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OBSERVATIONAL STUDY

Investigating the Association Between Dynamic 
Driving Pressure and Mortality in COVID-19-
Related Acute Respiratory Distress Syndrome: 
A Joint Modeling Approach Using Real-Time 
Continuously-Monitored Ventilation Data
IMPORTANCE AND OBJECTIVES: COVID-19-related acute respiratory dis-
tress syndrome (ARDS) is associated with high mortality and often necessitates 
invasive mechanical ventilation (IMV). Previous studies on non-COVID-19 ARDS 
have shown driving pressure to be robustly associated with ICU mortality; how-
ever, those studies relied on “static” driving pressure measured periodically and 
manually. As “continuous” automatically monitored driving pressure is becoming 
increasingly available and reliable with more advanced mechanical ventilators, 
we aimed to examine the effect of this “dynamic” driving pressure in COVID-19 
ARDS throughout the entire ventilation period.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective, observational 
study cohort study evaluates the association between driving pressure and ICU 
mortality in patients with concurrent COVID-19 and ARDS using multivariate joint 
modeling. The study cohort (n = 544) included all adult patients (≥ 18 yr) with 
COVID-19 ARDS between March 1, 2020, and April 30, 2021, on volume-control  
mode IMV for 12 hours or more in a Mass General Brigham, Boston, MA ICU.

MEASUREMENTS AND MAIN RESULTS: Of 544 included patients, 171 
(31.4%) died in the ICU. Increased dynamic ΔP was associated with increased 
risk in the hazard of ICU mortality (hazard ratio [HR] 1.035; 95% credible interval, 
1.004–1.069) after adjusting for other relevant dynamic respiratory biomarkers. 
A significant increase in risk in the hazard of death was found for every hour of 
exposure to high intensities of driving pressure (≥ 15 cm H2O) (HR 1.002; 95% 
credible interval 1.001–1.003).

CONCLUSIONS: Limiting patients’ exposure to high intensities of driving pres-
sure even while under lung-protective ventilation may represent a critical step in 
improving ICU survival in patients with COVID-19 ARDS. Time-series IMV data 
could be leveraged to enhance real-time monitoring and decision support to opti-
mize ventilation strategies at the bedside.

KEYWORDS: acute respiratory distress syndrome; COVID-19; electronic health 
records; mechanical ventilation; survival analysis

Over 4.9 million Americans were admitted to hospital due to the novel 
COVID-19 caused by the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) virus between August 2020 and June 2022 (1). 

Approximately 33% of hospitalized COVID-19 patients developed acute respi-
ratory distress syndrome (ARDS) (2), which often requires invasive mechanical 
ventilation (IMV). COVID-19 ARDS is associated with high mortality rates rang-
ing up to 40%, depending upon the wave in the pandemic and other risk factors 
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influencing the baseline hazard of death, including the 
availability of COVID-19 therapeutics proven to re-
duce mortality (2, 3). Several studies have reported on 
their preliminary strategies for the management of indi-
vidual ventilator parameters for patients with COVID-
19 ARDS (2, 4–6). There is substantial heterogeneity in 
ARDS, and the respiratory system mechanics of patients 
with ARDS, regardless of COVID-19 status, are broadly 
similar (7). Several studies have suggested that COVID-
19 ARDS presents unique clinical features: more signifi-
cant hypoxemia, higher lung compliance (5), and longer 
dependence on IMV (4). Recent literature supports the 
notion that COVID-19 ARDS requires lung-protective 
ventilation in a manner similar to non-COVID-19 
ARDS (8, 9), including low-tidal volume (VT) and low-
plateau pressure (PPLAT).

