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Abstract 

Exposure to arsenic affects millions of people globally. Changes in the epigenome may be involved in pathways linking arsenic to 
health or serve as biomarkers of exposure. This study investigated associations between prenatal and early-life arsenic exposure and 
epigenetic age acceleration (EAA) in adults, a biomarker of morbidity and mortality. DNA methylation was measured in peripheral 
blood mononuclear cells (PBMCs) and buccal cells from 40 adults (median age = 49 years) in Chile with and without high prenatal and 
early-life arsenic exposure. EAA was calculated using the Horvath, Hannum, PhenoAge, skin and blood, GrimAge, and DNA methylation 
telomere length clocks. We evaluated associations between arsenic exposure and EAA using robust linear models. Participants classified 
as with and without arsenic exposure had a median drinking water arsenic concentration at birth of 555 and 2 μg/l, respectively. In 
PBMCs, adjusting for sex and smoking, exposure was associated with a 6-year PhenoAge acceleration [B (95% CI) = 6.01 (2.60, 9.42)]. 
After adjusting for cell-type composition, we found positive associations with Hannum EAA [B (95% CI) = 3.11 (0.13, 6.10)], skin and 
blood EAA [B (95% CI) = 1.77 (0.51, 3.03)], and extrinsic EAA [B (95% CI) = 4.90 (1.22, 8.57)]. The association with PhenoAge acceleration 
in buccal cells was positive but not statistically significant [B (95% CI) = 4.88 (−1.60, 11.36)]. Arsenic exposure limited to early-life stages 
may be associated with biological aging in adulthood. Future research may provide information on how EAA programmed in early life 
is related to health.
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Introduction
Arsenic exposure through drinking water is an ongoing global 
public health concern with >200 million people exposed to levels 
above the World Health Organization (WHO) guideline of 10 μg/l 
[1]. Arsenic is a human toxicant and carcinogen and increases 
the risk of adverse health outcomes, including cardiovascular 
disease, diabetes, impaired neurodevelopment, and cancer [2]. 
Elevated disease risk persists decades after exposure has ended 
or been reduced, suggesting that changes in the epigenome may 
be involved in biological pathways linking arsenic to health [3]. 
Arsenic has been associated with changes in global, regional, 
and locus-specific DNA methylation (DNAm) [4]. However, it is 
not known if arsenic impacts epigenetic age acceleration (EAA), 
a biomarker of disease risk and mortality [5].

A unique exposure scenario in the current study area in 
Northern Chile has provided an opportunity to investigate long 
latency periods of arsenic-related health conditions. In this study 
area, drinking water was sourced from an arsenic-contaminated 

river, exposing residents to high levels of arsenic during the period 
of 1958–72. Previous studies have found that the risk of inci-
dent cancer, including lung and bladder [6, 7], and cancer and 
non-cancer mortality [8–10] remained elevated after exposure had 
ended. Risks of mortality from bronchiectasis and bladder, laryn-
geal, and lung cancers were the highest for exposures during 
prenatal or early-life periods, suggesting critical windows of sus-
ceptibility [10] coinciding with periods of epigenetic programming 
and the establishment of DNAm signatures [11].

Changes in DNAm have been found to be associated with aging 
and lifespan. Several epigenetic biomarkers of chronological and 
biological ages have been developed, including the Horvath multi-
tissue estimator [12], the Hannum estimator [13], and the skin and 
blood clock [14]. To better capture physiological changes result-
ing in morbidity and mortality, the PhenoAge [15] and GrimAge 
[16] estimators have incorporated clinical biomarkers of aging into 
training models. EAA, or the difference between epigenetic age 
and chronological age, may provide a measure of biological aging 
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of a tissue relative to that expected based on chronological age. 
As reviewed by Horvath and Raj, EAA has been associated with 
a broad range of age-related health conditions, including cancer, 
cardiovascular disease, and frailty, and other aging biomarkers 
such as C-reactive protein and triglycerides [5]. EAA calculated 
from PhenoAge has been shown to be a better predictor of the risk 
of coronary heart disease and all-cause mortality compared to the 
Horvath and Hannum estimators [15] and a better predictor of the 
number of comorbidities compared to the Horvath, Hannum, and 
GrimAge estimators [16]. However, GrimAge slightly outperforms 
PhenoAge in the prediction of time to death, time to coronary 
heart disease, and time to cancer [16]. DNAm-based biomarkers 
of aging can also be distinguished by their relationship to cell-
type composition. The proportion of blood cell types are known to 
change with age. Whereas the Horvath multi-tissue estimator is 
largely independent of variations in cell types and can be applied 
to measuring intrinsic aging, biomarkers including the Hannum 
and PhenoAge estimators capture changes in age-related cell-type 
proportions, better reflecting extrinsic aging [5].

