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A major unmet need in LC-MS/MS-based proteomics
analyses is a set of tools for quantitative assessment of
system performance and evaluation of technical variabil-
ity. Here we describe 46 system performance metrics for
monitoring chromatographic performance, electrospray
source stability, MS1 and MS2 signals, dynamic sampling
of ions for MS/MS, and peptide identification. Applied to
data sets from replicate LC-MS/MS analyses, these met-
rics displayed consistent, reasonable responses to con-
trolled perturbations. The metrics typically displayed vari-
ations less than 10% and thus can reveal even subtle
differences in performance of system components. Anal-
yses of data from interlaboratory studies conducted un-
der a common standard operating procedure identified
outlier data and provided clues to specific causes. More-
over, interlaboratory variation reflected by the metrics
indicates which system components vary the most be-
tween laboratories. Application of these metrics enables

rational, quantitative quality assessment for proteomics
and other LC-MS/MS analytical applications. Molecular
& Cellular Proteomics 9:225–241, 2010.

LC-MS/MS provides the most widely used technology
platform for proteomics analyses of purified proteins, simple
mixtures, and complex proteomes. In a typical analysis,
protein mixtures are proteolytically digested, the peptide
digest is fractionated, and the resulting peptide fractions
then are analyzed by LC-MS/MS (1, 2). Database searches
of the MS/MS spectra yield peptide identifications and, by
inference and assembly, protein identifications. Depending
on protein sample load and the extent of peptide fraction-
ation used, LC-MS/MS analytical systems can generate
from hundreds to thousands of peptide and protein identi-
fications (3). Many variations of LC-MS/MS analytical plat-
forms have been described, and the performance of these
systems is influenced by a number of experimental design
factors (4).

Comparison of data sets obtained by LC-MS/MS analyses
provides a means to evaluate the proteomic basis for biolog-
ically significant states or phenotypes. For example, data-de-
pendent LC-MS/MS analyses of tumor and normal tissues
enabled unbiased discovery of proteins whose expression is
enhanced in cancer (5–7). Comparison of data-dependent
LC-MS/MS data sets from phosphotyrosine peptides in drug-
responsive and -resistant cell lines identified differentially reg-
ulated phosphoprotein signaling networks (8, 9). Similarly,
activity-based probes and data-dependent LC-MS/MS anal-
ysis were used to identify differentially regulated enzymes in
normal and tumor tissues (10). All of these approaches as-
sume that the observed differences reflect differences in the
proteomic composition of the samples analyzed rather than
analytical system variability. The validity of this assumption is
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difficult to assess because of a lack of objective criteria to
assess analytical system performance.

The problem of variability poses three practical questions
for analysts using LC-MS/MS proteomics platforms. First, is
the analytical system performing optimally for the reproduci-
ble analysis of complex proteomes? Second, can the sources
of suboptimal performance and variability be identified, and
can the impact of changes or improvements be evaluated?
Third, can system performance metrics provide documenta-
tion to support the assessment of proteomic differences be-
tween biologically interesting samples?

Currently, the most commonly used measure of variability in
LC-MS/MS proteomics analyses is the number of confident
peptide identifications (11–13). Although consistency in num-
bers of identifications may indicate repeatability, the numbers
do not indicate whether system performance is optimal or
which components require optimization. One well character-
ized source of variability in peptide identifications is the au-
tomated sampling of peptide ion signals for acquisition of
MS/MS spectra by instrument control software, which results
in stochastic sampling of lower abundance peptides (14).
Variability certainly also arises from sample preparation meth-
ods (e.g. protein extraction and digestion). A largely unex-
plored source of variability is the performance of the core
LC-MS/MS analytical system, which includes the LC system,
the MS instrument, and system software. The configuration,
tuning, and operation of these system components govern
sample injection, chromatography, electrospray ionization,
MS signal detection, and sampling for MS/MS analysis. These
characteristics all are subject to manipulation by the operator
and thus provide means to optimize system performance.

Here we describe the development of 46 metrics for eval-
uating the performance of LC-MS/MS system components.
We have implemented a freely available software pipeline that
generates these metrics directly from LC-MS/MS data files.
We demonstrate their use in characterizing sources of varia-
bility in proteomics platforms, both for replicate analyses on a
single instrument and in the context of large interlaboratory
studies conducted by the National Cancer Institute-supported
Clinical Proteomic Technology Assessment for Cancer (CP-
TAC)1 Network.

EXPERIMENTAL PROCEDURES

Metrics

A list of the 46 metrics described in this report is shown schemat-
ically in Fig. 1. Short descriptions of the metrics, their assigned
reference codes, and the direction indicating improved performance
for each can be found in Table I. Although the following section lists

the currently used metrics, updates will be described with each
release. Additionally, all of the data described in this work can be
downloaded from the ProteomeCommons Tranche network at
http://cptac.tranche.proteomecommons.org/rudnicketal.html.

Chromatography—Metrics C-1A and C-1B report the fraction of
peptides with repeat identifications either �4 min earlier (C-1A) or
later (C-1B) than the identification nearest the chromatographic peak
maximum. Early identifications indicate bleed (typically non-retained,
hydrophilic peptides), whereas later identifications arise from peak
tailing of either overloaded peptides or peptides with poor chromato-
graphic behavior. These are reported as fractions of all peptide
identifications.

Metric C-2A reports the retention time period over which the mid-
dle 50% of the identified peptides eluted, and C-2B is the rate of
peptide identification during that period. Sample LC-MS chromato-
grams from an analysis of a yeast proteome tryptic digest on three
LTQ instruments are depicted in Fig. 2. The longer the time period
over which peptides elute, the more time is available to acquire MS2
spectra and the greater the number of peptides likely to be sampled
and identified is. In this work, this period is defined as the time over
which the middle 50% of the identified peptides elute, which corre-
sponds to the difference between the end of the first and beginning of
the last retention quartiles (also called “interquartile range”) (C-2A).
Various measures described later are computed only during this
central period (e.g. C-2B, the identification rate in unique peptides/
min) to reject early and later uninformative periods of chromatography
and correct for differences in absolute start and end times when
comparing chromatograms.