However, mortality in ARDS remains high despite the 
use of lung-protective ventilation. It has been suggested 
that driving pressure (ΔP, the ratio of tidal volume to res-
piratory system compliance), calculated as the PPLAT minus 
positive end-expiratory pressures (PEEPs), is strongly as-
sociated with survival (10). Using Bayesian joint models 
(11), Urner et al found each daily increment in driv-
ing pressure in non-COVID-19 ARDS to be associated 
with increased mortality risk (12). A gap in the literature 
relates to whether the strength of this association between 
time-varying ΔP and mortality persists in patients with 
the distinct phenotype of COVID-19 ARDS.

Traditionally, driving pressure is measured via a 
manual end-inspiratory hold maneuver, typically once 
or twice a day, and most studies investigating driving 
pressure consider only the variable measured in this 
form (10, 12–14). However, recent advances in me-
chanical ventilation technology have allowed for the 
automatic calculation of “dynamic” driving pressures 
measured continuously at the bedside in real-time 
using estimates of plateau pressure, although research 
using such data is lacking (15). High-volume and high-
velocity ventilation data, along with rich electronic 
health record (EHR) data, present a unique opportu-
nity to study the association of ventilator parameters 
with mortality at greater precision. A gap in the liter-
ature exists with respect to the time-varying ΔP and 
mortality relationship where ΔP is used at a more 
granular level than prior studies (hourly vs. daily mea-
surements of IMV parameters).

In this study, by leveraging high-resolution time-
series ventilator data and EHR data, we aimed to con-
tribute to transforming the practice of respiratory 
medicine to be more dynamic, precise, and personal-
ized. We used multivariate joint modeling of longitu-
dinal and survival data to investigate the association 
between dynamic driving pressure and ICU mortality 
in patients with concurrent COVID-19 and ARDS and 
examine the cumulative effect of driving pressure (11, 
16, 17). Compared with more traditional survival anal-
ysis methods such as the time-varying Cox model (18), 
joint modeling has been shown to produce less biased 
estimates of the associations of time-varying biomark-
ers and time-to-event outcomes, as well as increased 
power in estimating treatment effect (19–21). Joint 
Models account for informative censoring due to death 
during follow-up. Therefore, the association between a 
time-varying endogenous covariate and outcome can 
be measured without selection bias arising from miss-
ing values that are related to the outcome (in contrast 
to time-varying Cox models, which can only deal with 
exogenous time-varying covariates). We incorporated 
other relevant time-varying respiratory variables to 
disentangle the independent effects of each biomarker.

MATERIALS AND METHODS

Study Design and Patient Population

This study was conducted at the Mass General Brigham 
(MGB), an integrated healthcare delivery network 

 
KEY POINTS

Question: How is dynamic, continuously meas-
ured driving pressure associated with mortality in 
patients with concurrent COVID-19 and acute res-
piratory distress syndrome (ARDS)?

Findings: Our cohort study of 544 patients with 
concurrent COVID-19 and ARDS from the Mass 
General Brigham Hospital System finds dynamic 
driving pressure to be robustly associated with 
increased mortality risk after adjustment for rele-
vant dynamic respiratory biomarkers and patient 
characteristics.

Meaning: Continuously and automatically meas-
ured driving pressure data may be leveraged to 
enhance clinical decision support and optimize 
ventilation strategies in real time.
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located in Boston, MA. Our study cohort includes all 
adult ICU patients (≥ 18 yr) with COVID-19 ARDS 
between March 1, 2020, and April 30, 2021, on volume- 
control mode IMV for at least 12 hours. COVID-
19 diagnosis was based on a positive test result for 
SARS-CoV-2 by polymerase chain reaction clinical 
assay. ARDS diagnosis was based on the International 
Classification of Diseases, 10th Revision Clinical 
Modification (ICD-10-CM) code J80 (22). We manu-
ally validated the ARDS diagnosis for a random subset 
of 10% (54 patients) of our cohort according to the 
Berlin Criteria and found the positive predictive value 
of the ICD-10-CM code to be 96% (23). Patient dem-
ographic, clinical, and death data were collected from 
MGB’s EHR data repository. Data generated from clin-
ical devices (including IMV) at the patient’s bedside 
were collected at a 1-minute resolution. Ventilation 
data were collected from Hamilton-G5 and Nihon 
Kohden 550 mechanical ventilators (24, 25).

