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Abstract

The assessment of mitochondrial properties in skeletal muscle is important in clinical research, for instance in the
study of diabetes. The gold standard to measure mitochondrial capacity non-invasively is the phosphocreatine (PCr)
recovery rate after exercise, measured by *'P Magnetic Resonance spectroscopy (*'P MRS). Here, we sought to
expand the evidence base for an alternative method to assess mitochondrial properties which uses *'P MRS
measurement of the Pi content of an alkaline compartment attributed to mitochondria (Pi,; as opposed to cytosolic Pi
(Pi,)) in resting muscle at high magnetic field. Specifically, the PCr recovery rate in human quadriceps muscle was
compared with the signal intensity of the Pi, peak in subjects with varying mitochondrial content of the quadriceps
muscle as a result of athletic training, and the results were entered into a mechanistic computational model of
mitochondrial metabolism in muscle to test if the empirical relation between Pi,/Pi, ratio and the PCr recovery was
consistent with theory. Localized 3'P spectra were obtained at 7T from resting vastus lateralis muscle to measure the
intensity of the Pi, peak. In the endurance trained athletes a Pi,/Pi, ratio of 0.07 + 0.01 was found, compared to a
significantly lower (p<0.05) Pi,/Pi, ratio of 0.03 £ 0.01 in the normally active group. Next, PCr recovery kinetics after
in magnet bicycle exercise were measured at 1.5T. For the endurance trained athletes, a time constant 7o, 12 + 3 s
was found, compared to 24 + 5s in normally active subjects. Without any parameter optimization the computational
model prediction matched the experimental data well (r? of 0.75). Taken together, these results suggest that the Pi,
resonance in resting human skeletal muscle observed at 7T provides a quantitative MR-based functional measure of
mitochondrial density.
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Introduction

Non-invasive assessment of mitochondrial properties in
human tissues including skeletal muscle is important in clinical
research, for instance in diabetes, and sports medicine [1]. In
vivo 3P MR spectroscopy has been widely used for this
assessment [2]. Specifically, the rate of phosphocreatine (PCr)
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recovery after exercise is commonly used as an index for
mitochondrial capacity [3]. This method has, however, some
disadvantages. First of all, it requires in-magnet exercise and
therefore a complex setup. In addition, some patients are not
able to perform exercise inside the magnet. Another drawback
is that this method provides only an indirect readout of
mitochondrial capacity. PCr recovery is not only limited by
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mitochondrial density and functionality, but also by perfusion of
the muscle tissue [4], and the intensity of the exercise [5].

An alternative 3P MRS technique to assess mitochondrial
properties non-invasively is offered by magnetization transfer
measurements, in which the oxidative ATP synthesis flux is
measured by saturation of the y-ATP peak resonance at 2.5
ppm [6]. The advantage of this method over the PCr recovery
assay is that it can be performed in resting muscle. However,
the flux obtained from a 3'P saturation transfer experiment is
dominated by the glycolytic exchange flux instead of the
mitochondrial ATP synthesis flux [7]. As a result, the readout of
mitochondrial properties using magnetization transfer is not
straightforward. A more direct and fast in vivo measurement of
mitochondrial properties under resting conditions would provide
a major advance compared to these current methods.

In previous work at a magnetic field strength of 7 Tesla [8]
our group observed a peak 0.4 ppm downfield from the
cytosolic Pi resonance (Pi,) in resting human skeletal muscle.
Based on the chemical shift value, the T, characteristics, and
the difference in intensity of the second peak between the
soleus and tibialis anterior muscles, this signal was putatively
attributed to the Pi pool inside the mitochondrial matrix (Pi,) [8].
If confirmed, this signal could provide a new biomarker for
mitochondrial properties in muscle that may be assayed in
subjects at rest. In this paper, we further investigated if the Pi,
signal can provide information about mitochondrial properties.
Specifically, the hypothesis was tested that the amplitude of the
Pi, signal in resting muscle is a good indicator of mitochondrial
density. To test this hypothesis, we conducted static and
dynamic in vivo *'P MRS measurements at 7T and 1.5T,
respectively, in quadriceps muscle of normally-active subjects
and trained athletes and tested if the relation between Pi,
signal intensity of resting muscle and the rate of PCr recovery
following exercise followed the theoretical relation between
mitochondrial Pi content and mitochondrial density derived
from a computational model of oxidative metabolism in muscle

[9].
Experimental

Subjects

The study was conducted in ten healthy volunteers (age
range 20-27 years). Five subjects were highly trained
endurance runners (exercise 6-9 times/week, 1-1.5 hour per
training) (ATH). The other five subjects were reasonably
physical active (running/cycling 1-2 times/week, 1 hour per
training) (REG). Written informed consent was obtained from
all participants, and this study was approved by the local
Medical Ethics Committee of the Leiden University Medical
Center.