Metrics C-3A, C-4A, and C-4B report chromatographic peak
widths for identified peptide peaks. Sharper chromatographic peaks
generate higher signal intensities and can reduce oversampling,
thereby increasing the diversity of peptides identified. Peak widths
(full width at half-maximum) were calculated as RT2 � RT1. Peak
width medians (C-3A) and interquartile distances for these values
(C-3B) are reported. C-3B is a measure of the distribution of peak
widths for all peptides. Smaller values indicate higher degrees of peak
uniformity. Peak widths were also calculated on smaller sets of early
(decile 1, C-4A) or late (decile 10, C-4B) eluting peptides to measure
for peak broadening at the extremes of the gradient.

Peptide elution order can be used to measure elution differences
early (hydrophilic) and late (hydrophobic) in the chromatographic
gradient. C-6A and C-6B are calculated by first identifying the N(a, b)
peptides in common for a pair of runs, a and b, and then sorting all
peptides in each run by elution time. If we define R1(a, b) as the rank
of the earliest eluting peptide (rank 1) in run a that is also present in
run b and R1(b, a) as the equivalent rank of the earliest co-occurring
peptide in run b, then R1(a, b) � R1(b, a) is a measure of the number
of extra early eluting peptides in run a (C-6A). To make this more
robust, we find the maximum of the difference Rn(a, b) � Rn(b, a) from
n � 1 to n � N(a, b)/10. C-6B is calculated similarly but for the high
ranking, co-occurring peptides. This maximum is divided by the total
number of peptides identified in the run, giving the fractional excess
(or if negative, deficit) of hydrophobic peptides. For both measures,
average differences between all intraseries runs and all interseries
runs are reported.

Dynamic Sampling—Metrics DS-1A and DS-1B are measures of
peptide ion oversampling, which is controlled by the dynamic exclu-
sion settings in the acquisition software. Ideally, these settings min-
imize wasteful multiple sampling of a peptide ion by permitting just
one MS2 spectrum for a given peptide ion over a chromatographic
peak. Ratios of singly to doubly (DS-1A) and doubly to triply (DS-1B)
identified peptide ions are reported as measures of oversampling. The
ratio of spectrum identifications to peptide ion identifications provides
a more general measure of oversampling but mixes the effects of

1 The abbreviations used are: CPTAC, Clinical Proteomic Technol-
ogy Assessment for Cancer; MS1, full MS scan; MS2, tandem MS
scan; SOP, standard operating procedure; LTQ, linear trap quadru-
pole; RT, retention time; S/N, signal to noise; TIC, total ion current;
NIST, National Institute of Standards and Technology; FDR, false
discovery rate; %dev, percent deviation.
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distorted chromatographic peaks and bleed with effects more directly
originating from dynamic sampling.

The numbers of MS (DS-2A) and MS2 (DS-2B) spectra acquired
during the middle 50% peptide retention period (C2-A) indicate the
effective speed of sampling over the most information-rich section of
the chromatogram. If, for a given MS spectrum, there is insufficient
signal to reach the target threshold or the dynamic exclusion settings
are not working as expected, the numbers of MS or MS2 spectra may
vary substantially between technical replicates.

Metrics DS-3A and DS-3B describe peak sampling. Ideally, chro-
matographic peaks will be sampled at their maximum intensity. How-
ever, current methods make sampling decisions prior to peak maxi-
mization, and larger chromatographic peaks are often sampled well
before reaching the maximum. Because an m/z value chosen for MS2
sampling is typically placed on an exclusion list for the theoretical
remainder of the peak, it is important that the amount of signal be
sufficient to trigger acquisition of an MS2 spectrum with adequate
signal to noise (S/N) for successful peptide identification. The trade-
off is that the threshold value should not be so high as to prevent
lower intensity peaks from being sampled. By monitoring the median
ratio of the maximum MS1 intensity value over the MS1 intensity at
the sampling time for all identified peptides (DS-3A), it is possible to
look for variability in chromatographic peak sampling. To approximate

the sampling ratio for less abundant analytes, ratios for peptides in
the bottom 50% by MS1 abundance are calculated separately (DS-
3B). The reciprocal values for these metrics or the percentage of the
total peak height at sampling is also useful and perhaps more intui-
tive. MS1 maximum peak heights were found by linear interpolation
from the extracted ion chromatograms for each precursor m/z using
a newly developed method (15–18).

Ion Source—Metrics IS-1A and IS-1B are measures of electrospray
stability. Short term electrospray stability is monitored as the me-
dian of ratios of MS1 total ion current for each set of adjacent
scans, the larger ion current divided by the smaller, over the inter-
quartile time interval C-2A. Electrospray drop-off was monitored by
counting the number of events where the total ion current changed
more (IS-1A) or less (IS-1B) than 10-fold in adjacent full MS scans.
Values greater than zero for either of these metrics indicate spray
tip “sputter.”

Instrument setup and tuning, including electrospray optimization,
affect distributions of the peptide ions m/z values. This is monitored
as the median precursor m/z (IS-2) of the identified peptide ions. This
measure is sensitive to sample loading with higher concentrations of
peptides generating higher m/z values, presumably at least in part
due to the increasing preference for lower charge states with fewer
charges available per peptide.

FIG. 1. Schematic representation of performance metrics mapped to LC-MS/MS system elements. PW, peak width; IQ, interquartile;
pep, peptide; ID, identification; Med., median; ID’d, identified; Fract., fraction; Num., number.
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The availability of protons during electrospray ionization, the rela-
tive sequence length of peptides, and pH can all affect the charge
state ratios of the identified peptides. Because doubly charged pep-
tide ions (2�) represent the majority of the identified species from a
typical tryptic digest, the ratios of 1�/2� (IS-3A), 3�/2� (IS-3B), and
4�/2� (IS-3C) allow monitoring of the stability of the distributions.
Perturbations in these ratios (or in the median precursor m/z) either
run to run or between series may also correlate with decreased
overlap of the observed peptide identifications.

