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Abstract: Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified
peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational
modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal
of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the
macrolactam cyclization by an ATP-dependent macrolactam synthetase. Recently, advanced
bioinformatic tools combined with genome mining have paved the way to uncover a rapidly growing
number of lasso peptides as well as a series of PTMs other than the general class-defining processes.
Despite abundant reviews focusing on lasso peptide discoveries, structures, properties, and
physiological functionalities, few summaries concerned their unique PTMs. In this review, we
summarized all the unique PTMs of lasso peptides uncovered to date, shedding light on the related
investigations in the future.
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1. Introduction

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a
family of natural products with remarkable structural variety and functional diversity due
to their extensive post-translational modifications (PTMs) [1,2]. An intriguing member of
RiPPs is lasso peptides that consist of an N-terminal macrolactam ring via an isopeptide
bond between the α-amine of the first amino acid residue and the carboxylic acid side
chain of an aspartate/glutamate located in the 7–9 residues, and a C-terminal tail threads
through the macrolactam to form a characteristic lariat topology. The unique knot-like
threaded topology endows most lasso peptides with extraordinary stability against heat,
proteolysis, and extreme pH conditions, making them distinct from other RiPPs. Diverse
physiological functionalities have been reported for lasso peptides, such as antimicrobial,
antitumor, antiviral, and receptor antagonistic activities [3–7].

Generally, at least three gene products are involved in the biosynthesis of lasso pep-
tides: a precursor peptide (A), an ATP-dependent cysteine protease (B), and an ATP-
dependent macrolactam synthetase (C). The ribosome-derived linear precursor peptide
consists of an N-terminal leader region for the recognition by different PTM enzymes and
a C-terminal core region that makes up the structural backbone of lasso peptides. The
cysteine protease (B) encompasses a ribosomal recognition element (RRE) domain in the
N-terminus to recognize and bind the leader peptide, after which the C-terminal protease
domain cleaves the leader peptide to release the leaderless core peptide (prefolded core
peptide in Figure 1). In many cases, the N-terminal RRE and the C-terminal protease
domains are split into two separate open reading frames (ORFs) termed B1 (RRE) and B2
(cysteine protease), respectively. The nascent core peptide is further delivered to macrolac-
tam cyclase C that uses ATP to activate the side carboxyl of Asp or Glu located at 7–9 as an
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AMP ester (activated core peptide in Figure 1), followed with the freely N-terminal α-amine
attacking the AMP-activated carboxyl group to form an isopeptide bond and achieve the
mature lasso peptide (Figure 1). It is very likely that the C-terminal tail of the core peptide
is prefolded into the threaded configuration prior to the ring’s closure, otherwise the tail
would be excluded by the macrolactam owing to the steric hindrance and unable to form
the correct lasso topology. Extra D genes encoding ATP-binding cassette transporters (ABC
transporters) are not rare in the biosynthetic gene clusters (BGCs) of lasso peptides and are
believed to be responsible for the extracellular transport of mature lasso peptides [3–7].
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The inexorable progress in genomics, bioinformatics, and chemical analytics greatly
facilities lasso peptides discovery during the last decade. In addition to the class-defining
modifications as leader peptide excision and core peptide cyclization, a series of unique
PTMs including disulfuration, phosphorylation, C-terminal methylation, acetylation, hy-
droxylation, etc., have been unveiled recently, further increasing the diversity of structures,
properties, and complicating the maturation mechanisms. Herein, we compile all the
unique PTMs of lasso peptides uncovered up to now, with the emphasis on the biosynthetic
mechanisms in detail.

2. Disulfuration

Disulfide bonds are rare even among all known RiPPs families, and may play an auxil-
iary role in maintaining the correct configurations, which is curial for biological activities.
To the best of our knowledge, disulfide bonds are only characterized in three classes of
RiPPs: glycocins, the post-translationally glycosylated bacteriocins featuring two nested
disulfide bonds that stabilize their unique helix–loop–helix structures and sugar moieties
on Ser, Thr, or Cys residues [8]; cyclotides, featuring a head-to-tail cyclic peptide backbone
with a cystine knot arrangement of three conserved disulfide bonds [9]; and conopeptides,
the cone-snail-derived RiPPs containing a high frequency of PTMs involving disulfide
bond(s) [10], albeit a few examples in other classes such as lanthipeptides, cyanobactins,
sactipeptides, and lasso peptides also contain disulfide(s). Two thiol-disulfide oxidore-
ductases and a protein-disulfide isomerase (PDI) were reported for the disulfide bond(s)
formation in glycocins and cyclotides, respectively [11,12], while the formation of disulfide
bond(s) in conopeptides still remains elusive.