This study was performed in compliance with the 
World Medical Association Declaration of Helsinki 
on Ethical Principles for Medical Research Involving 
Human Subjects. The study, entitled “Improving Lung 
Protective Ventilation (ProLung) using EHR Data” was 
reviewed by and approved by the MGB institutional 
review board (IRB) (reference number: 2022P001683) 
on June 30, 2022. The IRB waived the requirement of 
consent for this study.

Procedures and Outcomes

Our primary outcome was the hazard of acute decom-
position in the ICU during IMV, that is, risk in the 
hazard of ICU mortality. Patients were followed from 
the initiation of IMV until death, discharge from the 
ICU, or liberation from IMV for more than 24 hours, 
whichever occurred first. These censoring events were 
treated as multiple competing risks in the joint models.

The independent variables tested as predictors con-
sisted of: 1) time-independent baseline covariates, 
including gender, race, age, body mass index (BMI), 
comorbidities, and the Charlson comorbidity index 
(CCI); and 2) time-dependent (longitudinal) covari-
ates, including driving pressure (cm H2O), respira-
tory rate (breaths /min), oxygen saturation (Spo2) (%), 
tidal volume per predicted body weight (VT/PBW) 
(mL/kg), Po2 to Fio2 ratio, Pco2 (mm Hg), and arte-
rial pH (the measured acid–base balance of the blood). 
Variables that were recorded multiple times every hour 

were down-sampled to the hourly mean to optimize 
the data for computation. We adjusted all analyses for 
baseline time-independent covariates. We report usage 
of dexamethasone and remdesivir, which are COVID-
19 therapies that have a proven mortality benefit. No 
usage of baricitinib was found in our cohort.

We calculate dynamic ΔP as the difference between 
dynamic PPLAT and measured PEEP. Dynamic PPLAT is 
computed every minute by the ventilator via a least 
squares fit method as outlined by Mojoli et al (15), 
which is measured at the end of inspiration when flow 
is at or close to zero and recorded for both mandatory 
and time-cycled breaths (26). In contrast, static PPLAT, 
per standard of care, is manually measured by respira-
tory therapists about once every 12 hours via an end-
inspiratory hold maneuver. Dynamic PPLAT has been 
reported to give a good estimation of the actual PPLAT 
(15). To verify that dynamic driving pressures reliably 
approximate static “gold-standard” driving pressures, 
we conducted a correlation analysis to measure the 
strength of the linear relationship between dynamic 
and manually measured static driving pressures.

Statistical Analysis

Patient Characteristics and Longitudinal Variables. 
Patient characteristics are described as proportions for 
categorical variables and median (sd) for continuous 
variables. In the descriptive analyses, p values for each 
variable were calculated for comparisons between dead 
and alive patient groups using the Wilcoxon rank-sum 
and Fisher exact tests, as appropriate.

Baseline Analysis Using Cox Proportional Hazard 
Models. To examine the basic relationships between 
baseline ΔP and ICU mortality, we used two types of fre-
quentist baseline measures. One was the mean value of 
the patient’s dynamic driving pressure on their first day 
on IMV, and the other was the mean value of first-day 
manually measured driving pressures, using the 98.9% 
(538/544) of patients who had both of these measures 
documented in the EHR. We tested that the assump-
tions of the Cox proportional hazard model were met 
(Appendix 1, http://links.lww.com/CCX/B301). Cox 
proportional hazard models were implemented using 
restricted cubic splines, to predict the relative hazard 
of death in ICU with 95% CIs. Additionally, stratified 
survival curves based on driving pressures at baseline 
were computed via the Kaplan-Meier estimator. The 
p values for the comparisons were calculated using a 
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log-rank (Mantel-Cox) test. For these survival curves, 
we stratified patients using a baseline ΔP cutoff of 
15 cm H2O as this has previously been suggested as an 
upper safety limit for patients with ARDS (27).