Static 3P MRS measurement at 7T

3P NMR data from resting skeletal muscle were acquired on
a 7 Tesla Philips Achieva scanner (Philips Healthcare, Best,
The Netherlands). Subjects were placed feet first in the magnet
in a supine position. A custom-built transmit and receive
double-tuned 'H and 3'P coil setup, with square coils for 3'P (10
cm) and 'H (12 cm), was placed on top of the vastus lateralis
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muscle of the right upper leg. A B, map was acquired for the
image based shimming algorithm [10]. Shimming was
performed on a manually drawn region of interest in the
lateralis muscle. 3'P spectra were obtained using 2D chemical
shift imaging (CSI) with a field of view (FOV) of 160x160 mm;
matrix size 8x8; Hamming weighted acquisition with 32
averages at the center k-lines. Slice thickness was determined
by the coil size (10 cm). Adiabatic half passage 90 degrees RF
pulses of 3.3 ms duration were applied with the transmitter
frequency set at 5.0 ppm downfield from the PCr peak. The
repetition time was set to 1680 ms, resulting in a total
measurement time for the 2D CSI of 20 minutes.

Dynamic *'P MRS measurements at 1.5T

Within one week after the 7 Tesla studies, PCr recovery data
were acquired from all volunteers on the 1.5 Tesla system
(Philips Healthcare, Best, The Netherlands), since no in-
magnet exercise setup is available for the 7 Tesla scanner. A
custom-built transmit and receive double-tuned 'H and 3'P coil
setup with circular coils for 3'P (5 cm) and 'H (6 cm) was used,
interfaced to a Bruker Biospin console. Exercise was
performed using a MR-compatible bicycle ergometer for in-
magnet exercise [11]. 3'P spectra were obtained with surface
coil localization on the right vastus lateralis. To ensure similar
coil placement in both the 7T and 1.5T scans, coil positioning
was performed for all measurements by the same person. A
pulse-acquire sequence was applied with adiabatic half
passage pulses of 2 ms duration, with a repetition time of 3s.
Two free induction decays (FIDs) were averaged per spectrum,
resulting in a time resolution of 6 seconds. Before exercise, a
fully relaxed rest spectrum was acquired (8 averages), with a
TR of 30s. A light sensor was used to gate spectrometer data
acquisition during cycling. Cycling was performed with a
constant speed of 80 rotations per minute, indicated by a
metronome. Exercise intensity was increased gradually, by
adding weights onto the brake of the bicycle ergometer.
Because PCr and Pi recovery are sensitive to cellular pH [5],
we aimed for the same relative end-exercise intensity in each
subject. Therefore the PCr level was monitored realtime, and
exercise was stopped when a PCr depletion of 50% was
reached, resulting in an end-exercise pH higher than 6.8 in all
subjects. The total exercise time was 5 minutes on average.
Directly after exercise, recovery was measured for 10 minutes.

Data processing

The CSI dataset was visualized using 3DiCSI software, and
a voxel was selected in the right lateralis muscle, located
completely inside the muscle and remote from large visible
blood vessels (Figure 1). The free induction decay was
analyzed using the jMRUI software package. Peak areas for
the two Pi signals from the 7T data and Pi, PCr and ATP
signals from the 1.5T data were obtained by fitting Lorentzian
line shapes and correcting for partial saturation effects [12,13].
Correction was applied with a T, of 1.4 seconds for Pi,, and 4.3
seconds for Pi; [8]. The line width of the Pi, peak was
constrained to the line width and phase of the Pi; peak, to
ensure a good fit for the Pi, peak.
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Figure 1. MRI image with CSI dataset. T, weighted gradient echo image with the measured 2D CSI dataset. The selected voxel
in the vastus lateralis muscle with the related 3'P spectrum is shown in yellow.

doi: 10.1371/journal.pone.0076628.g001

Using a least squares method the PCr recovery curve was
fitted to a mono-exponential model, to obtain time constant 1o,
[14]. The peak areas for ATP and Pi were obtained for the fully
relaxed 3'P spectra obtained at 1.5 T, and the Pi/ATP ratio was
calculated.