MS1 and MS2 Signals and Analysis of Spectra—Reported intensi-
ties are the most direct measure of signal strength, although we have
found that they can vary substantially between runs and labs for no
clear reason. Metrics reporting these values over the C-2A interval are
MS1-2B, the median TIC for full MS1 spectra, and MS1-3B, the
median of maximum MS1 intensities for peptides. MS1-3A is a mea-
sure of “dynamic range,” which is taken as the ratio of the 95th/5th
percentile of MS1 maximum intensities for identified peptides over
C-2A.

The maximum-to-median signal (a measure of S/N) in both MS1
(MS1-2A) and MS2 (MS2-2) spectra has proven to be a more stable
measure of signal strength than absolute intensities. However, be-
cause these metrics can depend on thresholding and centroiding,
they could vary between classes of instruments and data processing
systems. For the data generated in this study with Thermo ion trap
instruments, this did not appear as a problem, and this measure
served well for monitoring run-to-run variation. The total base peak-
normalized abundance provides a related measure but can be sen-
sitive to the m/z range and background ions. Numbers of reported
peaks (MS2-3) provide another highly correlated measure and are
also reported. We note the general difficulty of determining whether
variations in signal intensity arise from amounts injected or changes in
instrument sensitivity. In fact, none of the measures described can
reliably distinguish between these two factors.

Median ion injection times for MS1 (MS1-1) and MS2 (MS2-1)
spectra are also reported. Short times should be associated with high
signal levels or low threshold settings. In many cases, the median is
also the maximum, so mean ion injection times are also reported.
Reduced ion injection times occur when analyzing higher sample
loads but should be relatively stable between technical replicates.

Because intensity is used to select ions for fragmentation, intensity
variation of the same peptide in different runs is a major source of
run-to-run variability. A measure of this variability is the median rela-
tive deviation of peptide ion intensities in common between two runs.
Absolute differences in peptide ion intensity between the two runs must
first be corrected. This is done by sorting an array of the ratios of MS1
maximum intensities for peptide ions found in pairs of runs. The quartile
values (Qn is the value for the nth quartile) yielding the median relative
deviations are calculated using the following expression.

[(Q2/Q1) � (Q3/Q2)]/2

The average for within series (MS1-4A) and the ratio of within/be-
tween series (MS1-4B) are reported.

Another measure of performance is the fraction of identified (scores
above threshold) MS2 spectra at different MS1 maximum peptide
intensity quartiles (MS2-A–D). These values indicate to what extent
intensity variations are sensitive to MS1 signal strength.

An additional class of metrics reports precursor accuracy (i.e. error
associated with the identified peptides). All mass error measurements

are derived from 2� peptide ions only. Additionally, mass errors
�0.45 m/z were rejected for high resolution Orbitrap and FT MS
instruments; they are largely due to incorrect monoisotopic mass
assignments at acquisition time. MS1-5A reports the median differ-
ence between the theoretical precursor m/z and the measured pre-
cursor m/z value as reported in the scan header. Reported monoiso-
topic values were used if available. MS1-5B is the mean of the
absolute differences. MS1-5C is the median value of the real differ-
ences in ppm, and MS1-5D is the interquartile distance for the dis-
tribution used to determine MS1-5C.

Peptide Identification—Peptide identifications from MS2 spectra,
needed for many of the above metrics, were made by matching
spectra to those in a reference spectrum library (19). This method,
long used in gas chromatography-MS, measures the similarity of
reference and search spectra. A “dot product”-based metric mea-
sures similarity (20). This function is not only widely used for gas
chromatography-MS but has been found to be effective for MS/MS
identification and has recently been used in several peptide spec-
trum-matching search methods (19, 21–23). Spectrum libraries were
derived from spectra assigned to peptide ions by sequence search
engines (23–25). The yeast library (NIST yeast_consensus_final_
true_lib (June 30, 2008)) contained 79,990 spectra and was derived
from a large number of analyses made by many laboratories, includ-
ing those of the CPTAC Network, and is available on the web. The
chicken egg yolk spectral library (NIST chicken_consensus_final_
true_lib (December 5, 2008)) contained 4,437 spectra and was gen-
erated from many dozens of runs at NIST. Both libraries are available
from the authors (S. E. Stein) on request. Score thresholds were fixed
for all analyses to yield an overall false discovery rate of 1% estimated
by searching decoy libraries of unrelated organisms and eliminating
homologous matches. In cases where a spectrum identified more
than one peptide, only the peptide identification with the highest
score was used.

ReAdW4Mascot2.exe version 2.1 (ConvVer 20081119b), an exten-
sion of ReAdW.exe (Patrick Pedroli, Institute for Systems Biology)
was used to extract peak lists to mzXML or Mascot Generic format
(MGF). The converter was run using the following arguments: for LTQ
data: -sep1 -NoPeaks1 -c -MaxPI; and for Orbitrap data: -sep1 -No-
Peaks1 -c -MaxPI -ChargeMgfOrbi -MonoisoMgfOrbi. The search
engine used was SpectraST (version 3.0, TPP v4.0 JETSTREAM
revision 2, Build 200807011544) (19). For spectral library searches
with SpectraST, enzyme specificity (trypsin), numbers of missed
cleavages permitted (�2), fixed modifications (none), and variable
modifications (carbamidomethyl-Cys, oxidized Met, N-terminal
acetyl, pyro-Glu, and pyro-carbamidomethyl cysteine) were deter-
mined by the contents of the spectral library. Mass tolerance for
precursor ions was 2 m/z for LTQ data and 1.0 m/z for Orbitrap data.
Mass tolerance for fragment ions is not adjustable in SpectraST.
SpectraST does not select candidate spectra based on charge.
Therefore, charge information in the peak lists is ignored. The cutoff
score/expectation value for accepting individual MS/MS spectra was
an fval of 0.45. This threshold was based on a global FDR calculation
using decoy spectra. FDR was calculated using the formula

FDR � FP/(FP � TP)

where FP is 2 times the number of false positive matches at or above
this score and TP is the number of true positive matches at or above
this score. Overlapping decoy and target spectra were removed prior

FIG. 2. Illustration of chromatography metric C-2A applied to LC-MS/MS data from three Thermo LTQ systems in analyses of yeast
proteome samples in CPTAC Study 5. Time intervals for elution of the middle quartiles of peptide identifications (C-2A) are indicated as are
values for C-2B (peptide identification rate during this interval) and total peptide identifications during the analysis (P-2C). See text for
discussion. peps, peptides.
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to the analysis, and FP was scaled according to the ratio of the target
and decoy library size. Decoy spectra were actual peptide spectra
from an unrelated organism, and the distribution of random matches
between target and decoy libraries was approximately equal.