Increased rate of epigenetic aging may be related to biologi-
cal pathways linking adverse environmental exposures to health 
outcomes or may serve as a biomarker of environmental risk fac-
tors; however, few studies have investigated associations between 
environmental exposures and EAA, as reviewed by Ryan et al. [17]. 
In the current study, we leveraged data from unexposed adults 
and adults with high arsenic exposure confined to the prenatal 
and early-life periods to assess the extent to which historic high 
arsenic exposure impacts EAA. DNAm was measured in periph-
eral blood mononuclear cells (PBMCs) and buccal cells collected in 
adulthood, and EAA was calculated using six epigenetic biomark-
ers developed to estimate chronological age, morbidity and mor-
tality, and telomere length (TL). We hypothesized that prenatal 
and early-life arsenic exposure would be associated with adult 
EAA, particularly among measures related to disease phenotypes 
and morbidity.

Methods
The study population and DNAm measurements have previously 
been described [18]. The study area is located in Region II of Chile, 
which includes the city of Antofagasta. Adults were recruited at 
the Antofagasta Hospital or the University of Antofagasta, Chile, 
using convenience sampling. Between 1958 and 1972, drinking 
water arsenic was elevated in Region II (e.g. 287 and 860 μg/l in 
Calama and Antofagasta, respectively), after which concentra-
tions were reduced with arsenic removal plants [7]. Participants 
provided informed consent, and protocols were approved by the 
Pontificia Universidad Católica de Chile and the University of 
California, Berkeley Institutional Review Boards.

Participants born in Region II between 1958 and 1972 were clas-
sified as having prenatal or early-life exposure; all were exposed 
prenatally, and a large proportion was exposed from birth to 
∼14 years of age. Participants who were born outside of Region II 
and moved to Antofagasta after the period of high exposure were 
classified as unexposed. For all participants, water arsenic concen-
trations at birth from major municipal sources were also recorded. 
It should be noted that although the majority of participants in the 
unexposed group had detectable water arsenic concentrations at 
birth, only two had concentrations of 15 μg/l at birth, exceeding the 
current WHO standard of 10 μg/l but substantially lower than the 
standard of 50 μg/l that was in effect in Chile until 2005 [19]. Yearly 
municipal water arsenic levels were used to calculate the aver-
age lifetime water arsenic concentrations from the age of 20 years 

until sample collection as well as birth water arsenic levels [20]. 
Smoking status was classified as ever or never smoker based on 
self-report.

In 2013, PBMCs and buccal cell samples were collected from 
adults and stored at −80∘C. Samples were transported to the Uni-
versity of California, Berkeley, where DNA was extracted and 
quantified. DNAm was measured using the Infinium Human 
MethylationEPIC BeadChip (Illumina, San Diego, CA) at the 
California Institute for Quantitative Biosciences.

Data were processed with standard quality control proce-
dures [18] and normalized using funnorm [21]. One buccal cell 
sample was removed due to poor quality; one PBMC and one 
buccal cell sample were removed due to a sex mismatch. In 
PBMCs, cell-type proportions (CD8+ T cells, CD4+ T cells, natural 
killer cells, B cells, monocytes, and neutrophils) were estimated 
using the Houseman regression calibration method [22] imple-
mented with the estimateCellCounts function in the R package 
minfi [23]. The following DNAm aging biomarkers were calculated 
using Horvath’s new online calculator [12] (http://dnamage.genet-
ics.ucla.edu/): Horvath [12], Hannum [13], skin and blood [14], 
PhenoAge [15], and GrimAge clocks [16]. DNAm telomere length 
(DNAmTL) was also estimated [24]. These biomarkers are summa-
rized in Supplementary Table S1, including health outcomes and 
tissues used in training. The predictive accuracy of the biomarkers 
in PBMCs and buccal cells was assessed by calculating Pearson’s 
correlations and median absolute error between estimated values 
and chronological age.

