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Globally, it is estimated there are more than 2.2 billion visually impaired

people. Visual diseases such as retinitis pigmentosa, age-related macular

degeneration, glaucoma, and optic neuritis can cause irreversible profound

vision loss. Many groups have investigated different approaches such as

microelectronic prostheses, optogenetics, stem cell therapy, and gene

therapy to restore vision. However, these methods have some limitations

such as invasive implantation surgery and unknown long-term risk of genetic

manipulation. In addition to the safety of ultrasound as a medical imaging

modality, ultrasound stimulation can be a viable non-invasive alternative

approach for the sight restoration because of its ability to non-invasively

control neuronal activities. Indeed, recent studies have demonstrated

ultrasound stimulation can successfully modulate retinal/brain neuronal

activities without causing any damage to the nerve cells. Superior penetration

depth and high spatial resolution of focused ultrasound can open a new

avenue in neuromodulation researches. This review summarizes the latest

research results about neural responses to ultrasound stimulation. Also, this

work provides an overview of technical viewpoints in the future design

of a miniaturized ultrasound transducer for a non-invasive acoustic visual

prosthesis for non-surgical and painless restoration of vision.

KEYWORDS

ultrasound stimulation, neuromodulation, artificial vision, vision restoration, visual
prosthesis

Introduction

Permanent blindness can be caused by diverse visual diseases such as retinitis
pigmentosa (Yue et al., 2016), age-related macular degeneration (Jackson et al., 2002),
and optic neuritis (Toosy et al., 2014). Although these diseases are incurable (Lo
et al., 2020), the implantation of visual prostheses is one of the available options
for vision restoration (Shepherd et al., 2013; Fernandez, 2018; Im and Kim, 2020;
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Kim et al., 2022). Recently, electrical stimulation is used for the
activation of neurons in the retina, optic nerve, lateral geniculate
nucleus, and visual cortex. For example, Argus II (Humayun
et al., 2009; Farvardin et al., 2018), Alpha IMA/AMS (Zrenner
et al., 2011; Stingl et al., 2015), and Orion (Beauchamp et al.,
2020) have been successfully implanted onto/underneath the
human retina or at the visual cortex, respectively; and they
have shown clinically promising results. However, there are
still several challenges to be overcome for more useful visual
prostheses. Those issues include slow perception of artificial
vision, limited numbers of pixels (i.e., electrodes), invasiveness
of microelectrodes, and so on.

Among those issues, the invasive implantation requires
considerable surgical costs and may show surgical side effects.
Many efforts have recently been made to implement non-
invasive visual prostheses, including the investigation of
optogenetics (Barrett et al., 2014), photoswitches (Tochitsky
et al., 2016), and artificial opsins (Park et al., 2018; Berry et al.,
2019). In the past decade, ultrasound-based neuromodulation
in the brain and peripheral nervous system has gathered huge
attention due to its non-invasiveness, deep penetration power
through the skull with minimal neural tissue damage (Lee
et al., 2016), and sub-mm focusing capability (Kim et al., 2021).
Ultrasound has long been used for both diagnostic imaging
(Wells, 2006) and therapeutic treatment (Steiss and McCauley,
2004) including cancer tissue destruction (Hsiao et al., 2016),
proving its safety. In recent years, ultrasound stimulation
technology (UST) has been used for neuromodulation of the
nerve cells of the retina (Yue et al., 2016; Jiang et al., 2019; Lo
et al., 2020) and of the visual cortex (Lee et al., 2016; Lu et al.,
2021). The purpose of the present study is to overview recent
studies regarding UST aiming for vision restoration as well as
to discuss future perspectives on the development of acoustic
visual prostheses.

Working principle of ultrasound
stimulation

The application of ultrasound can make the following
three physical events: (1) Increase in temperature, (2) Bubble
formation and cavitation, and (3) Acoustic radiation force
(Yoo et al., 2022). It has been known that neural activities
can be induced by the aforementioned physical changes
(O’Brien, 2007; Tyler et al., 2008; Plaksin et al., 2016). First,
it had been demonstrated that high-intensity (>1 W/cm2)
ultrasound can evoke action potentials in peripheral neuronal
cells due to the increased excitability at higher temperature
(Figure 1A1; Tsui et al., 2005; Yoo et al., 2022). Because
too much heat damages tissue by protein denaturation and
decreases synaptic transmission (Dalecki, 2004; O’Brien, 2007),
low-intensity (<500 mW/cm2) ultrasound had been tested for
neuromodulation without hyperthermia effect (Dalecki, 2004;

O’Brien, 2007). Interestingly, the neural activities were also
modulated even with a minimal temperature rise, making the
thermal mechanism less convincing.