P-2C, a good overall measure of performance, is defined as the
number of distinct identified tryptic peptide sequences, ignoring mod-
ifications and charge state. Numbers of unique semitryptic peptides
(truncated tryptic peptides) were also counted, and the ratio of semi-
tryptic/tryptic peptides is reported (P-3). Because semitryptic pep-
tides can be formed by sample degradation or in the ionization
source, higher total peptide values do not necessarily reflect better
performance. This metric should be useful for determining how com-
plete a digest is between preparations or for assessing how variable
in-source fragmentation is between runs of the same sample. Also
reported are the total numbers of identified spectra (P-2A) and the
number of identified precursor ions (P-2B). The median score of
identified peptides is also reported (P-1). In the case of the default
analysis pipeline, this is the median SpectraST (19) fval for all peptide
identifications. A score threshold of 0.45 was applied to all analyses.
Relative decreases in the median score can indicate a reduction in
MS2 S/N or other problems resulting from a divergence in similarity to
consensus library spectra.

Data Analysis Pipeline for Implementation of Performance
Metrics

We have used a newly developed metrics pipeline to calculate all of
the values presented in this study (Fig. 3). The software consists of 1)
a data extraction/feature-finding algorithm derived from ReAdW.exe
(SourceForge) and 2) a peptide identification engine (either SpectraST
(19) or open mass spectrometry search algorithm (OMSSA) (24) are
currently integrated) followed by 3) a program that calculates all of the
metrics from the extracted data and 4) a program that generates
statistics for the data series.

The pipeline is currently used to analyze Thermo Fisher .RAW files,
requiring Thermo XcaliburTM to be installed. Updates for handling
other vendor-specific files are being developed. The entire work flow
is driven by a Perl script that is directed to one or more directories full

of raw data files producing an output file in tab-delimited text format.
This software is available for download.

Egg Yolk Protein LC-MS/MS Studies—Fresh chicken egg yolk was
evaporated in vacuo, and 1-mg samples were stirred in 100 �l of 6 M

urea, 0.1 M Tris buffer, pH 8, for 2 h at room temperature. Cysteines
were reduced and alkylated with 1 mmol of dithiothreitol (1 h) followed
by addition of 4 mmol of iodoacetamide for 1 h at room temperature.
Excess iodoacetamide was incubated with excess dithiothreitol (4
mmol) for 1 h. The sample was then diluted with water to a total
volume of 1 ml, mixed with 20 �g of Promega sequencing grade
modified trypsin, and stirred at 37 °C for 18 h. After digestion, the
solution was acidified with 20 �l of 50% formic acid. The digest was
divided into three samples. One was refrigerated for 2 weeks and
analyzed (sample 1). A second aliquot was frozen for 2 weeks,
thawed, and then analyzed (sample 2). The third was evaporated to
dryness in vacuo, redissolved in water at the same concentration,
frozen for 2 weeks, then thawed, and analyzed (sample 3).

Five technical replicate analyses of each sample were done by
LC-MS/MS using an LC-Packings Ultimate 3000 HPLC system
(Dionex Corp., Sunnyvale, CA) coupled to a Thermo LTQ linear ion trap
mass spectrometer (Thermo Scientific, Waltham, MA). Samples (2 �l)
were injected onto a Dionex C18 Acclaim PepMap 300 column
(300-�m inner diameter, 15 cm long) and eluted with a gradient of
water (A)/acetonitrile (B), each containing 0.1% formic acid as follows:
0–40 min, 0–50% B; 40–45 min, 50–95% B; 45–48 min, 95% B;
48–50 min, 95–0% B; 50–60 min, 0% B. The flow rate was 4 �l/min.
The eluent passed through a 15-�m silica tip (New Objective,
Woburn, MA) and was sprayed into the LTQ mass spectrometer. Each
MS scan was followed by eight MS/MS spectra of the eight most
intense peaks, taken in reverse order. A dynamic exclusion time of
20 s was used with a list size of 500. The collision energy was set to
35%.

Yeast Lysate Sample Loading Studies—An aliquot of the tryptic
digest of the CPTAC yeast reference material (see supplemental
material) was redissolved in 0.1% formic acid in water at a concen-
tration of 1 �g/�l. Solutions at 400 ng/�l, 40 ng/�l, 4 ng/�l, and 400
pg/�l were made by serial dilution and were analyzed by LC-MS/MS
using a nanoLC-2D LC pump (Eksigent Technologies, Dublin, CA)
coupled to a Thermo LTQ mass spectrometer (Thermo Scientific). For
each series of LC-MS/MS runs, samples were analyzed back to back
from low to high concentration. Blank gradient runs were done be-
tween each series. Samples were loaded onto an Atlantis dC18 trap
column at 4.5 �l/min (Waters Corp.) and eluted onto a 100-�m �
10-cm BioBasic C18 IntegraFrit column (New Objective) connected to
a 20-�m SilicaTip with a 10-�m tip (New Objective). Peptides were
separated at 450 nl/min with the following gradient: 2–30.5% B over
90 min, 30.5–90% B over 10 min, 90% B for 2 min, 90–2% B over 3
min, and 2% B for 10 min (A � 0.1% formic acid in water, and B �
0.1% formic acid in acetonitrile). Except for the LC analysis described
above, all other instrument settings and parameters were according
to the CPTAC Network Study 6 standard operating procedure (SOP)
(see the supplemental material).