For each of the biomarkers, EAA (i.e. the difference between 
epigenetic age and chronological age in years or an age-adjusted 
estimate of TL in kb) was computed by Horvath’s online calcula-
tor as the residuals of regressing epigenetic age on chronological 
age. Intrinsic EAA (IEAA) and extrinsic EAA (EEAA) were also cal-
culated for PBMCs. IEAA is the residual of Horvath’s DNAm age 
on chronological age adjusting for blood cell-type estimates and 
is independent of age-related changes in cellular heterogeneity. 
EEAA is calculated from a combined measure of the Hannum 
DNAm age estimate and blood cell types known to change with 
age (i.e. enhanced Hannum DNAm age), which is then regressed 
on chronological age.

We evaluated associations between arsenic exposure (exposed 
prenatally and in early life vs. not exposed) and EAA in years, or the 
residuals of kb for DNAmTL, using robust linear regression. Robust 
linear models were implemented using the rlm function in the R 
MASS package [25] using the M estimator. Confidence intervals 
and P-values were calculated using the lmtest [25] and sandwich
[26, 27] R packages with the vcovHC covariance matrix estimation 
function with White’s estimator [28]. We observed the greatest cor-
relations between DNAm aging biomarkers and chronological age 
in PBMCs, and therefore our primary analyses focused on these 
samples. Associations between arsenic exposure and EAA calcu-
lated in buccal cells were investigated in secondary analyses. We 
calculated the EAA effect size necessary to detect a significant 
association with arsenic exposure using the pwr R package [29]. 
With a sample size of 39, at 𝛼 = 0.05, we have 80% power to detect 
a moderate effect size of f 2 = 0.27.

Considering extrinsic measures of EAA capture age-related 
changes in cell-type proportions, primary analyses were adjusted 
for sex and smoking status. Sensitivity analyses were conducted 
with additional adjustments for estimated cell-type proportions 
in PBMCs. We also performed sensitivity analyses using log2-
transformed estimates of water arsenic concentrations at birth as 
the exposure and adjusting models for the average lifetime arsenic 
concentrations between the age of 20 years and sample collection. 
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Table 1: Participant characteristics

Prenatal and early-life arsenic
exposure (N = 20)a Unexposed (N = 19)

N or Median % or (IQR) N or Median % or (IQR)

Female 10 50% 9 47%
Age 49 (44, 53) 49 (46, 53)
Smoking 15 75% 8 42.1%
Drinking water arsenic concentration at birth (μg/l) 555 (130, 680) 2 (1, 6)
Average drinking water arsenic concentration (μg/l),

from the age of 20 years until sample collection
28.5 (24.8, 35.1) 15.7 (4.4, 27.0)

aN = 19 participants with available buccal cell data.

Statistical significance was evaluated using a nominal P-value of 
<0.05. Analyses were conducted using R 4.1.2 [30].

Results
Participant characteristics
PBMC DNAm data were available for 39 participants (20 with 
prenatal or early-life exposure and 19 unexposed); buccal cell 
data were available for 38 participants (19 exposed and 19 unex-
posed). Nineteen participants were female, and the median age 
was 49 years at sample collection (Table 1). Among participants 
with prenatal and early-life arsenic exposure, the median (range) 
drinking water arsenic concentration at birth was 555 (110–860) 
μg/l, whereas among unexposed participants the median (range) 
was 2 (0–15) μg/l. The average drinking water arsenic concentra-
tion from the age of 20 years until sample collection was similar 
between the two groups [exposed median (range) = 29 (17–41) μg/l; 
unexposed median (range) = 16 (0–35) μg/l]. 