Joint Modeling Analysis. A Bayesian, multivariate 
joint modeling framework with shared random effects 
was used to estimate the association of patient-specific 
longitudinal outcome profiles, that is, dynamic ΔP and 
other longitudinal variables with ICU mortality. Our 
joint models use a Cox proportional hazard model for 
the survival subcomponent and linear-mixed effects 
models for each of the longitudinal variables (Appendix 
1, http://links.lww.com/CCX/B301).

Univariate Joint Modeling Analysis. To assess 
whether time-varying dynamic ΔP is associated with 
mortality in patients with concurrent COVID-19 and 
ARDS, we first constructed a simple, univariate joint 
model consisting of dynamic ΔP as the sole time-
varying variable and baseline patient characteris-
tics: gender, age, race, BMI, CCI, arterial pH, and PF 
ratio at entry. We used the same modeling approach 
to quantify the effect of cumulative exposure, that is, 
by estimating the association between the number of 
hours with potentially harmful exposure (ΔP ≥ 15 cm 
H2O) and ICU mortality.

Multivariate Joint Modeling Analysis. We used 
multivariate joint modeling to adjust the effect of time-
varying ΔP for other time-varying ventilation and 
gas-exchange variables as described in “Procedures 
and Outcomes.” Figure 1 visually demonstrates the 
two distinct functional forms of joint models that we 
explored in this study.

Model 1 is a standard, “value-only” joint model. 
In model 2, we explored the normalized area/cu-
mulative effects functional form, as a recent study 
suggested that a patient’s history of ΔP levels may be 
highly relevant to survival (6). We investigated this 
by incorporating ΔP data from previous time points 
(i.e., since the start of ventilation). The time-varying 
normalized cumulative effect of driving pressure is 
the integral or area under the subject-specific ΔP 
profile from zero to the current follow-up time t, 
divided by t. Effectively, this represents the average 
value of the subject-specific ΔP profile from time 0 
to t (Supplementary Equation 3, http://links.lww.
com/CCX/B301).

Goodness-of-fit of the multivariate joint models was 
evaluated using two metrics: the Deviance Information 

Criterion (DIC) (28), and Widely Applicable 
Information Criterion (WAIC) (29). Smaller values for 
DIC and WAIC indicate a better-fitting model. This 
article is reported according to the Strengthening the 
Reporting of Observational Studies in Epidemiology 
guidelines (30).

RESULTS

Demographic Characteristics of the Study 
Cohort

The final study cohort consisted of 544 patients with 
concurrent COVID-19 and ARDS with median age 
of 62 years (interquartile range, IQR, 51–70) and 184 
(33.8%) were women. Tables 1 and 2 present descrip-
tive summaries of patient characteristics and time-
varying respiratory biomarkers by ICU mortality 
status. The median number of days in the ICU and on 
IMV were 16 days (IQR, 10–25) and 15.4 days (IQR, 
8.9–24.2), respectively. Overall, 171 (31%) patients 
died in ICU, with the median age being 67 years (IQR, 
57–76 yr) and 50 (29.2%) were women (Table 1). 
Median ICU and ventilator time were higher in the 
survival group (17 and 15.8 d, respectively) compared 
with the deceased group (14 and 13.9 d, respectively) 
(Table 1). Older age, being of non-Hispanic White de-
scent, a higher CCI, having cardiovascular disease, and 
having hypertension were all significant risk factors for 
death.