Additional Methods—Complete descriptions of the CPTAC yeast
protein materials, their preparation, and digestion and of the SOPs for
CPTAC Network Studies 5 and 6 described here are presented in the
supplemental material.

RESULTS

Overview of Performance Metrics—We developed 46 per-
formance metrics, which map to LC-MS/MS system compo-
nents as shown in Fig. 1. A list annotated with brief descrip-
tions of each metric is provided in Table I; in the text, we refer
to them by category and code. The metrics map to functional

FIG. 3. Schematic representation of software pipeline to gener-
ate metrics. See text for discussion. OMSSA, open mass spectrom-
etry search algorithm.
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system components including the liquid chromatography sys-
tem, the MS instrument (electrospray source and MS1 and
MS2 signal intensities), the MS instrument control system
(dynamic sampling), and the data analysis system (peptide
identification outputs after database searching).

The metrics were first derived empirically through examina-
tion of run-to-run or lab-to-lab differences in data sets. In
some cases, characteristics of the data sets suggested rele-
vant metrics. For example, it was noted that on one LC-
MS/MS system early eluting peptides were absent. Based
on this observation, an algorithm was written to calculate
the median peptide elution rank order differences in the
early part of the chromatogram. Further logical examination
of variability in the chromatography led to a focus on quan-
tification of the observed variation and thus to the related
chromatography metrics. In another example, average pre-
cursor m/z values for identified peptides were calculated for
each run because the data were easily accessible. Differ-
ences between instruments for this metric were later attrib-
uted to differences in tuning protocols. Variations of this
iterative “observe, quantify, evaluate, and refine” approach
have yielded over 100 metrics of which 46 are reported
here. Further development of performance metrics is a con-
tinuing focus of our work (at NIST).

Evaluation of Variability in Replicate Analyses of Similar
Samples—We initially evaluated the behavior of the metrics in
replicate analyses of three similar samples on a single LC-
MS/MS system. An egg yolk protein extract was digested
with trypsin and stored refrigerated for 2 weeks (preparation
A, six LC-MS/MS replicates); frozen for 2 weeks, thawed,
and analyzed (preparation B, six replicates); or evaporated
in vacuo, redissolved at the same concentration, stored
frozen for 2 weeks, thawed, and analyzed (preparation C,
five runs). The replicates were each analyzed on a Thermo
LTQ linear ion trap mass spectrometer. The median intra-
series (replicates within a preparation) and interseries (be-
tween preparations) deviations are given in Table II. The
%dev values represent the median absolute difference be-
tween all pairs of measurements expressed as a percentage
of the median value. The average %dev within replicates for
each preparation was less than 2% under these conditions
and less than 3% across all runs for the three preparations.
As expected, variation was greater on average between
preparations A, B, and C than between replicate analyses.
For example, the variability between preparations in the
number of tryptic peptide counts (P-2A) was nearly 3 times
greater than the average intraseries variability. This reflects
the expected behavior of this metric in which modest dif-
ferences between the three preparations should give rise to
varying peptide identifications.

The average ratio of interseries to intraseries %dev in Table
II was 1.29, which indicates that the metrics vary slightly more
due to modest sample differences than to variation between
replicate analyses. Thus, the results in Table II indicate that
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the metrics are stable across analytical replicates and provide
estimates of normal ranges for the metrics for typical labora-
tory handling.

Monitoring System Changes in Response to Controlled Op-
erational Variation—To evaluate the response of the metrics to
controlled experimental variation, we analyzed a tryptic digest
of the NCI-CPTAC yeast proteome reference material in trip-
licate at 10 sample loads ranging from 1.6 to 6,000 ng. Pat-
terns of variation of the metrics with sample load illustrate
their response characteristics (Fig. 4). Tryptic peptide identi-
fication metrics P-2A, P-2B, and P-2C all increased with load,
but increases were marginal at loads above 100 ng (Fig. 4a).
This was paralleled by increases in MS1 signal intensity pa-
rameters MS1-2B and MS1-3B together with a concomitant
drop-off in ion injection time (MS1-1) (Fig. 4e) and an increase

in median S/N for identified MS1 (MS1-2A) and MS2 spectra
(MS2-2) for identified peptides (Fig. 4f). These metrics quan-
titatively illustrate the well known relationship between higher
sample load, greater MS1 and MS2 signal intensities, higher
spectral quality, and greater numbers of successful database
matches. The increased variation in the metric values at lower
sample loads is also presumably due to the diminishing con-
centration of the analytes. The fraction of identified MS2
spectra in each of the four MS1 quartiles also increased with
sample loading up to 100 ng (MS2-4A through MS2-4D) (Fig.
4f) as expected. Metrics of ion source performance indicated
that, although the median precursor m/z for identified pep-
tides (IS-2) increased only slightly with sample load, the num-
ber of 1� species identified relative to 2� species (IS-3A)
increased sharply at loads above 160 ng (Fig. 4c). This may

TABLE II
Variation of metrics in replicate analyses of egg yolk protein digest

Avg., average; intra/inter, intraseries/interseries; med., median; pep(s)., peptide(s); IQ, interquartile; abund., abundance; IDs, identifications;
ID’d, identified; fract., fraction.

Metric Avg. value
Avg.