The number and position of disulfide linkage are used to categorize lasso peptides
into four classes. Class I lasso peptides contain two disulfide bridges that link the tail above
and below the macrolactam ring, and one of the composed Cys residues is located at the
N-terminal of the core peptide. Class II lasso peptides are devoid of disulfide bridges,
only upheld by a steric lock formed from bulky amino acids placed on both sides of the
macrolactam ring, representing the largest category of lasso peptides. Class III and class
IV lasso peptides only have one disulfide bond, the difference between the two classes is
that the disulfide in class III connects a Cys residue on the ring with the other on the tail,
whereas class IV with a disulfide bridge resides completely on the tail (Figure 2a) [3–7].
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All characterized class I lasso peptides are isolated from Streptomyces and exhibit at-
tractive biological activities, five of which, termed MS-271 (siamycin I) [13], specialicin [14],
aborycin (RP-71955) [15], humidimycin [16], and sviceucin [17] share almost the same
sequences and BGC arrangements. In silico analysis of the BGC of sviceucin (svi) revealed
that apart from the fundamental genes coding for the precursor peptide (sviA), the split B
enzymes (sviB1/B2), the macrolactam synthetase (sviC), the transporters (sviD1-D4), and
regulators (sviG/R1/R2), two genes related to disulfide bond formation (sviE/F) were
also involved in the downstream of transporter genes. In particular, SviE belongs to the
DoxX family enzymes whose function is still ambiguous, SviF contains a thioredoxin do-
main with a conserved CXXC motif and is homologous to thiol-disulfide oxidoreductases
(TDORs) [17]. It was speculated that these two proteins may be responsible for the for-
mation of disulfide bonds, and their homologous genes also exist in four other BGCs of
class I lasso peptides (Figure 2b) [13–17]. However, sviceucin could still be generated in
the ∆sviF mutant strain and was only detected in the mycelia instead of present in both
culture supernatant and mycelia, which suggested that SviF is dispensable for the disulfide
bond formation in sviceucin but plays an essential role in mature peptide transport [17].
Similarly, MS-271, isolated from Streptomyces sp. M-271, could also be detected when mslE
and mslF (analogous to sviE and sviF) were knocked out, respectively, albeit the yields
were diminished, and no mercapto intermediates were detected [13]. In addition, the
homologous genes of sviE and sviF are absent in the BGC of arcumycin, another class I
lasso peptide isolated from Streptomyces sp. NRRL F-5639 very recently (Figure 2b) [18],
further implying that the disulfide oxidoreductases are dispensable for disulfide formation.



Int. J. Mol. Sci. 2022, 23, 7231 4 of 17

The mysterious class III lasso peptides comprise very few representatives including
BI-32169 [19] and 9401-LP1 [20]. The BGC of BI-32169 has not yet been identified as far
as we know, whereas the BGC of 9401-LP1 included no extra genes other than A-D genes
(Figure 2c) [20]. Very little is known about the biosynthesis of class III lasso peptides.

The BGC of the class IV lasso peptide felipeptins encodes a predicted flavin-dependent
oxidoreductase FilE (Figure 2d). Despite lacking any experimental evidence, this protein
was speculated to form the disulfide bridge located in the threaded tail [21]. However, no
filE homologous genes are founded in the BGCs of the other two reported class IV lasso
peptides LP2006 [22] and pandonodin [23]; thus, the exact function of FilE still remains
obscure. It is worth noting that no extra homologous genes other than the essential A-D
genes are located in the class IV BGCs of LP2006, pandonodin, and felipeptins (Figure 2d).
It is conceivable that the disulfuration is a non-enzymatic modification.