Computational Modeling

A detailed biophysical model of cardiac mitochondrial ATP
metabolism proposed by Beard and coworkers [15], and
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adapted for skeletal muscle by Schmitz et al. [9,16] was
applied to test if the empirical relation between Pi,/Pi, and rate
of PCr recovery was consistent with the theoretically expected
relation. For a detailed description of the model we refer to [9].
In brief, the model comprises three cellular compartments
(mitochondrial matrix, mitochondrial inter membrane space and
cytoplasm). The model was developed by integration of
mechanistic rate equations representing the processes of
mitochondrial oxidative phosphorylation, adenine nucleotide
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transport across the mitochondrial membranes, cytoplasmic
ATP buffering and hydrolysis. The accuracy of the model was
previously tested by comparison of model predictions and data
obtained from isolated mitochondria and *'P MRS observed
metabolite dynamics in human and rodent muscle [9,16]. Model
predictions were performed using Matlab version 7.14.

The model was applied to predict the PCr recovery time
constant (1pg) for various mitochondrial volume fractions
(ranging from 0.01 to 0.15 [ml mito/ml cell]). Each simulation
was performed in three consecutive steps. First, a model
initialization step was performed in which the model ATP
hydrolysis rate was incrementally increased until a steady state
PCr depletion level of 50% was achieved (similar to the
experimental data). Next, cytoplasmic pH was set at 6.9,
consistent with the end exercise values and ATP hydrolysis
rate was decreased to resting values (0.01 mM/s [9]) in order to
simulate 600s of recovery period. Finally, the time constant of
PCr recovery (Tpc,) was derived from the predicted PCr
recovery dynamics by fitting of a mono-exponential function.

For each simulation the corresponding Pi,/Pi, ratio was
calculated according to the following equation

PIZ/P|1 = Vmito * [Pirest]mitoMatrix / [Pirest]cytoplasm

where: V. is the mitochondrial volume fraction, [Pi.esdmitomatrix
is the inorganic phosphate concentration in the mitochondrial
matrix at rest and [Piegleopasm S the inorganic phosphate
concentration in the cytoplasm. The [Pieglmitomatix / [Pirestleytoptasm
ratio was prediCted by the model ([Pirest]mitoMatrix / [Pirest]cytoplasm =
0.92).

Statistics

Differences in pH, Pi,/Pi,, Pi/ATP and 1y, between the
groups, trained athletes and healthy controls, were compared
with a t-test and considered significant at P<0.05. The quality of
the match between model predictions and experimental data
was quantified by calculation of the coefficient of determination
(R?).

Results

Static 3'P MRS measurements at 7T

A typical 7T spectrum is shown in Figure 2. A peak at 0.4
ppm downfield from the cytosolic Pi peak was detected in all
subjects, indicating an alkaline pH compartment (Figure 2). In
the endurance trained athletes a Pi,/Pi, ratio of 0.07 + 0.01 was
found. In the normally-active group the Pi,/Pi; ratio was
significantly lower at 0.03 + 0.01 (Figure 3).

Dynamic®*'PMRS measurements at 1.5T

An example of PCr dynamics during exercise and recovery is
shown in Figure 4. For the endurance trained athletes, a mean
time constant 1., of 12 + 3 s (mean + SD; n=5) was found,
while in the normally active healthy subjects the mean value
was significantly higher 24 + 5s (mean + SD; n=5) (Figure 5).

During and after exercise, tissue pH was determined based
on the chemical shift between the Pi and PCr resonances.
Average end-exercise pH was 6.9 + 0.1 in all subjects of both
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groups. No difference was observed in Pi/ATP at rest between
groups.

Experimental observations compared to model
predictions

Figure 6 shows the comparison of the empirically observed
relation between T, and Pi,/Pi; and the predicted relation
(solid black line). Without any model parameter optimalization
already an excellent agreement between the experimental data
and model predictions was observed (R? = 0.75).