intraseries %dev
%Dev of

intraseries %dev
Interseries

%dev
Ratio avg.
intra/inter

C-1A (bleed �4 min) 0.0082 34.88 3.9 42.87 1.23
C-1B (bleed �4 min) 0.1499 4.84 3.98 0.63 0.13
C-2A (IQ pep. RT period) 11.56 2.43 1.4 0.3 0.12
C-2B (peptides/min) 41.9 2.59 1.21 0.79 0.31
C-3A (med. peak width) 11.34 0.35 1.92 0.14 0.41
C-3B (IQ for peak widths) 2.19 3.04 1.59 3.2 1.05
DS-1A (oversampling; once/twice) 3.31 4.35 2.52 3.11 0.71
DS-1B (oversampling; twice/thrice) 2.51 7.24 1.88 0.25 0.03
DS-2A (MS1 scans over C-2A) 345.3 1.06 7.63 2.53 2.39
DS-2B (MS2 scans over C-2A) 1,899 2.39 1.45 0.66 0.27
DS-3A (med. MS1 max/MS1 sampled all IDs) 2.48 2.44 2.49 2.01 0.82
DS-3B (med. MS1 max/MS1 sampled for

bottom 50% by abund.)
1.44 1.45 1.41 1.08 0.75

IS-1A (MS1 �10� jumps) 0 0 0 0 0
IS-1B (MS1 �10� falls) 0 0 0 0 0
IS-2 (med. precursor m/z) 689.61 0.32 2.03 0.52 1.66
IS-3A (ratio IDs 1�/2�) 0.263 1.65 1.98 4.98 3.02
IS-3B (ratio IDs 3�/2�) 0.393 1.29 1.91 4.18 3.24
IS-3C (ratio IDs 4�/2�) 0.105 1.94 1.73 6.46 3.33
MS1-1 (ion injection (ms) for IDs) 5.6 3.17 0 13.86 4.36
MS1-2A (S/N) 317.8 1.77 1.42 6.6 3.73
MS1-2B (med. TIC/1e3 over C-2A) 5,470.6 1.76 11.98 15.31 8.68
MS1-3A (dynamic range 95th/5th for IDs) 87.2 5.21 1.28 6.16 1.18
MS1-3B (med. MS1 signal for IDs) 66,265 2 2.37 13.33 6.66
MS2-1 (ion injection (ms) for IDs) 100 0 0 0 0
MS2-2 (S/N for IDs) 220.5 1.44 5.15 2.04 1.41
MS2-3 (med. no. peaks for IDs) 314.6 1.84 1.61 2.46 1.34
MS2-4A (fract. ID’d Q1) 0.748 1.62 1.26 1.85 1.15
MS2-4B (fract. ID’d Q2) 0.585 1.7 1.15 2.2 1.29
MS2-4C (fract. ID’d Q3) 0.453 1.48 1.28 3.52 2.37
MS2-4D (fract. ID’d Q4) 0.368 3.79 1.54 6.17 1.63
P-1 (med. f-value score for IDs) 0.891 0.24 3.91 0.38 1.54
P-2A (total IDs) 2,767.7 1.11 2.6 3.01 2.71
P-2B (unique ion IDs) 1,260.5 0.59 1.7 1.6 2.71
P-2C (unique peptide IDs) 859.5 0.55 1.85 0.87 1.59
P-3 (semi/fully tryptic peps.) 0.13 3.33 1.42 3.28 0.99

Median values 1.76 1.7 2.2 1.29
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FIG. 4. Stability and variation of met-
rics over a range of sample injection
amounts. Serial dilutions of a tryptic di-
gest of the CPTAC yeast reference pro-
teome were analyzed in triplicate by LC-
MS/MS on an LTQ instrument. Median
values for each series were plotted ac-
cording to the categories in Fig. 1. Error
bars represent �median error. Some
values have been scaled as indicated in
the panel legends. pep, peptide; IDs,
identifications; med., median; ID’d, iden-
tified; fract., fraction; num, number;
FWHM, full width at half-maximum; in-
ject., injection.
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reflect limited availability of protons at the source at higher
analyte concentrations.

Some of the chromatography metrics exhibited striking de-
pendence on sample load (Fig. 4b). Most notably, C-2B (pep-
tide identification rate) increased only at lower loading con-
centrations, whereas the “bleed” metric C-1A increased
across the entire range. This latter metric was not accompa-
nied by corresponding changes in peak width metrics (C-3A
and C-3B), which suggests that C-1A simply reflects load
rather than loss of column performance. This is consistent
with the observation that peptide identifications increased
across the load range, albeit more slowly at the highest
concentrations.

These data demonstrate that the metrics correctly repre-
sent well understood relationships among system compo-
nents and demonstrate sensitivity to “real world” variables
(e.g. sample load). In this example, the practical inference
drawn from the combined metrics is that system performance
improves dramatically with incremental sample loading in-
creases below 160 ng as reflected collectively by identifica-
tions, chromatography, and MS signal intensities, whereas
improvement at higher loads is not as significant. This illus-
trates the value of the metrics for rational, quantitative opti-
mization of system performance.

System Variability in Interlaboratory Studies—The CPTAC
interlaboratory studies (CPTAC Studies 5 and 6) involved anal-
yses of a common yeast proteome reference sample on multiple
Thermo LTQ and LTQ-Orbitrap instruments in several laborato-
ries. The yeast extract was digested with trypsin, and aliquots
were distributed for analysis. Although the participating labora-
tories used different LC systems and autosamplers with these
MS instruments, they also used an SOP, which standardized
sample loading, chromatography, MS instrument tuning, and
dynamic sampling (see supplemental material).

As part of Study 6, three replicate analyses of the yeast
digest were analyzed on four different LTQ-Orbitrap systems
in three different laboratories (Fig. 5). Inspection of the peptide
identification summary (Fig. 5a) indicates an approximately
40% reduction in the number of peptide identifications by
LTQ-Orbitrap@86 compared with the other three Orbitraps.
Inspection of the other metrics indicates that dynamic over-
sampling parameters DS-1A and DS-1B were lower for LTQ-
Orbitrap@86 than for the others (Fig. 5d), indicating excessive
repeat sampling of peptide ion signals for MS/MS. This would
have the observed effect of lowering peptide identifications.
Another major characteristic of underperformance of instru-
ment “@86” is the reduced value for ratios of 3�/2� charge
states (IS-3B) and 4�/2� charge states (IS-3C) for identified
peptides (Fig. 5c). (No 4� peptide ions were identified for this
instrument.) This may indicate a shift in the distribution of all
peptide ion charge states and may have led to an increased
fraction of 1� peptide ions, which were excluded from
MS/MS in the Orbitraps. Compliance with SOP dynamic ex-
clusion settings was verified by inspection of the data file

headers. However, further investigation identified inadequate
formic acid content in the LC mobile phase as the likely cause,
which is consistent with both a decreased proportion of
higher charge state ions (IS-3B and IS-3C) and increased
oversampling (fall in the value of DS-1A).