Second, cavitation is a non-thermal effect caused by
ultrasound (Figure 1A2), which directly modulates ion channels
as well as the plasma membrane for neuromodulation (Fomenko
et al., 2018). Cavitation makes gas bubbles forming, oscillating,
and possibly collapsing within the tissue, resulting in stimulation
of action potentials and synaptic transmission by deforming the
bilayer lipid membrane (Krasovitski et al., 2011). The cavitation
can happen by ultrasound waves at low frequency (1–3 MHz);
however, acoustic pulses at higher frequencies (>4 MHz) are
difficult to be used because oscillations in bubbles are difficult
to be maintained during cavitation (Menz et al., 2019).

Lastly, acoustic radiation force is the most widely
accepted potential physical mechanism of ultrasound-
based neuromodulation (Figure 1A3). The mechanical
force generated by steady acoustic pressure on the target neuron
stretches the cell membrane and results in conformation and
deformation of mechanosensitive ion channels in the cell
membrane (Fomenko et al., 2018; Menz et al., 2019; Qian et al.,
2022).

Mechanosensitive ion channels are transmembrane proteins
that can detect and respond to mechanical stimuli; they can act
as mechanosensitive nanovalve and provide a neuronal response
to microbubbles generated by applied ultrasound (Figure 1B).
Stretch-sensitive channels, displacement-sensitive channels, and
shear stress-sensitive ion channels are commonly recognized
as mechanosensitive ion channels (Morris, 1990). When the
ultrasound is applied, mechanosensitive proteins undergo a
conformational change that stimulates ion channels (Johns,
2002; Sukharev and Corey, 2004). Several earlier studies have
focused on the significance of various mechanosensitive ion
channels in various types of neurons (Menz et al., 2017; Ye
et al., 2018; Wang et al., 2020; Yoo et al., 2022). Ultrasound
has recently been used to trigger mechanosensitive K+, Ca2+,
and Na+ channels that are found in the retina and brain
(Maingret et al., 1999; Kubanek et al., 2016; Sorum et al., 2021).
Those mechanosensitive proteins include MEC-4 (Kubanek
et al., 2018), TRPP1/2 (Duque et al., 2022), TRPV1 (Yang
et al., 2020), Piezo 1 (Qiu et al., 2019a), MscL (Ye et al.,
2018), TRAAK (Sorum et al., 2021), and the K2p family (Zhao
et al., 2017). Although it has not been fully understood, those
mechanosensitive components are believed to play a critical role
in neuromodulation using UST (Ye et al., 2018). To improve
cell-type specificity, sonogenetics is also recently introduced
(Ibsen et al., 2015; Qiu et al., 2019b; Yoo et al., 2022). The
sonogenetics approach is a combination of ultrasound-based
neuromodulation with mechanosensitive channel proteins,
which can add cell type-specificity to conventional UST.

In addition to the direct activation of mechanosensitive
ion channels, voltage-gated ion channels can be indirectly
activated by ultrasound stimulation. For example, piezoelectric
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FIGURE 1

Schematics showing the ultrasound stimulation mechanism and ultrasound stimulation methods. (A) Physical mechanisms of ultrasound-based
excitation on neurons. Biophysical effects of ultrasound such as (1) Temperature rise, (2) Bubble formation and cavitation, and (3) Mechanical
force. Adapted from Yoo et al. (2022). (B) Microbubble-assisted ultrasound stimulation of mechanosensitive channels. Adapted from Rivnay
et al. (2017). (C) Piezoelectric nanoparticle-assisted ultrasound stimulation of voltage-sensitive ion channel. Adapted from Rivnay et al. (2017).