Natural stlassin is a class II lasso peptide without any extra PTMs (Figure 2a). Double
cysteine mutant variants Val2Cys/Ala11Cys and Val3Cys/Pro12Cys produced two stlassin
derivatives with disulfide bonds positioned between the macrolactam ring and the C-
terminal loop, creating a type of lasso fold that is outside the traditional four classes [24].
Notably, these derivatives support that disulfide bonds in lasso peptides might form
spontaneously, consistent with the findings from class I and IV lasso peptides. Further
investigation is required to clarify this controversial mechanism.

3. Phosphorylation

Phosphorylation was the earliest characterized tailoring process in lasso peptides.
Paeninodin, originated from firmicute strain Paenibacillus dendritiformis C454, is a class II
lasso peptide with a Ser residue in the C-terminus, of which the BGC encodes an additional
putative tailoring kinase (PadeK) (Figure 3a) [25]. Both unphosphorylated paeninodin and
phosphorylated paeninodin were detected in the extract of heterologous expression for
paeninodin cluster in Escherichia coli. Deletion of the kinase gene padeK resulted in the
production of merely unphosphorylated paeninodin, while restitution of the knocked-out
gene by co-expression with another vector-bearing padeK led to restoration of the phos-
phorylated compound, suggesting the direct link between the function of kinase PadeK
and the occurrence of the tailoring phosphorylation process on paeninodin. Precursor
peptide PadeA instead of the threaded lasso peptide was verified to be the substrate of
kinase PadeK, which specifically modified the hydroxyl group of the C-terminal Ser, the
extremely conserved site in the precursor sequences from various lasso peptide BGCs
featuring a homologous kinase gene, suggesting the modification step prior to the funda-
mental maturing process catalyzed by B2 and C proteins (Figure 3b) [25]. Owing to the low
solubility of PadeK, the homologous kinase ThcoK from another firmicute Thermobacacillus
composti KWC4 was chosen instead of PadeK to be characterized in vitro. Replacing padeK
with thcoK in the paeninodin heterologous expression system successfully produced the
phosphorylated peptide with only minor amounts of unmodified compound, suggesting
the feasibility of the hybrid gene cluster. Sequence alignments of lasso peptide-tailoring
kinases exposed a conserved His-Lys-Asp-Asp motif. The imperative roles of these four
catalytic residues were further demonstrated via site-directed mutations [25].

Subsequent investigation of the kinase ThcoK and another kinase SyanK from pro-
teobacterium Sphingobium yanoikuyae ATCC 51230 revealed the attractive polyphosphory-
lation on their precursor peptides ThcoA and SyanA, despite their low substrate identity
except the conserved C-terminal Ser residue [26]. These kinases not only phosphorylated
the native precursor peptides but could also modify the phosphate group by stepwise
transfer of the second, the third, and even the fourth phosphate group at most (Figure 3c).
Tandem mass spectrometry of the lasso peptides confirmed their polyphosphorylated state
and the polyphosphorylated position of the C-terminal Ser residue. The degree of modifica-
tion depends on the donor of the phosphate group (ATP or GTP) along with the sequence
of the precursor peptides [26]. The yields are rather low for both monophosphorylation
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and polyphosphorylation, indicating the possibility that the phosphorylation could be
facilitated by the dual functional B1 proteins (vide infra).
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of pseudomycoidin.

In addition to the putative kinase gene (psmK), an annotated nucleotidyltransferase
gene (psmN) was identified as well in the BGC of pseudomycoidin from Bacillus pseu-
domycoides DSM 12442. Heterologous expression of the psm gene cluster produced both
mono- or polyphosphorylated and glycosylated lasso peptides (Figure 3d) and knocking
out the related genes validated that PsmK is responsible for the (poly)phosphorylation
of the C-terminal Ser residue and PsmN for installing one or two hexose groups on the
nascent phosphorylated Ser residue. These results suggested that PsmK is indeed a kinase
and PsmN might act as a novel glycosyltransferase homologous to nucleotidyltransferase,
appending hexose groups on the phosphorylated peptide. Alternatively, the probability
that PsmN is actually a nucleotidyltransferase and the glycosylation is installed after nu-
cleotidylation via a glycosyltransferase present in the E. coli host could not be excluded at
present [27].