Epigenetic age
In PBMCs, chronological age was positively correlated with DNAm 
aging biomarkers (rPearson range: 0.62–0.86; P < 0.001) and nega-
tively correlated with DNAmTL (rPearson = −0.69; P < 0.001; Fig. 1). 
In buccal cells, correlations were significant although weaker and 
imprecise across all DNAm aging biomarkers (DNAm age rPearson

range: 0.39–0.72; P < 0.05; DNAmTL rPearson = −0.39; P = 0.016).

Arsenic exposure and EAA
In adjusted linear models of EAA in PBMCs, prenatal and early-
life arsenic exposure was associated with a 6-year PhenoAge EAA 
[B (95% CI) = 6.01 (2.60, 9.42)] (Fig. 2; Supplementary Table S2). 
Although associations with all other measures of EAA were not 
statistically significant, likely influenced by limited statistical 
power to detect moderate effect sizes, there was a consis-
tently positive direction of the association, with the great-
est effect sizes observed for Hannum EAA [B (95% CI) = 2.51 
(−0.81, 5.83)] and EEAA [B (95% CI) = 3.66 (−0.91, 8.23)] (Fig. 2; 
Supplementary Table S2).

In sensitivity analyses of PBMCs adjusting for estimated cell-
type proportions, associations between prenatal and early-life 
arsenic exposure and PhenoAge EAA were slightly attenuated 
[B (95% CI) = 4.93 (1.88, 7.99)] (Fig. 2; Supplementary Table S3). 
However, associations with Hannum EAA [B (95% CI) = 3.11 (0.13, 
6.10)] and EEAA [B (95% CI) = 4.90 (1.22, 8.57)] increased and were 
statistically significant. In addition, we observed a significant pos-
itive association with skin and blood EAA after adjusting for cell 
types [B (95% CI) = 1.77 (0.51, 3.03)]. In sensitivity analyses eval-
uating associations with water arsenic concentrations at birth, 

PhenoAge acceleration remained significant [B (95% CI) = 0.32 
(0.003, 0.63) years for each doubling in arsenic concentrations; 
Supplementary Table S4]. Hunnam EAA and EEAA had positive 
directions of association but remained imprecise [Hunnam: B
(95% CI) = 0.22 (−0.04, 0.48); EEAA: B (95% CI) = 0.29 (−0.092, 0.67)]. 
In models adjusting for the average lifetime water arsenic con-
centration from the age of 20 years to sample collection, the 
association between exposure status and PhenoAge acceleration 
slightly increased [B (95% CI) = 6.65 (1.91, 11.38)]; however, associ-
ations with Hunnam EAA and EEAA were attenuated [Hunnam: B
(95% CI) = 1.58 (−2.80, 5.96); EEAA: B (95% CI) = 2.03 (−3.66, 7.73); 
Supplementary Table S5].

In analyses of buccal cells, we observed positive but imprecise 
associations with PhenoAge acceleration [B (95% CI) = 4.88 (−1.60, 
11.36)], Horvath EAA [B (95% CI) = 2.31 (−1.04, 5.65)], and IEAA [B
(95% CI) = 2.38 (−1.29, 6.06)] (Supplementary Table S6). Associa-
tions with other buccal cell EAA biomarkers were null [Hannum: 
B (95% CI) = −1.67 (−6.42, 3.07); skin and blood: B (95% CI) = 0.62 
(−2.14, 3.39); GrimAge: B (95% CI) = −1.69 (−5.45, 2.24); DNAmTL: B
(95% CI) = 0.18 (−0.18, 0.55); EEAA: B (95% CI) = −1.81 (−7.26, 3.64)].

Discussion
These findings are novel highlighting the impact of early-life 
arsenic exposure on EAA in adults across two tissues. Epigenetic 
age was significantly correlated with chronological age, although 
correlations were stronger in PBMCs, as expected since these 
epigenetic biomarkers were primarily developed using blood sam-
ples. We found that adults exposed to high water arsenic concen-
trations prenatally and in early life had a mean PhenoAge accel-
eration of 6 years greater than adults who were not exposed. After 
adjusting for estimated cell-type proportions, we also observed 
significant positive associations between arsenic exposure and 
Hannum EAA, skin and blood EAA, and EEAA. No associations 
between arsenic exposure and EAA measures in buccal cell sam-
ples were statistically significant.