nanoparticles stimulated by external ultrasound can generate
electrical charges in the target tissues, activating voltage-gated
ion channels for neuromodulation (Figure 1C). A previous
study demonstrated piezoelectric stimulation induces Ca2+

influx that helps in neuronal stimulation (Marino et al., 2015).
This indirect electrical stimulation assisted by piezoelectric
nanoparticles can serve as nano-transducers at both tissue
and cell levels (Marino et al., 2017; Rivnay et al., 2017;
Cafarelli et al., 2021). Earlier studies have used boron nitride
nanotubes (BNNTs), barium titanate nanoparticles (BTNPs),
zinc oxide (ZnO) nanowires, and polyvinylidene fluoride-
trifluoroethylene (PVDF- TrFE) as piezoelectric nanoparticles
(Cafarelli et al., 2021). However, in vivo proof of the feasibility
and efficacy of piezoelectric nanoparticles-based ultrasound
therapy for vision restoration has yet to be demonstrated.
Also, more in-depth studies may be required to explore
any potential toxicity and long-term biocompatibilities of

piezoelectric nanoparticles (Cafarelli et al., 2021). For instance,
piezoelectric nanoparticles such as lead zirconate titanate (PZT)
are less biocompatible due to the lead element but further,
PZT was made more biocompatible by treating its surface with
titanium (Sakai et al., 2006).

Ultrasound stimulation of retina
and visual cortex

Nowadays, low-intensity focused ultrasound (LIFUS)
becomes widely used as a non-thermal, non-invasive approach
for generating neuromodulation toward vision restoration
(Baek et al., 2017; Fomenko et al., 2018; Jiang et al., 2018, 2019;
Yuan et al., 2019). It has been repeatedly demonstrated that
FUS can effectively stimulate the neurons in vitro (Menz et al.,
2017; Cafarelli et al., 2021), ex vivo (Blackmore et al., 2019;
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Menz et al., 2019; Sarica et al., 2022), and in vivo (Naor et al.,
2012; Lee et al., 2015). For the vision restoration purpose, an
acoustic retinal prosthesis (ARP) had been proposed for the first
time by demonstrating a FUS neurostimulation of the retinal
cells in anesthetized wild-type rats (Naor et al., 2012). The ARP
consists of an ultrasound phased array and an external camera
with an image processor, connected with the cornea via an
acoustic coupling component, to transmit acoustic images onto
the retina. Later, a high frequency (43 MHz) ultrasound was
used for stimulation of the salamander retina which generates
high spatiotemporal resolution and stable visual responses
(Menz et al., 2013). The acoustic pulses focused on target cells
produced spiking activities like both ON and OFF types of
retinal ganglion cells (RGCs) with temporal precision similar
to the visual responses. Their spatial resolution was ∼100 µm
but higher frequency ultrasound is expected to achieve smaller
activation; however, it may damage lens tissues by generating
heat. In another study, the responsiveness of RGCs in the rodent
retinas to low frequency (2.25 MHz) FUS was systematically
investigated (Jiang et al., 2018). Recently, RGC activities
were modulated with even lower US frequency (1 MHz) at
low-intensity (0.5 W/cm2) (Zhuo et al., 2022). The responses
of RGCs greatly varied within each cell type as a function of
different ultrasound intensities, suggesting neurophysiological
properties of RGCs plays an important role in ultrasound
responses. Also, the responses to ultrasound stimulation were
not the same as those to light stimulation, implying some
limitations for high-quality artificial vision. In the work of Jiang
et al. (2018), double burst responses to ultrasound stimulation
were observed; the latencies of second bursts were comparable
to those of the delayed bursts that have been observed in
electrical responses (Im and Fried, 2015; Im et al., 2018; Lee
and Im, 2019; Kang et al., 2021). This similar temporal property
suggests both ultrasound and electric stimulation may share
common RGC activation mechanism(s). More recently, in vivo
stimulation of blind rats’ retina using a 3.1 MHz spherically
focused single-element transducer was reported for the first
time (Qian et al., 2022). The ultrasound stimulation of the
retina in spatial resolution of 250 µm evoked neural signals in
the visual cortex (Figure 2A).

Different areas of retinal tissue can be simultaneously
stimulated using a multiple-focus ultrasound transducer array
(Li et al., 2018). For easy implementation of the ARP, another
study proposed a flexible wearable contact lens transducer array
that covers the entire pupil, enabling multi-depth stimulation
(Gao et al., 2017). The multi-focused phased array transducers
can be worn like a contact lens to the external surface of the
eyeball. In the simulation study, it has been estimated that
acoustic stimulation at 2.5 MHz can stimulate multiple points
in the retina with ∼1.3 mm lateral resolution (Gao et al.,
2017). But, there was an issue limiting the application of this
approach: the lens tissue in the eyeball absorbs ultrasound
energy which further elevates the temperature at the treatment