4. Methylation

Methylation is a versatile modification in the biosynthesis of various natural products.
Lassomycin discovered from Lentzea kentuckyensis sp. is an absorbing lasso peptide that
exhibits outstanding activities against a variety of Mycobacterium tuberculosis strains with
minimum inhibitory concentration (MIC) values of 0.8–3 µg/mL and is inactive against
symbionts of the human microbiota [28]. Although the initial structure elucidation in-
dicated that lassomycin adopted an unthreaded structure [28], the subsequent chemical
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synthesis of this peptide showed that the reported structure was incorrect and a character-
istic threaded conformation was essential for its anti-tuberculosis (TB) activity [29,30]. In
addition, lassomycin features a unique methyl ester in the C-terminal carboxyl group, and
the putative O-methyltransferase, LasF, from its BGC was considered to be responsible for
the C-terminal methylation (Figure 4a) [28].
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To understand the biosynthetic pathway of the methylated lasso peptide, two
lassomycin-like BGCs from Sanguibacter keddieii DSM 10542 (sake) and Streptomyces sp.
Amel2xC10 (stsp) containing predicted O-methyltransferase genes (sakeM and stspM) were
identified by genome mining (Figure 4a,b). StspM is a novel methyltransferase that spe-
cially modified the C-terminal carboxyl of the precursor peptide with a broad substrate
specificity, leading the formation of C-terminal methyl carboxylate to precede the matu-
ration process catalyzed by RRE (B1 protein), peptidase (B2 protein), and macrolactam
cyclase (C protein) in the lasso peptide biosynthetic pathway (Figure 4c) [31]. Based on
homology modeling with mitomycin-7-O-methyltransferase [32] and mutational analysis,
His242 and Glu296 were validated as the catalytic center of StspM [31]. Considering the
rare O-methyltransferases involved in the biosynthesis of lassomycin and two potential
lassomycin-like peptides, the biosynthetic mechanism of lassomycin is speculated to follow
the same pathway, and the lassomycin-like lasso peptides display identical formability to
be candidates for anti-TB drugs.

Interestingly, the structural genes of lassomycin share high homology with the associ-
ated genes of lariatin A, another anti-tuberculosis lasso peptide with no tailoring modifica-
tion [33,34]. Previous studies showed that the C-terminus of lariatin A significantly affected
its anti-mycobacterial activity [35,36], which raises the question of whether the C-terminal
methylation of lassomycin is equally necessary for its physiological functionality.

5. Acetylation

A novel lasso peptide BGC encoded for albusnodin was found in S. albus DSM 41398
which includes a putative acetyltransferase gene (albT) as well as the canonical genes albA,
albB, and albC [37]. The only observed heterologous expression product was the threaded,
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C-terminal Cys truncated albusnodin with an acetyl group attached to the ε-amino group of
Lys10 (Figure 5) [37]. Sequence alignments showed that Lys10 was highly conserved among
precursor peptides in an array of lasso peptide BGCs that resembled the BGC architecture of
albusnodin. Heterologous expression of the albusnodin cluster lacking the acetyltransferase
gene albT led to no trace of the predicted unacetylated intermediate [37], surmising that
the acetylation is vital and occurs in the early stage of albusnodin biosynthesis rather than
the last step. Moreover, the BGC of the antitumor lasso peptide ulleungdin also contains
an acetyltransferase gene in the downstream of B2, yet acetylated ulleungdin was not
detected [38]. It seems that this acetyltransferase is unrelated to ulleungdin.
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6. Hydroxylation

Canucin A and B are 14-mer lasso peptides with identical sequences discovered
by eliciting a cryptic BGC (hereafter named can) in S. canus. The C-terminal Asp14 of
canucin A was uniquely β-hydroxylated [39]. Bioinformatic analysis showed that the canE
gene encoding a putative non-heme iron/2-oxoglutarate (Fe/2-OG)-dependent enzyme
is involved in this cluster. In vitro characterization of CanE proved that it catalyzed the
β-hydroxylation on Asp14 in canucin A (Figure 6a) [40], consistent with Fe/2-OG enzymes
that hydroxylated the inactivated carbon centers [41]. No conversion from canucin B to
canucin A was detected for the incubation of CanE and canucin B. Contrarily, the full-length
precursor peptide CanA could be hydroxylated by CanE, demonstrating that CanE carries
out hydroxylation on the linear precursor peptide instead of the threaded lasso peptide [40].
In addition, CanE could also hydroxylate the linear core peptide, albeit inefficiently. Further
investigation unexpectedly displayed that the addition of CanB1 dramatically enhanced
the catalytic efficiency of CanE, indicating that CanB1 acts as a bifunctional protein and
facilitates both the proteolysis reaction with CanB2 and the β-hydroxylation with CanE
(Figure 6a) [40].