Discussion

In this study, we investigated the relation between the Pi,/Pi,
ratio in resting quadriceps muscle and the PCr recovery rate
following moderate exercise of the upper legs in healthy human
subjects and trained athletes using a combination of
experimental and numerical approaches. Specifically, the
hypothesis was tested that the amplitude of the Pi, signal in
resting muscle reflects the mitochondrial density of the muscle
under investigation. If confirmed, 3'P MRS of resting human
muscle at 7T may offer a novel, practical method for non-
invasive assay of mitochondrial density and function in human
muscle.

In agreement with a previous study [8], a Pi, resonance was
reproducibly detected 0.4 ppm downfield from the cytosolic Pi
(Piy) signal in both the endurance trained and the normal
physically active subjects. A twofold higher Pi,/Pi; ratio was
found in the quadriceps muscle of athletes compared to
normally active subjects, as well as a faster PCr recovery rate.
Both aspects confirm a higher oxidative capacity of quadriceps
muscle in these trained individuals and are in agreement with
the reported magnitude of increase of mitochondrial density in
biopsy studies as a result of endurance training [17]. No
significant difference was observed in Pi/ATP in resting spectra
between the two groups. Assuming that endurance training has
no major effect on ATP concentration in the cytoplasm, the
higher Pi,/Pi, ratio was therefore attributed to an increase in Pi,
signal. Together, these results provides the first important new
piece of evidence supporting the hypothesis that the Pi,
resonance in resting muscle is associated with the
mitochondrial pool in the tissue

The PCr recovery rate after exercise was significantly faster
in the endurance trained athletes confirming a higher oxidative
capacity of quadriceps muscle in these trained individuals. Any
interference of differences in muscle fiber type recruitment
between the trained and untrained group on PCr recovery
dynamics was assumed to be small since similar exercise
intensity caused 50% of PCr depletion in all subjects. Any
interference from variation in muscle sampling arising from
localization differences between the static and dynamic
measurements were minimized by placement of the surface
coil at the same position, by the same person who performed
the high field measurements.

The second important piece of evidence in support of the
proposed hypothesis stems from the mechanistic
computational modeling. Our results indicate that the observed
relation between the Pi,/Pi, and 1pc, matched remarkable well
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Figure 2. 3'P spectra from a trained and an untrained subject. 3'P spectra from a trained and an untrained subject, after a 3 Hz
Lorentzian window function was applied. The Pi, intensity is higher in the trained subject. Spectra are scaled to the PCr resonance
peak. Peaks visible: two signals for inorganic phosphate (Pi; and Pi,), glycerol phosphocholine (GPC), glycerol
phosphoethanolamine (GPE), phosphocreatine(PCr), y-adenosine triphosphate (y-ATP). The inset shown the two signals for

inorganic phosphate (Pi, and Pi,) in the trained and untrained subjects in more detail.

doi: 10.1371/journal.pone.0076628.g002

(R? = 0.75) with the theoretically expected relation taking into
account the biochemical and biophysical properties of
mitochondria. These results support the hypothesis that the
Pi,/Pi, ratio measured in resting skeletal muscle is closely
related to mitochondrial density and therefore may provide a
non-invasive biomarker of this important clinical parameter.
There is one concern regarding a strict mitochondrial origin
of the Pi, signal in resting muscle that warrants addressing, in
particular in the context of the present study. As discussed
previously [8] free Pi in blood vessels within the NMR-sampled
muscle mass could potentially contribute to the measured Pi,
signal. Similar to the mitochondrial compartment, the pH in
blood plasma is alkaline with a pH of 7.4 in resting humans
[18]. Endurance training has been shown to cause an increase
in capillary density of muscle [19]. The specific concern is
therefore that the observed higher Pi,/Pi, ratio in an endurance