The Study 6 data also identified performance metrics
whose variation had little or no impact on peptide identifica-
tions, including the MS1 and MS2 signal intensity metrics (Fig.
5, c and e) for the case of “Orbitrap@86.” Also noteworthy is
the modest dip in peptide identifications in the second run for
instrument LTQ-Orbitrap@65P (Fig. 5a). This occurred together
with evidence of electrospray instability as indicated by 10-fold
jumps or drops in MS1 signal intensity (IS-1A and IS-1B; Fig. 5c)
in adjacent full scans. Manual inspection of the corresponding
data file revealed a periodic “sawtooth” profile for the base peak
chromatogram, indicating electrospray instability.

Another noteworthy aspect of the Study 6 data is the high
degree of reproducibility of the chromatography metrics
across instruments. Although the four Orbitraps used three
different combinations of LC and autosampler systems, the
SOP specified stationary phase, column measurements, flow
rates, and injection parameters. Peptide elution periods, peak
widths, and chromatographic bleed were generally consistent
across instruments and replicate analyses, illustrating the fea-
sibility of SOP-driven studies of LC-MS platforms, even when
different hardware components may be used.

In CPTAC Study 5, the yeast digest was analyzed in six
replicates on three LTQ and three Orbitrap instruments in five
laboratories. The metric C-6A, which detects differences in
the relative numbers of early and late eluting peptides within
and between labs, identified large differences within repli-
cates for “LTQ2@95” (Fig. 6a). These differences were re-
flected in increased values for chromatographic bleed metrics
C-1A and C-1B and decreased peptide identification rate
(C-2B) (Fig. 6b) and lowered numbers of peptide identifica-
tions (Fig. 6c) in the fourth and fifth runs in the series. This
enabled identification of wash solvent cross-contamination of
the sample injection loop as a probable cause. Correction of
the problem partially restored the metrics and peptide identi-
fications to values comparable to the other systems (see Fig.
6, “LTQ2@95-rep”).

Performance of Metrics across Systems and Laboratories—
Whereas Table II describes variation in the metrics for a single
instrument in replicate analyses, the CPTAC interlaboratory
studies provided a means to evaluate variability across mul-
tiple laboratories, instruments, and analyses. Fig. 7a displays
average intralab %dev values for the metrics for all six instru-
ments (three LTQs and three Orbitraps) in CPTAC Study 5 (six
replicate yeast digest analyses). The metrics have been sorted
within categories from lowest to highest and the error bars
represent the %dev of the intralab %dev (i.e. they estimate
the range of %dev values across the labs). The plotted size of
the colored bar represents variation within a laboratory; the
relative size of the accompanying error bar indicates variation
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(%dev) of the intralab %dev across laboratories. These values
as displayed are not intended to represent interlab variability,
which would require comparing measurements between in-
strument classes directly, but to approximate the variability of
the intralab %dev values. For most of the metrics, these

values are comparable and average less than 10%. The most
highly variable metrics describe MS1 signal intensity, dynamic
sampling, and chromatographic bleed. Indeed, this latter met-
ric was the most variable both within and between labs, also
consistent with the egg yolk studies presented in Table I.

FIG. 5. Performance metrics for trip-
licate analyses of a tryptic digest of
the CPTAC yeast reference proteome
on four LTQ-Orbitraps at three differ-
ent sites in CPTAC Study 6. Instru-
ments labeled @56, @86, and @65O are
LTQ-Orbitraps; the instrument labeled
@65P is an LTQ-XL-Orbitrap. a–f display
metrics according to category; values for
each of the three runs are represented
by a symbol. Low values for peptide
identifications for instrument LTQ-
Orbitrap@86 (a) coincide with low metric
values for peptide ion charge states
(metric IS-3B; c) and dynamic sampling
(metric DS-1A; d) (see text for discus-
sion). pep, peptide; IDs, identifications;
med., median; ID’d, identified; fract.,
fraction; num, number; FWHM, full width
at half-maximum; inject., injection.
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This comparison can be extended to interlab values for the
LTQs and Orbitraps (Fig. 7, b and c). Whereas Fig. 6a depicts
the variation within labs, Fig. 7, b and c, reveal values that are
most irregular between labs. The main finding is that inter-
laboratory variation in peptide identifications and most other
performance metrics are comparable between the LTQ and
Orbitrap systems, even though there are large differences in
the average values for some metrics between them (not
shown). Differences in these mass analyzers result in different
MS1 signal intensities, but this also results in greater variation
in both MS1 and dynamic sampling metrics for the Orbitraps
(Fig. 7, b versus c). This could also be reflected by the fact that
one of the Orbitraps outperformed the others in the study by
more than 20% in the number of unique tryptic peptide iden-
tifications for this study (data not shown). Nevertheless, vari-

ations in MS2 metrics appear comparable for LTQs and
Orbitraps.

Fig. 7, a–c, also provide a broad perspective on which
analytical techniques pose the greatest challenges to intral-
aboratory and interlaboratory standardization. For example,
the metrics with the highest variation describe peptide chro-
matography (e.g. C-1A and C-1B), which is subject to more
variable influences than any other component of the LC-
MS/MS system. Even modest variations in mobile phase com-
position, gradient delivery, flow control stability, sample con-
taminants, and the composition of previous samples can
influence peptide elution. We note that the relative variability
of C-1A and C-1B corresponds to the typical experience in
chromatography where peak tailing (C-1B) is a more common
problem than peak bleed or “fronting” (C-1A).