These results suggested a new dual path of canucin A biosynthesis. For the main
pathway, CanB1 combined with the nascent precursor peptide CanA and then facilitated
the tailoring hydroxylation by CanE, following leader peptide liberation by CanB2 and core
peptide macrolactam cyclization by CanC. Another minor pathway with lower productivity
is that CanE hydroxylated the precursor CanA individually, followed with the recognition
of CanB1 and the succedent maturation by CanB2 and CanC. Notably, the possibility of
hydroxylating the lasso threaded canucin B to β-hydroxylated canucin A is ruled out
(Figure 6a) [40]. Considering that the B1 proteins in lasso peptides display comprehensive
abilities to facilitate the liberation in various cases [42–45], B1 proteins from other BGCs
including additional tailoring enzymes may perform similar dual functions.
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Lasso peptides RES-701s originally isolated from Streptomyces sp. RE-896 are regarded
as selective endothelin type B receptor (ETBR) antagonists. RES-701-2 and RES-701-4
contain a C-terminal 7-hydroxy-tryptophan compared to the unhydroxylated RES-701-1
and RES-701-3 [46–48]. Recently, RES-701-3 and RES-701-4 that differed in the hydroxylation
of the C-terminal tryptophan residue were rediscovered through genome mining from the
marine S. caniferus CA-271066, and their BGC (hereafter termed res) was identified with
an additional gene (resE) encoding a hypothetical protein (Figure 6b). Despite lacking any
evidence, ResE was proposed for the 7-hydroxylation of the C-terminal tryptophan residue,
which remains to be proved in the future [49].

7. Epimerization

The class I lasso peptide MS-271 features the rare non-proteinogenic D-tryptophan at
the C-terminus in addition to the two disulfide bonds. The previously identified BGC of
MS-271 (msl) contained a gene coding for a CapA family protein (MslH) belonging to the
metallophosphatase superfamily (Figure 7a), deletion of which completely abolished the
production of MS-271 [13]. Homologous genes were also identified in other BGCs such as
specialicin [14], aborycin [15], humidimycin [16], and poly-γ-glutamic acid (PGA) [50], a
biopolymer that comprises D- and L-glutamic acid connected via amide bonds, but were
absent in the BGCs of non-D-Trp containing class I lasso peptides such as sviceucin [17]
and arcumycin [18] (Figure 2b).
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The function of MslH was further validated for the epimerization of the C-terminal L-
Trp in vitro [51]. The full-length precursor MslA is the most favorite substrate for MslH, as
the compared reaction with leaderless core peptide only produced a minor amount of D-Trp.
Just like CanB1 in canucin A biosynthesis, MslB1 is also a bifunctional protein that not only
assists the proteolysis of leader peptide catalyzed by MslB2, but also remarkably enhances
the epimerization activity of MslH. Only about 50% conversion of MslA to epi-MslA was
observed, implying that MslH generated an equilibrium mixture of the epimers. Since the
C-terminal L-Trp derivative has never been detected in the MS-271 producer, the following
MslB2 and MslC maturation processes probably recognize epi-MslA as the sole substrate
and drive the equilibrium to D-Trp containing precursor peptide (Figure 7b). Furthermore,
MslH could epimerize other aromatic residues such as W21F and W21Y at considerable
levels, and chimeric substrates with the sviceucin N-terminal core peptide sequence and
the C-terminal “CFW” (Figure 2b), displaying a broad substrate tolerance [51].