site that can be harmful to the eye. To solve this issue, a
racing array transducer similar to a contact lens was proposed
for the development of ultrasound retinal stimulation (Yu
et al., 2019). The racing array transducer was composed of
an array of transducer elements aligned on a concave surface
and the center part of the transducer was hollow. In the
racing array transducer approach (Figure 2B), the ultrasound
absorption in the lens was minimized by directly applying the
ultrasound to retina tissue without passing through the lens
tissue, thereby avoiding retinal damage due to the potential
heating. For a wide coverage of the visual field, a large flexible
2D matrix form of a capacitive micromachined ultrasonic
transducer (CMUT) array can be one of the promising
candidate systems (Tyler et al., 2018). The CMUT also has
advantages of high temporal resolution, reduced size of the
focal spot sidelobes, as well as easy monolithic integration with
microelectronics.

Ultrasound stimulation technology can be applied to
not only the retina but also the visual cortex (Ghezzi,
2015; Kim et al., 2015; Naor et al., 2016; Lu et al.,
2021). For instance, ultrasound was successfully applied
transcranially to the primary visual cortex of sheep, generating
electroencephalographic potentials associated with ultrasound
stimulation (Lee et al., 2016). The transcranial focused
ultrasound (tFUS) approach is known to be safe and
effective for transient neuromodulation (Di Biase et al., 2019).
Low-intensity tFUS has elicited blood-oxygen-level-dependent
(BOLD) responses in the human primary visual cortex and
associated visual areas in the visual cortex, which was correlated
with the perception of phosphenes (Lee et al., 2016). The on-
site acoustic intensity and spatial resolution of the ultrasonic
treatment were estimated using a retrospective numerical
simulation of acoustic wave propagation through the skull
(Figure 2C). While ultrasound has to penetrate the porous skull
in the case of the cortical stimulation, the ultrasound wave for
the retinal stimulation passes through a clear homogenous soft
medium such as aqueous humor. This technically means that
the retinal stimulation has benefits to use the non-invasiveness
because the ultrasound energy is less attenuated and the pathway
of the ultrasound wave can be well predictable to make higher
spatiotemporal focal spots. In contrast, the stimulation of intact
visual cortex may have advantages over the stimulation of
degenerate retina which is known to have significant remodeling
(Jones et al., 2016).

In previous studies, only normal animals and humans with
no vision impairment were evaluated (Legon et al., 2018; Di
Biase et al., 2019). It was quite recent that tFUS stimulation was
tested to evoke neuronal activities of the visual cortices of both
normal and blind rats (Lu et al., 2021). Another study compared
responses to ultrasound stimulation using both Long Evans (LE)
and Royal College of Surgeon (RCS) rats (Qian et al., 2022).
Intriguingly, RCS (blind) rats showed much bigger response
onset latencies and considerably stronger responses than those
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FIGURE 2

Focused ultrasound treatment for visual restoration. (A) Retinal neurons were excited by ultrasound waves which lead to the generation of the
neural signal. These signals are transmitted to the brain via the optic nerve and the brain activity is recorded from the visual cortex or the
superior colliculus. Adapted from Qian et al. (2022). (B) The circular racing array device for ultrasonic stimulation. Adapted from Yu et al. (2019).
(C) In simulated acoustic intensity profiles, the acoustic focus was effectively projected to the targeted stimulatory site localized in the calcarine
fissure (a), and acoustic energy was delivered to the visual cortex (b). Adapted from Lee et al. (2016).

of LE (normally sighted) rats, probably due to prolonged visual
deprivation.

Although tFUS has been used to modulate neuronal activity
deep in the brain (Tufail et al., 2011; Legon et al., 2014, 2018; Di
Biase et al., 2019; Lu et al., 2021), these approaches have some
limitations such as restricted to low-frequency stimulation, low

spatial resolution (>3 mm), and no cell-type selectivity. To
overcome these issues, sonogenetics approach was explored
(Ibsen et al., 2015). For example, a recent sonogenetics study
expressed mechanosensitive ion channels (MscL) in the primary
visual cortex of rodents; they achieved high spatial (∼100 µm)
and temporal (<50 ms) resolution (Cadoni et al., 2021). It has
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been known that the activation of 100 µm area in diameter
would result in the restored visual acuity of 20/400 (Palanker
et al., 2020). The increased sensitivity of neuronal cells to
UST was observed by heterogeneously expressed MscL, which
increases Ca2+ influx (Cadoni et al., 2021). Considering these
results, the sonogenetic strategy may open a new door for the
application of engineered mechanosensitive channels for vision
restoration in blind patients.