Figure 1. Graphical representation of different ways to model the 
association between dynamic driving pressure and ICU mortality.

http://links.lww.com/CCX/B301
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TABLE 1.
Patient Characteristics by ICU Mortality Status

Variable All Patients (n = 544) Alive (n = 373) Dead (n = 171) p

Age, yr, mean (IQR) 62 (51–70) 59 (49–68) 67 (57–76) < 0.0001

Gender, n (%)

  Female 184 (33.8) 134 (35.9) 50 (29.2) 0.143

  Male 360 (66.2) 239 (64.1) 121 (70.8) 0.143

Race, n (%)

  White 233 (42.8) 149 (39.9) 84 (49.1) 0.05

  Black 75 (13.8) 51 (13.7) 24 (14.0) 0.894

  Asian 33 (6.1) 27 (7.2) 6 (3.5) 0.121

  Unknown/other 203 (37.3) 146 (39.1) 57 (33.3) 0.215

Ethnicity, n (%)

  Hispanic 156 (28.7) 118 (31.6) 38 (22.2) 0.025

  Non-Hispanic 321 (59.0) 211 (56.6) 110 (64.3) 0.092

  Unknown 67 (12.3) 44 (11.8) 23 (13.5) 0.577

Body mass index 29.6 (26.1–34.4) 29.3 (26.1–33.5) 30.5 (26–35) 0.265

Comorbidities, n (%)

  Chronic liver disease 62 (11.4) 46 (12.3) 16 (9.4) 0.383

  Chronic kidney disease 136 (25.0) 91 (24.4) 45 (26.3) 0.67

  Diabetes 153 (28.1) 97 (26) 56 (32.7) 0.123

  Cardiovascular disease 112 (20.6) 65 (17.4) 47 (27.5) 0.009

  Hypertension 232 (42.6) 143 (38.3) 89 (52) 0.003

  Charlson Comorbidity Index 0 (0–2) 0 (0–1) 0 (0–3) 0.002

  Sequential Organ Failure 
Assessment

8 (6–11) 8 (6–10) 9 (7–12) 0.003

Medications, n (%)

  Remdesivir 110 (20.2) 79 (21.2) 31 (18.1) 0.4904

  Dexamethasone 124 (22.8) 96 (25.7) 28 (16.4) 0.016

Time-varying variables

  Invasive mechanical ventilation 
duration

15.4 (8.9–24.2) 15.8 (9.9–25.4) 13.9 (8.6–21.8) 0.072

  Driving pressure 13.1 (11.0–16.7) 12.6 (10.5–15.2) 15.0 (11.9–20.0) < 0.001

  Plateau pressure 22.7 (19.0–26.3) 21.9 (17.9–25.8) 24.1 (20.3–28.0) < 0.001

  Positive end-expiratory pressures 10 (6–12) 9 (5–12) 10 (8–12) < 0.001

  Spo2 96.2 (94.4–99.0) 96.4 (94.7–98.1) 95.6 (94.0–97.6) < 0.001

  Respiratory rate 23.0 (18.1–28.0) 22.2 (18.1–27.0) 24.5 (18.4–30.0) < 0.001

  Tidal volume 360.0 (310.0–404.4) 366.5 (318.6–410.0) 340.1 (295.6–396.4) < 0.001

  Tidal volume per predicted body 
weight

5.9 (5.3–6.3) 5.9 (5.5–6.3) 5.7 (5.0–6.2) < 0.001

  PF ratio 200.0 (156.0–254.3) 215.0 (171.0–268.6) 175.0 (134.9–223.3) < 0.001

  Paco2 45.0 (39.0–51.0) 44.0 (39.0–50.0) 47.0 (41.0–54.0) < 0.001

  Arterial pH 7.39 (7.34–7.44) 7.40 (7.36–7.44) 7.37 (7.31–7.41) < 0.001

(Continued)
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Results of Baseline Analysis

The Cox proportional hazard model assumptions 
were tested and found to be valid (Appendix 1, 
http://links.lww.com/CCX/B301). The baseline 
analysis using Cox proportional hazard models 
found that baseline static and dynamic ΔP was as-
sociated with higher risk in the hazard of ICU mor-
tality (Fig. 2, A and C). Furthermore, patients with 
static or dynamic ΔP of at least 15 cm H2O at base-
line had significantly poorer survival compared 

with patients with baseline ΔP less than 15 cm H2O 
(Fig. 2, B and D).