Multiple epigenetic biomarkers have been developed to esti-
mate distinct aspects of aging, including chronological age, mor-
bidity, and mortality in specific tissue types. Chronological age 
estimators include the Horvath multi-tissue predictor, developed 
using 51 tissues and cell types [12], the Hannum predictor, devel-
oped using adult whole blood [13], and the skin and blood clock, 
developed using eight types of skin- and blood-derived tissues [14]. 
PhenoAge was developed to predict aging outcomes (e.g. disease 
count and physical functioning) and mortality using adult blood 
DNAm and was trained on an estimate of phenotypic age, a mea-
sure derived from chronological age and nine clinical markers of 
aging [15]. GrimAge, a predictor of lifespan, was developed using 
adult blood DNAm trained on plasma proteins associated with 



Figure 1: Scatter plots of chronological age and DNAm age. Chronological age (years) is plotted on the x-axis, and DNAm age (years) predicted by the 
Horvath, Hannum, PhenoAge, skin and blood, and GrimAge clocks or DNAmTL (kb) is plotted on the y-axis. Linear trend lines, 95% CIs, Pearson’s 
correlations, and median absolute error are indicated. MAE = median absolute error

morbidity and mortality and smoking pack-years [16]. Consider-
ing that these epigenetic aging biomarkers were primarily derived 
using blood DNAm, it is not surprising that we observed stronger 
correlations between epigenetic age and chronological age cal-
culated in PBMCs than buccal cells. Furthermore, the lack of a 
biomarker developed to estimate epigenetic age in buccal cells 
likely contributed to imprecise estimates in our analyses.

PhenoAge acceleration measured in PBMCs was most strongly 
associated with early-life arsenic exposure in our study inde-
pendent of lifetime exposure and cellular heterogeneity. Clinical 
biomarkers used in training PhenoAge include alkaline phos-
phatase and C-reactive protein [15], factors that may also be 

responsive to arsenic exposure [31, 32]. In a study of serum 
enzymes associated with liver function among arsenic-exposed 
Bangladeshi adults, alkaline phosphatase was positively asso-
ciated with the arsenic levels measured in drinking water, 
hair, and nails [31]. A separate study of inflammatory markers 
among Bangladeshi adults found a positive association between 
water arsenic concentrations and C-reactive protein levels [32]. 
In enrichment analysis of differentially expressed genes, Phe-
noAge acceleration has been associated with pro-inflammatory 
and DNA repair pathways [15]. Furthermore, arsenic expo-
sure and PhenoAge share common health outcomes, including 
cardiovascular disease and cancer [2, 15]. In particular, arsenic is 



Figure 2: Mean EAA associated with prenatal or early-life arsenic exposure. Mean difference in EAA in years and 95% CIs between participants with 
and without prenatal or early-life arsenic exposure calculated using linear models adjusted for sex and smoking (left panel) and adjusted for sex, 
smoking, and estimated cell-type proportions (right panel)

a well-established risk factor for lung cancer among non-smokers 
[33]; PhenoAge is associated with an increased risk of lung cancer 
incidence or mortality adjusting for smoking status and smoking 
pack-years [15]. PhenoAge acceleration has also been associated 
with smoking [34] and air pollution [35], suggesting that it may 
capture perturbations in biological processes that link environ-
mental exposures to adverse health outcomes.

Biological mechanisms through which prenatal and early-
life environmental exposures affect EAA later in life are not 
fully understood but may involve changes in inflammatory and 
immune-related pathways. Our a priori hypothesis was that 
adjustment for cellular heterogeneity would attenuate associ-
ations with EAA, particularly extrinsic biomarkers reflective of 
aging-related changes in cell types. In sensitivity analyses adjust-
ing for cell types, we did observe an attenuation in the association 
between exposure and PhenoAge EAA from 6.01 to 4.94 years. 
However, associations with Hannum EAA, skin and blood EAA, and 
EEAA increased and were statistically significant. Adjusting for 
cellular proportions may increase the precision of these estimates 
by controlling for health and environmental factors in adulthood 
that influence blood cell types. These results suggest that prenatal 
and early-life arsenic exposure affects pathways involved in aging 
and mortality independent of aging-related changes in cellular 
composition.