Issues to be addressed for the
development of successful
acoustic visual prostheses

Retinal UST studies (Naor et al., 2012; Qian et al., 2022)
showed a spatial resolution similar to that of the Argus
II (electrical stimulation system), the first and only FDA
approved retinal prostheses. Despite recent promising
results of the ultrasound in vision restoration studies
(Menz et al., 2017; Lu et al., 2021; Rousou et al., 2021),
several issues need to be addressed further for the clinical
success of acoustic visual prostheses. First, the mechanism of
neuromodulation of ultrasound stimulation should be more
comprehensively understood. In particular, it is unclear whether
the neuromodulation effect of ultrasound is universal or limited
to specific cell types as well as whether the cellular compartment
responding to ultrasound is existing in the degenerate retinas
(Lo et al., 2020). If the underlying mechanism is revealed, the
ultrasound stimulation conditions (e.g., frequency, therapy
duration, duty cycle, and intensity) can be further optimized
to efficiently modulate neuronal activities and/or enhance
spatiotemporal resolution. For example, it has been known
that the physical effect varies with changes in acoustic
frequency: cavitation decreases with increasing frequency, and
acoustic radiation force increases with increasing frequency
(Fan et al., 2021).

Second, additional studies are essential to determine the
long-term reliability and/or safety of repetitive application
of ultrasonic stimulation. To date, it has been reported
that repeated application of ultrasound for 36–48 h did not
alter fine membrane structures (Tyler et al., 2008). However,
according to the FDA safety guidelines, the acoustic intensity
on the eye should be less than 50 mW/cm2, which is
substantially lower than the safety threshold for other organs
(720 mW/cm2) (Leary et al., 2008). Therefore, long-term
mechanical damages due to continuous repetitive stimulation
for dynamic artificial vision need to be additionally investigated.
Also, the elevation of temperature can be unsafe for the
eye. Typically, ultrasound transducers consume high power;
therefore, future ultrasound-based visual prostheses must enable
low-power neuromodulation not only for the light-weight
batteries but also for less heat generation. Several recent

attempts have provided some solutions for the power issue with
the wireless energy transfer such as ultrasonic power delivery
(Jiang et al., 2022).

Third, although all the parts of the LIFUS system can be
mountable on the eye with wireless power transfer, further
miniaturization of the whole UST system would be necessary
because the size of the external stimulator is highly dependent
on the stimulating power. For example, in the case of the
high intensity focused ultrasound (HIFUS) system, which needs
a high voltage power supply to generate high pressure from
an ultrasonic transducer, additional electronics such as power
amplifiers may hinder the implementation of the wearable
device size. However, technological advances for increased
energy efficiency in transducers, wireless power transfer, and
batteries are all expected to not only reduce the size of
external stimulators but also lengthen operating hours. Indeed,
recent publications have demonstrated a CMUT array with
monolithically integrated circuits can be chronically implantable
even on a rat (Seok et al., 2021a,b). A 2D ultrasonic transducer
array system would be preferred to create multi-focused patterns
of activities rather than a single transducer with a raster
scanning (Lo et al., 2020), which requires lots of extra bulky
moving components.

Conclusion

Thanks to the non-invasiveness, UST has a potential
to be a burgeoning field in neural prosthetics. Ultrasound
approaches are still in their early stages, and an understanding of
interaction with cells/tissues will be important for its successful
advancement in the future. Both animal and human studies
affirm ultrasound neuromodulation can be helpful for simple
and non-invasive interference of impaired visual functions
(Lee et al., 2016; Qian et al., 2022). Despite the promising
feasibility results, many questions regarding the technological
framework of the UST are still unanswered. Most importantly,
the working principle behind the biological transduction of
ultrasound is yet to be completely understood whether related
to particular cell types. There are not many reports about in vivo
demonstration of vision restoration. However, due to its non-
invasiveness and potential for high-resolution stimulation, UST
can be widely preferred. It is further expected that the use of
engineered neuronal cells with mechanosensitive ion channels
would provide high spatiotemporal resolution. Future research
work in the abovementioned areas is needed to make the UST to
be clinically applicable in blind patients.
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