Results of the Univariate Joint Modeling 
Analysis

Our univariate joint modeling analysis found that 
every 1 cm H2O increase in ΔP was associated with a 
1.079-fold increase in risk in the hazard of ICU mor-
tality during IMV (HR, 1.079 [95% credible interval, 
1.056–1.103]; p < 0.001). A 1-hour increase in exposure 

TABLE 2.
Results of Multivariate Joint Modelling Analysis

Δp Value Only Δp Normalized Area

Variable HR (95% CI) p HR (95% CI) p

Baseline variables

  Male 0.9 (0.516–1.577) 0.71 0.888 (0.527–1.523) 0.651

  Age (yr) 1.05 (1.037–1.065) < 0.001 1.051 (1.035–1.068) < 0.001

  Black (vs. White) 0.381 (0.213–0.636) 0.001 0.407 (0.231–0.695) < 0.001

  Asian (vs. White) 0.749 (0.272–1.765) 0.56 0.713 (0.266–1.574) 0.457

  Unknown/other race (vs. White) 1.12 (0.768–1.615) 0.561 1.146 (0.78–1.639) 0.478

  Body mass index 1.022 (0.997–1.048) 0.089 1.021 (0.992–1.047) 0.141

  Charlson Comorbidity Index 1.024 (0.962–1.088) 0.453 1.032 (0.975–1.092) 0.294

Time-varying variables

  Driving pressure (cm H2O) 1.035 (1.004–1.069) 0.021 NA NA

  Normalized area-driving pressure NA NA 1.032 (0.986–1.078) 0.177

  Spo2 (%) 0.82 (0.798–0.843) < 0.001 0.812 (0.789–0.839) < 0.001

  Respiratory rate (breaths/min) 1.014 (1.003–1.032) 0.008 1.02 (1.011–1.029) < 0.001

  Tidal volume/predicted body weight (mL/kg) 1.019 (0.933–1.106) 0.627 1.022 (0.957–1.08) 0.497

  Pao2/Fio2 ratio (mm Hg) 0.992 (0.989–0.996) < 0.001 0.992 (0.988–0.995) < 0.001

  Paco2 (mm Hg) 1.021 (1.007–1.039) 0.001 1.027 (1.004–1.045) 0.003

  Arterial pHa 0.67 (0.6–0.759) < 0.001 0.7 (0.605–0.804) < 0.001

HR = hazard ratio, NA = not applicable.
aThe HR for arterial pH is the adjusted HR associated with a 1 sd increment in the variable (0.075).

Variable All Patients (n = 544) Alive (n = 373) Dead (n = 171) p

Outcomes, d, mean (IQR)

  ICU LOS 16 (10–25) 17 (10–26) 14 (9–22) 0.006

  Inpatient LOS 18 (12–27) 19 (12–29) 16 (10–24) 0.003

IQR = interquartile range, LOS = lengths of stay.

TABLE 1. (Continued)
Patient Characteristics by ICU Mortality Status

http://links.lww.com/CCX/B301
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to ΔP greater than or equal to 15 cm H2O was found to 
be associated with a 1.002-fold increase in the risk in 
the hazard of ICU mortality (HR, 1.002 [95% credible 
interval, 1.001–1.003]; p < 0.001) (Table 2).

Results of the Multivariate Joint Models

In the first standard (“value-only”) multivariate joint 
model adjusting for six other time-varying variables, 
we observed ΔP to be strongly associated with the 
hazard of ICU mortality (HR, 1.035 [95% credible in-
terval, 1.004–1.069]; p = 0.021) (Table 2). Increased 
Spo2 (HR, 0.82 [95% credible interval, 0.798–0.843]; 
p < 0.001), Pao2/Fio2 ratio (HR, 0.992 [95% cred-
ible interval, 0.989–0.996]; p < 0.001), and arterial 
pH (HR, 0.67 [95% credible interval, 0.6–0.759]; p < 
0.001) were associated with a lower risk in the hazard 
of ICU mortality. On the other hand, respiratory rate 
(HR, 1.009 [95% credible interval, 1.002–1.016]; p = 

