

Antigen Production System
and Expression Level Immunogenicity References

Fusion (F) and
haemagglutinin-
neuraminidase (HN)
protein

Potato/stable transformation/
0.3–0.6 µg/mg of total leaf protein

Oral and intraperitoneal delivery of the
antigens elicited mucosal and systemic
immune response

[319]

Fusion (F)
Rice/stable transformation/
0.25–0.55 µg of purified NDV in 100 µg
of total soluble leaf or seed proteins

Intraperitoneally immunized mice with
crude protein extracts from transgenic
rice plants elicited specific antibodies

[320]

Fusion (F) Maize/stable transformation/
0.9–3% TSP

Orally immunized chicken developed
protective immune response [321]

Fusion (F) and hemagglutinin-
neuraminidase (HN)
proteins

0.5–0.8% of total seed protein
Mize/stable transformation

Induced specific immune response
after oral administration to chicken [322]

Fusion (F) and hemagglutinin-
neuraminidase (HN)
proteins

Transgenic Canola Seeds

Chickens immunized orally with
recombinant HN-F showed a
significant rise in specific and
hemagglutination inhibition
(HI) antibodies

[323]
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Table 4. Cont.

Antigen Production System
and Expression Level Immunogenicity References

F and HN epitopes
fused to Cucumber
mosaic virus (CMV)

N. benthamiana/CMV formed VLPs,
which served as carriers for display of
neutralizing epitopes of F and
HN/20–200 g of infected leaves

No data [324,325]

Hemagglutinin-
neuraminidase (HN) N. benthamiana/transient expression No data [326]

Hemagglutinin-
neuraminidase
protein

Transgenic N. tobaccum
0.069% of TSP

Orally immunized chickens developed
low titers of anti-HN serum IgG [327]

Ectodomain of
hemagglutinin-
neuraminidase
protein

Tobacco cell culture
0.2–0.4% of TSP

Mice receiving purified eHN protein
from transgenic tobacco BY-2 cells
produced specific anti-NDV antibodies

[19]

Table 4 shows that the main research efforts are aimed at creating an oral vaccine
against NDV that can be easily administered through food and can be stored long-term
under ambient conditions. Immunological studies with seed-based orally administrated
vaccines induced a robust immune response. Guerrero-Andrade et al. showed that 100%
of the chicken fed with transgenic maize expressing the F glycoprotein survived after a
lethal challenge with NDV [321]. These studies show the feasibility of edible vaccines for
veterinary application.

A few years back, Dow AgroSciences made a breakthrough in plant-based vaccines.
In 2016, they received the first FDA approval for the plant-derived injection application
vaccine against NDV, based on HN protein produced in an N. benthamiana cell culture [328].

14. Henipaviruses

Hendra virus (HeV) and Nipah virus (NiV) have recently emerged as zoonotic
pathogens affecting domestic animals (horses, pigs) with a documented spillover in hu-
mans, sometimes causing lethal disease [318,320]. Based on their genomic organization,
they are currently classified in the family Paramyxoviridae [329]. Fruit bats of the Pteropus
genus were confirmed as the main zoonotic hosts of Henipaviruses [330]. HeV was initially
identified in an outbreak in horses in Australia. NiV was subsequently discovered in an
outbreak in pigs in Malaysia [329]. Human cases have been observed after close contact
with infected animals (horses and pigs). Food-borne transmission was also reported in
people who consumed fruit or palm sap from containers contaminated by fruit bats [331].

HeV and NiV are single-stranded RNA, enveloped viruses. The Henipavirus genome
encodes six structural proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M),
fusion glycoprotein (F), attachment glycoprotein (G), and the polymerase protein (L) [332].
The F and G glycoproteins are the main immunogenic proteins and target for vaccine
development. Progress in the development of vaccines against the Nipah and Hendra
viruses was reported in a review article [333].

Currently, there is no published evidence suggesting the development of a vaccine
against Henipaviruses in plants, which presents PMF scientists with an opportunity to make
rapid progress in the development of vaccines against HeV and NiV in plants, following
the achievements of the plant-based vaccine against the Newcastle disease.

15. Concluding Remarks

The 21st Century has seen remarkable progress in the development of plant-based
vaccines against viral diseases. Although the vast majority of these are centered on aca-
demic development and are still at the level of pre-clinical trials in animal models, we are
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also witnessing the significant achievements of vendors such as Medicago Inc and Kentucky
Bioprocessing Inc, whose vaccine candidates against influenza and SARS-CoV-2 are likely
to be licensed next year. Several factors are contributing to the observed progress in plant-
based vaccine development. From a technical perspective, there is a shift from stable
expression of viral proteins in transgenic plants to transient expression in N. benthamiana.
The latter is much faster and can produce a decent yield of viral antigens within a week
after infiltrating plant leaf material with an Agrobacterium suspension containing the target
gene, offering the opportunity for a rapid response to the annual emergence of antigenically
novel influenza strains or unexpected pandemics. Another very important factor for the
current advancement of plant-based vaccines is the recent achievements in plant platforms
that not only express target antigens but also facilitate the assembly of VLPs. The advantage
of the plant-derived VLPs over simple expression of recombinant proteins in plants is that
the former captures the antigenic epitopes in their native conformation, which results
in enhanced immunogenicity and ultimately superior efficiency as a potential vaccine.
Apart from the above-mentioned technological factors, the potential success of a Medicago
plant-derived SARS-CoV-2 vaccine will accelerate the development of other plant vaccines
in general.

Fischer and Buyel 2020 [14] describe four factors that affect the selection of plant
expression systems: time-to-market factors; the amount of time needed for research and
development (R&D); scalability; and regulatory approval. Of the four, the time-to-market
factors are the biggest determinant in the selection process. In addition, while plants offer
an advantage during R&D (faster transient expression), the production upscaling of plant-
produced proteins is usually a challenge. However, the approval of the new plant-based
vaccines is likely to open new avenues for improved manufacturing.

The majority of the zoonotic viruses listed in this review disproportionally affect
developing countries. The development of new vaccines comes with a cost, which is
a challenge for resource-limited countries that need these vaccines most. Plant-based
vaccines carry the promise not only to be efficient in preventing zoonotic disease but also,
importantly, to be cost-efficient and affordable.

Sustainable long-term cooperation and partnerships with global organizations
(the WHO, the World Bank, and others) and governments must be established if plant
molecular farming is to become a successful mainstream platform for vaccine generation
and production.
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