D-amino acids are limited in RiPPs and only a few mechanisms have been verified.
For instance, the single radical S-adenosylmethionine (SAM) peptide epimerase PoyD
introduces up to 18 D-amino acids in the biosynthesis of polytheonamides [52], another
radical SAM epimerase YydG epimerizes the formation of a D-Val and D-allo-Ile residues
in the biosynthesis of the epipeptide YydF [53]. Additionally, D-Ala and D-amino bu-
tyric acid (D-Abu) residues are introduced into lanthipeptides by the hydrogenation of
2,3-didehydroalanine (Dha, dehydrated Ser) and 2,3-didehydrobutyrine (Dhb, dehydrated
Thr) via different oxidoreductases, including the zinc-dependent dehydrogenases termed
LanJA [54], the flavin oxidoreductases termed LanJB [55], and the F420H2-dependent re-
ductases termed LanJC [56]. The characterization of the metallophosphatase superfamily
protein MslH provides a novel biosynthetic mechanism for D-amino acids in RiPPs.

8. Citrullination

Citrullination, referring to Arg deimination to produce non-proteinogenic amino acid
citrulline (Cit), had never been reported in RiPPs until the lasso peptide citrulassin A was
discovered from S. albulus NRRL B-3066 using the Rapid ORF Description and Evaluation
Online (RODEO) genome-mining tool. The conversion of Arg9, which is invariable among
the citrulassin family, to Cit was certified by in silico analysis of the precursor peptide
sequence and nuclear magnetic resonance (NMR) analysis of the maturated citrulassin A
(Figure 8b). Heterologous expression of the citrulassin A cluster with ~20 kb upstream and
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downstream regions only produced des-citrulassin A with unmodified Arg9, suggesting
the enzyme responsible for citrulline generation is remotely encoded in the genome [22].
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thermophila (lih) (Figure 9a) resulted in the discovery of cellulonodin-2 and lihuanodin, 
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methylation of Asp6 to the corresponding methyl ester, followed with spontaneous nu-
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Subsequent research revealed that the peptidyl arginine deiminase (PAD) is responsi-
ble for deimination of Arg to generate Cit (Figure 8a), as the distantly encoded pad gene
was ubiquitous in the genomes of citrulassin producing strains with only one exception,
while strains lacking pad correlated to Arg-bearing des-citrulassin production. Heterologous
expression of the pad gene in native des-citrulassin D producer (S. katrae NRRL B-16271)
resulted in the conversion to deiminated citrulassin D (Figure 8c) [57]. Future work is
necessary to unveil the timing of deimination during citrulassin biosynthesis.

9. Succinimidation

Protein L-isoaspartyl methyltransferases (PIMTs) usually have a crucial role in protein
repair, recognizing and repairing abnormal isoaspartate (isoAsp) residues to L-Asp through
a SAM-dependent methyl esterification reaction [58]. In total, 48 lasso peptide BGCs were
uncovered bearing genes annotated as O-methyltransferases that belong to PIMT homo-
logues, and the extremely conserved Asp6 in all the putative precursor peptides suggested
that it might be the modification site [59]. Heterologous expression of two clusters from
actinobacterium Thermobifida cellulosilytica (tce) and firmicute Lihuaxuella thermophila (lih)
(Figure 9a) resulted in the discovery of cellulonodin-2 and lihuanodin, featuring an un-
conventional succinimide moiety (also known as aspartimide) in the macrolactam ring.
It was experimentally proved in vitro that TceM and LihM catalyzed the methylation of
Asp6 to the corresponding methyl ester, followed with spontaneous nucleophilic attack
of the adjacent Thr7 amino group to form a stable succinimide moiety without further
hydrolyzation. Notably, TceM and LihM carried out dehydration on Asp instead of isoAsp,
which is in stark contrast to canonical PIMTs. In addition, both TceM and LihM only
recognized the threaded lasso peptides rather than linear precursors or isopeptide-bonded
rings (Figure 9b) [59].

The functions of TceM and LihM are distinct from the previously reported PIMT OlvSA
involved in the biosynthesis of lanthipeptide OlvA (BCSA), since the OlvSA catalytic suc-
cinimide group was followed with non-enzymatic hydrolysis to either Asp or isoAsp and
this process was reversible as isoAsp could be recognized by OlvSA as well to regenerate
succinimide [60].
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10. Linearization