PLOS ONE | www.plosone.org

trained subject could in part be the result of increased capillary
density of their leg muscle. However, the maximal increase in
capillary density as a result of extreme endurance training is
reported to be on the order of 20-40% [20]. In contrast, we
found on average a 250% increase in normalized Pi, signal in
trained quadriceps muscle compared to controls (Figure 3).
Therefore any bias in our conclusions caused by increased
capillary density of trained muscle was only minor. In all cases
the voxel analyzed was carefully positioned inside the muscle
tissue, and did not include any visible major blood vessels. We
have investigated if the amplitude of the Pi, peak was
significantly higher if we intentionally incluse visible vessels in
the selected voxel. In most subjects however this was difficult,
because the largest visible blood vessels are located further
away from the surface coil, and therefore the S/N is not
sufficient to separately observe the Pi, peak. In the subjects in
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Figure 4. Dynamic series of 3'P NMR spectra. Dynamic series of 3'P NMR spectra obtained from the lateralis muscle during
bicycle exercise and recovery. Peaks visible are inorganic phosphate (Pi), phosphocreatine (PCr) and three signals for adenosine

triphosphate (y-, a- and B-ATP).
doi: 10.1371/journal.pone.0076628.g004
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Figure 3. Bar plot Pi,/Pi, ratio trained/untrained. Bar plot of
Pi,/Pi; ratio with a significant higher Pi,/Pi; in the endurance
trained athletes (0.07 + 0.01) compared to the normal physical
active group (0.03 £ 0.01) (P < 0.05).

doi: 10.1371/journal.pone.0076628.g003
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which the S/N was high enough in the area with visible vessels,
there was no significant difference in Pi, intensity with the
chosen voxel in the lateralis muscle.

The ability to use 3'P MRS in resting skeletal muscle at high
field as a tool to provide information about mitochondrial
properties, may benefit clinical investigations of mitochondrial
function in human muscle. Changes in mitochondrial function
have been associated with several disorders, including
diabetes [21] and chronic heart failure [22]. In vivo
mitochondrial capacity in these patients is quantified by the PCr
recovery method [23]. In addition, often, muscle biopsy
samples are obtained to determine whether a prolonged PCr
recovery period is a result of a decreased number of
mitochondria or intrinsic mitochondrial dysfunction. The Pi,/Pi,
read-out could provide similar information non-invasively; a
decrease or even absence of any detectable Pi,/Pi,
resonances could point towards a reduced mitochondrial
content, whereas no changes in Pi,/Pi; ratio in combination
with a prolonged PCr period could indicate the presence of
actual intrinsic mitochondrial dysfunction. This information
could also benefit the diagnosis of mitochondrial myopathies as
well as follow-up of the efficacy of treatment strategies. This
particular class of human mitochondrial disease is
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Figure 5. Bar plot of PCr recovery rate trained/untrained. Bar plot of PCr recovery rate with a significant faster 1.¢, in the
endurance trained athletes (12 + 3 s) compared to the normal physical active group (24 + 5 s) (P < 0.05).

doi: 10.1371/journal.pone.0076628.g005

characterized by a heterogeneous phenotype, ranging from
patients with severe mitochondrial dysfunction reflected by a
dramatic prolongation of PCr recovery kinetics to patients with
more or less normal PCr recovery kinetics [24]. The latter may
be the result of a compensatory increase in the number of
mitochondria, which should then be detectable by an increased
Pi,/Pi, ratio. Moreover, the non-invasive method for read-out of
mitochondrial density proposed in the present study could be
valuable in evaluating the effectiveness of stimulating
mitochondrial biogenesis by e.g., exercise therapy.

A final promising aspect of the method is the fact that if the
Pi, resonance amplitude in muscle reports on mitochondrial
matrix Pi content, the Pi, resonance frequency reports on the
pH gradient across the inner mitochondrial membrane (IMM). It
has been well documented that mitochondria in resting muscle
of patients with severe mitochondrial myopathy phenotypes
cannot sustain a normal basal free energy potential for ATP
hydrolysis [25]. While this suggests a significantly reduced
proton motive force across the IMM in these patients, this

PLOS ONE | www.plosone.org

corollary has in fact never been tested in vivo. Measurement of
the Pi, resonance frequency at 7T in muscle of these patients
could provide this wanting information, as well as provide an
additional read-out for diagnosis and therapy effect monitoring.

In summary, this study provides evidence that the Pi,/Pi,
ratio measured in skeletal muscle is closely related to
mitochondrial content. Testing the added value of this
biomarker in clinical investigation of mitochondrial diseases
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Figure 6. Model prediction of the relation between PCr
recovery time constant and Pi,/Pi,. Model prediction of the
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Experimental data points from the trained group are indicated
by o, and from the untrained group with *.
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provides promising directions for future application of high-field
in vivo NMR spectroscopy.
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