0.016) and Paco2 (HR, 1.038 [95% credible interval, 
1.011–1.065]; p = 0.008) were independently associ-
ated with an increased hazard of ICU mortality. VT/
PBW (HR, 1.019 [95% credible interval, 0.933–1.106]; 
p = 0.627) was not found to be strongly associated with 
the hazard of ICU mortality in the multivariate model. 
In model 2, the normalized area of ΔP (HR, 1.032 [95% 
credible interval, 0.986–1.078]; p = 0.117) has a small 
effect (Table 2).

We compared model fit of the joint models based on 
measures of model fit (WAIC and DIC). Both metrics 
indicate that model 1 has the best predictive perfor-
mance (Supplementary Table 2, http://links.lww.com/
CCX/B301).

DISCUSSION

Through a multivariate joint modeling framework, 
we were able to combine survival data with real-time 

Figure 2. Association of ICU mortality with dynamic and static driving pressures at baseline. A, Unadjusted relationship between 
baseline static driving pressure (ΔP) and relative hazard of death in the ICU, estimated using a Cox proportional hazards model. B, 
Differences in ICU survival probability stratified by static ΔP levels greater or less than 15 cm H2O at baseline. C, Unadjusted relationship 
between baseline dynamic ΔP and relative hazard of death in the ICU, estimated using a Cox proportional hazards model. D, Differences 
in ICU survival probability stratified by dynamic ΔP levels greater or less than 15 cm H2O at baseline. HR = hazard ratio.

http://links.lww.com/CCX/B301
http://links.lww.com/CCX/B301


Tan et al

8     www.ccejournal.org March 2024 • Volume 6 • Number 3

ventilation and gas-exchange information from intu-
bated patients with concurrent COVID-19 and ARDS. 
Our approach builds on previous studies linking base-
line ΔP with the hazard of ICU mortality in patients 
with non-COVID-19 ARDS by using a more powerful 
multivariate approach and by incorporating dynamic 
data at higher resolutions. Similar to previous findings 
in non-COVID-19 ARDS, our study finds ΔP to be a 
vital IMV parameter to monitor in patients with con-
current COVID-19 and ARDS which, with modern 
ventilation technologies can be more conveniently and 
consistently done in a continuous, automatic monitor-
ing mode rather than as manual, spot static measure-
ments. Use of this dynamic ΔP can allow clinicians to 
more promptly detect and address the current status of 
patients’ ΔP levels.

In this study, we observed a cumulative effect over 
time; every additional hour of exposure to potentially 
harmful levels of ΔP (≥ 15 cm H2O) was associated with 
an increased risk in the hazard of death in the ICU. 
Our standard, multivariate joint model found a 1 cm 
H2O increase in ΔP to be independently associated 
with a 1.035-fold increase in the hazard of ICU death 
in patients with concurrent COVID-19 and ARDS 
after adjustment for other relevant time-varying venti-
lation and gas-exchange variables. If we normalize this 
1.035-fold hazard ratio (HR) from 1 cm H2O to 7 cm 
H2O (i.e., exp [7*log(1.035)] = 1.11), we find that this 
is similar to the 1.27 relative risk reported by Amato et 
al (10). This validation increases our confidence that 
our models correctly estimated the strength of the 
association.