FIG. 6. Performance metrics for six
replicate analyses of a tryptic digest
of the yeast reference proteome on
LTQ and Orbitrap instruments in
CPTAC Study 5. Instruments labeled
LTQ@73, LTQ@65, and LTQ@95 are
LTQ instruments; the instrument labeled
Orbi@56 is an LTQ-Orbitrap; the instru-
ment labeled Orbi@65 is an LTQ-XL-
Orbitrap. Marked variations in the re-
lative number of early and late eluting
peptides (a), chromatography metrics (b,
middle section), and identifications (c,
middle section) for instrument LTQ2@95
led to diagnosis and resolution of the
problem (see text for discussion) as in-
dicated by a second set of analyses on
this instrument (LTQ2@95-rep). Instru-
ment LTQ@73 is included in both panels
as representative of the performance of
the other instruments. The Orbitraps
were included in the analysis and in a as
a source of diversity from different labo-
ratories and to demonstrate the useful-
ness of the chromatographic metrics
across instrument platforms. Error bars
represent median error. med., median;
IDs, identifications.
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DISCUSSION

Troubleshooting poor system performance in LC-MS/MS-
based proteomics typically involves a combination of experi-
ence, intuition, and a highly subjective evaluation of limited data
(e.g.“what does the chromatogram look like?”). Although
causes of commonly encountered system problems are well
known and can be rationalized in retrospect, the combinatorial
possibilities of malfunction among multiple components may
preclude a systematic approach to diagnosis. The 46 perform-
ance metrics described here enable the implementation of a
quantitative, integrated approach to system troubleshooting.
These metrics enable diagnosis of poor system performance,
such as the �40% decline in peptide identifications by one
Orbitrap compared with others in an interlaboratory study (Fig. 5).

However, performance metrics can help diagnose much
more subtle, yet important, problems. These metrics provide
the first effective means to deal with modest decrements in
system performance, which are frequently encountered yet
difficult to diagnose. The metrics are quite sensitive to small
changes in performance: most have %dev values of less than
10%. The sensitivity of these metrics enabled detection of
electrospray instability as a contributing cause of modestly
diminished peptide identification performance in one replicate
analysis of a yeast proteome digest in CPTAC Study 6 (Fig. 5,
LTQ-Orbitrap@65P).

A relatively large number of metrics (46 presented here)
could be considered excessive for purposes of troubleshoot-
ing system performance. However, the availability of over 40
metrics does not imply that all metrics are always used to-
gether for diagnostic purposes. Indeed, this would probably
always be unnecessary. In the examples we present here,
specific system malfunctions are indicated by changes in
smaller subsets of metrics. On the other hand, the advantage
of the relatively large number of metrics is that they reflect
diverse components of the system.

A complete record of system performance should become a
critical element of quality control documentation for LC-MS
data sets. This requirement for documentation of system per-
formance is important in many applications in proteomics, par-
ticularly where analysis and comparison of LC-MS data sets
provide the basis for identifying distinct characteristics of bio-
logical systems. Apparent differences between phenotypes are
detected by comparing data sets from multiple technical repli-
cate analyses of the corresponding samples. A key assumption
underlying this approach is that observed differences represent
true proteomic differences rather than variability in system per-
formance. This is particularly important when biological differ-

ences between samples are relatively modest as analyses must
be able to discern differences comprising a small subset of
proteome components. The metrics we describe here could
provide an unambiguous basis for quantitatively defining plat-
form stability and could enable identification of outlier data that
would otherwise confound biological comparisons.

We also have shown here in the context of the CPTAC inter-
laboratory studies that these metrics display stability in behavior
across multiple laboratories and systems. These observations
not only further define the utility and normal ranges of the
metrics but provide insights into the aspects of multilaboratory
studies that provide the greatest barriers to platform standard-
ization. However, the implementation of an SOP in CPTAC
Study 6 effectively normalized key features of the chromatog-
raphy (Fig. 5c), a remarkable achievement in view of the use of
different LC systems by the participating laboratories. We note
that SOPs were used in the CPTAC studies to enable compar-
isons under conditions where key system variables were held
constant, thus enabling identification of sources of variability in
peptide and protein detection. The SOPs represented a balance
between performance optimization for peptide detection and
practical considerations for interlaboratory studies. They do not
represent fully optimized methods and are not intended as
prescriptive for the proteomics research community.

This work on performance metrics was done with Thermo
LTQ and LTQ-Orbitrap instruments, which are commonly used
for LC-MS/MS proteomics and were the principal instruments
available in our laboratories (at NIST) and in the participating
CPTAC laboratories. Although a few of the metrics we describe
(e.g. ion injection times) are not applicable to other instruments,
such as quadrupole-time of flight instruments, most of these
metrics can be applied to any electrospray LC-MS/MS instru-
ment platform used for proteomics. Extension of the metrics to
these other systems will require software to extract data from
instrument data files and reference data sets to define the
behavior of individual metrics in different instrument platforms.

The metrics described here represent a subset of a larger
body of measurements explored in our studies of LC-MS sys-
tems. Although these metrics were applied to data-dependent
LC-MS/MS analyses, subsets of these metrics and variations
thereof could be applied similarly to high resolution LC-MS
“MS1 profiling” systems or to LC-multiple reaction monitor-
ing-MS on triple quadrupole and quadrupole-ion trap instru-
ments. Indeed, many of the metrics are applicable to the anal-
ysis of LC-MS systems for non-peptide analytes, including
metabolites, lipids, carbohydrates, and other molecule classes.
Implementation of these performance metrics will be facilitated

FIG. 7. Summary of intralaboratory and interlaboratory variation for metrics for three LTQ and three LTQ-Orbitrap instruments in six
replicate analyses of a tryptic digest of CPTAC yeast reference proteome in CPTAC Study 5. The instruments labeled LTQ are all LTQ
model instruments; the instruments labeled Orbis include two LTQ-Orbitraps and one LTQ-XL-Orbitrap. Metrics are grouped by system
category and ranked by code for comparison between panels. Intralaboratory variation in %dev for each metric and variation in %dev are
shown in a. b and c show interlaboratory variation in metrics for LTQ and Orbitrap instruments, respectively. IQ, interquartile; pep, peptide; IDs,
identifications; med., median; ID’d, identified; fract., fraction; num, number.
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by the distribution of software for extracting the metrics directly
from raw data files and by development of graphical user inter-
faces and integration with standard proteome analysis work
flows. We are continuing development and evaluation of new
performance metrics and will make available software to facili-
tate their implementation in the analytical community.
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