This study is novel in analyzing associations between drink-
ing water arsenic exposure and EAA. Furthermore, the unique 
exposure scenario in Northern Chile allowed us to investigate 
the long-term effects of arsenic on biological aging decades after 
exposure. Our primary analyses utilized dichotomized exposure 
data to minimize exposure misclassification; however, sensitiv-
ity analyses using prenatal water arsenic concentrations yielded 
consistent results. PhenoAge acceleration was also significantly 
associated with prenatal and early-life exposure after adjusting 
for the average water arsenic concentration in adulthood, pro-
viding evidence that observed associations are attributable to 
exposure during critical periods of development and epigenetic 
programming.

Our study had several limitations. First, we were limited by a 
small sample size and reduced power to detect significant asso-
ciations. Studies with larger samples size are needed to verify if 
observed associations are due to unmeasured confounding or arti-
fact and if associations with other biomarkers of aging were not 
statistically significant due to limited power. Secondly, chronolog-
ical age at sample collection was available by year increments; 
higher resolution data could increase precision by including a 

wider range of ages. Our study was also limited to a popula-
tion in Northern Chile with high early-life exposure, affecting 
the generalizability of findings. Future studies are needed to fully 
understand arsenic-associated EAA in diverse populations with 
exposures at different life stages, particularly during pregnancy 
and in early life.

Our results provide evidence for environmentally induced EAA, 
particularly relating to measures of morbidity and mortality, and 
suggest that arsenic exposure limited to early-life stages is asso-
ciated with tissue-specific biological aspects of aging measured 
decades later. Additional research is needed to investigate how 
arsenic-associated EAA is related to health and if biological aging 
in mid-life is programmed in early life.
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26. Zeileis A, Köll S, Graham N. Various versatile variances: an object-
oriented implementation of clustered covariances in R. J Stat Softw
2020;95:1–36.

27. Zeileis A. Object-oriented computation of sandwich estimators.
J Stat Softw 2006;16:1–16.

28. Zeileis A. Econometric computing with HC and HAC covariance 
matrix estimators. J Stat Softw 2004;11:1–17.

29. Champely S. Pwr: Basic Functions for Power Analysis. R Package Version 
1.1-3. 2015.

30. R Core Team. R: A Language and Environment for Statistical Com-
puting. 2015. https://www.r-project.org/ (30 May 2022, date last 
accessed).

31. Islam K, Haque A, Karim R et al. Dose-response relationship 
between arsenic exposure and the serum enzymes for liver func-
tion tests in the individuals exposed to arsenic: a cross sectional 
study in Bangladesh. Environ Health 2011;10:64.

32. Peters BA, Liu X, Hall MN et al. Arsenic exposure, inflamma-
tion, and renal function in Bangladeshi adults: effect modifica-
tion by plasma glutathione redox potential. Free Radic Biol Med
2015;85:174–82.

33. Wei S, Zhang H, Tao S. A review of arsenic exposure and lung 
cancer. Toxicol Res (Camb) 2019;8:319–27.

34. Oblak L, van der Zaag J, Higgins-Chen AT et al. A systematic review 
of biological, social and environmental factors associated with 
epigenetic clock acceleration. Ageing Res Rev 2021;69:101348.

35. Wang C, Koutrakis P, Gao X et al. Associations of annual ambient 
PM2.5 components with DNAm PhenoAge acceleration in elderly 
men: the Normative Aging Study. Environ Pollut 2020;258:113690.

https://www.r-project.org/

	The impact of prenatal and early-life arsenic exposure on epigenetic age acceleration among adults in Northern Chile
	Introduction
	Methods
	Results
	Participant characteristics
	Epigenetic age
	Arsenic exposure and EAA

	Discussion
	Data availability
	Supplementary data
	Acknowledgements
	Conflict of interest statement
	Funding
	Ethics statement
	Author contributions
	References