Tension pneumothorax is a rare, life-threatening 
ARDS complication resulting in an alveolar rupture 
potentially due to increased ΔP (31–33). Tension 
pneumothorax is a critical target for early identifi-
cation by dynamic clinical decision support (CDS) 
tools as it is a potential cause of abrupt decompensa-
tion if not intervened upon (32, 33). We observed a 
104-fold increase in the hazard of ICU death, which 
makes sense from the literature where we see a 39% 
mortality rate for patients with ARDS compared with 
a 91% mortality rate with for patients with tension 
pneumothorax (2, 32). These patients require imme-
diate intervention. The rarity of the tension pneumo-
thorax event, both in terms of number of patients, but 
also in terms of how often the signal shows up within 
individual patients leaves us with a small sample size 

to work with. Although small sample size is problem-
atic for frequentist statistics, our Bayesian joint models 
could potentially have smaller credible intervals than 
what is reported here with the selection of more appro-
priate priors (34). Computerized CDS interventions or 
predictive tools aiming to reduce patients’ exposures 
to high levels of ΔP may be augmented by considering 
the dynamic ΔP value at the current time point.

Paco2 and measured respiratory rate were found to 
be independently associated with increased mortality 
risk; while an increase in Spo2, Pao2/Fio2, and arterial 
pH were associated with decreased risk of ICU mor-
tality. After adjusting for ΔP, tidal volume per pre-
dicted body weight was not found to be significantly 
associated with mortality. Given that there was high 
adherence to lung-protective ventilation (mean VT/
PBW ~5.9) in patients with concurrent COVID-19 
and ARDS in this study, this is not unexpected.

Increased adoption of modern ventilators capable of 
dynamically measuring ΔP presents new opportunities 
for the development of interventions, strategies, and 
tools that operate in real time. For instance, the devel-
opment of a tool that can accurately forecast a patient’s 
ΔP at future timepoints and make clinical recommen-
dations based on this predicted trajectory may be clin-
ically valuable.

Our study has a few important limitations. 
Although we manually validated 10% of COVID-
19 ARDS cohort as meeting the criteria for ARDS 
according to the Berlin Criteria (23), the remaining 
patients were identified with ARDS using ICD-
10-CM codes. ICD-10-CM codes may not be com-
pletely sensitive and specific, as has been seen with 
ARDS which is often underdiagnosed for this reason 
(35). Applying looser criterion dropping the require-
ment for ICD-10-CM code J80 to be included but 
necessitating a PF ratio less than 300 mm Hg and 
a measured PEEP greater than equals to 5 cm H2O 
yielded only 27 additional potential patients, of 
which 6 decompensated in the ICU, to consider for 
inclusion in the cohort (36). A more sophisticated 
automated search strategy to identify ARDS patients 
per the Berlin Criteria could be developed to carry 
out such a task in a future study. A secondary lim-
itation is that this study was conducted solely on 
patients within a single-healthcare system (although 
encompassing different hospitals within this system); 
differences in clinical protocols and devices with 
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other healthcare systems may limit generalizability 
of our findings. Replication of our methods using pa-
tient cohorts from other hospitals, and with larger 
sample sizes will be valuable in strengthening the 
findings of this study. Additionally, the data used in 
this study are from nearer the start of the pandemic, 
reflecting the virus’ morphology and characteris-
tics closer to its original state. Further studies need 
to be conducted to validate the results of this study 
in emerging COVID-19 variants and potentially in 
non-COVID-19 ARDS cohorts as well. Future stud-
ies may also leverage more sophisticated joint mod-
els; for example, a weighted cumulative effects model 
wherein values of ΔP are weighed differently across 
different time points, for example, more recent values 
of ΔP are given differentially greater weighting (37). 
Or, investigate the potential of these ΔP-based joint 
models for dynamic, patient-level survival predic-
tion (38).

CONCLUSIONS

ΔP is a critical parameter to monitor in intubated 
patients with COVID-19 ARDS. Cumulative exposure 
to higher intensities of ΔP (≥ 15 cm H2O) is harmful 
and should be limited if possible. To gain a more com-
prehensive monitoring of a COVID-19 ARDS patient’s 
respiratory condition, it would be beneficial to con-
sider the value of dynamic ΔP at a given time point. 
Strategies or interventions that can harness the power 
of high-granularity data integration from real-time 
ventilator physiology data monitoring at the bedside 
may help limit exposure to high ΔP levels linked to 
mortality.
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