Different from other kinds of tailoring enzymes carrying out various modifications,
isopeptidases (IsoPs) are the only post-translational enzymes that take part in the lasso pep-
tide decomposition. The BGCs of astexins from Asticcacaulis excentricus feature additional
genes atxE1 and atxE2 annotated as peptidases, which are homologous to prolyl olipopep-
tidase (POP) family proteins [61,62]. Incubation of astexin-2 and -3 with AtxE2 showed
retention time changes and a mass increase of 18 Da, demonstrating the hydrolyzation of a
single amide bond. The identity in both retention times and the MS2 spectra with synthetic
linear astexin-2 and -3 clarified that AtxE2 is indeed an isopeptidase which linearized the
lasso peptides via specific hydrolysis of the isopeptide bonds (Figure 10) [62].
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Figure 10. The isopeptidase-containing BGCs and the linearization of lasso peptide. All the
isopeptidase-containing BGCs lack the gene encoding ABC transporter except the BGC of the recently
characterized rubrinodin. The isopeptidase hydrolyzes the isopeptide bond to reproduce the linear
core peptide.

Isopeptidases only hydrolyze lasso peptides derived from the cognate BGCs. As they
are located in different lasso peptide BGCs, AtxE1 and AtxE2 showed no hydrolytic activity
toward the lasso peptide derived from the other BGC [62]. In total, 24 lasso peptides from
different BGCs were used to test the substrate specificity of SpI-isopeptidase (SpI-IsoP)
from the BGC of sphingopyxin I (SpI) (Figure 10). None of the substrates except SpI itself
could be hydrolyzed by SpI-IsoP [63]. In spite of the narrow substrate specificity, IsoPs
exhibited the promiscuous nature as RiPP modification enzymes with substrate mutation
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variants. The linearized products of loop variants were relatively low, indicating that the
loop region may serve as the recognition element for isopeptidase [63,64].

The threaded topology is proved to be necessary for isopeptidase hydrolysis. The
hydrolyzation could be detected by retention time changes in HPLC and mass increases
in MS2 spectra, but no alteration was observed for unthreaded astexin-2 with AtxE2, sug-
gesting the requirement of lariat knot configuration [62]. The crystal structures of AtxE2
and SpI-IsoP showed that isopeptidases consisted of an N-terminal open β-propeller do-
main and a C-terminal α/β-hydrolase domain [63,65]. The latter featured a conserved
Ser-His-Glu/Asp catalytic triad of serine protease, and the isopeptide bond was cleaved
via nucleophilic attack by the Ser alkoxide [62,63,65]. Cocrystallization of AtxE2 in complex
with tail-truncated astexin-3 further demonstrated that isopeptidase recognizes lasso pep-
tide by shape complementarity rather than specific amino acid sequence, as the Ser10-Gln14
loop region of astexin-3 is suitably accommodated in a narrow and slightly acidic pocket of
AtxE2 and a few specific interactions within the complex interface exist [65].

Another intriguing insight into substrate recognition is provided by isopeptidase
BenE (Figure 10). Upon heating, benenodin-1 achieved an equilibrium between two
threaded conformers with distinct loop region sizes [66]. The conformer 2 more resembles
a partially unthreaded peptide wherein the loop is expanded. Particularly, the natural
conformer 1 could be cleaved by BenE while conformer 2 within an equilibrium mixture
treated under the same conditions could not be processed [66]. It was supposed that the
larger loop region of conformer 2 did not fit the active sites of BenE any longer, since
the predicted structure of BenE was highly identical to AtxE2 along with the same loop
size of benenodin-1 conformer 1 and astexin-3. To further validate the significance of
loop size, a chimeric benenodin-1 lasso peptide with the same loop segment of astexin-3
was matured to a threaded structure by benenodin-1 biosynthetic machinery, and then
successfully hydrolyzed by both BenE and AtxE2, which had no cross-reactivities toward
original substrates, and the benenodin-1/astexin-3 chimera was a more suitable substrate
for AtxE2 than BenE [62,66]. Although the ring size of chimeric peptide is one residue
smaller than astexin-3, the original substrate of AtxE2, the lasso peptide with correct loop
shape could still be recruited into the isopeptidase and effectively cleaved, reinforcing the
idea that the loop region of lasso peptides serves as the dominant recognition element for
isopeptidase functioning [66].

It seems that the expression and degradation of lasso peptides produced by
isopeptidase-containing clusters are under strict regulation. All the isopeptidase clusters
uncovered to date share an almost constant gene architecture in which a GntR-like transcrip-
tional regulator is located preceding the precursor gene, TonB-dependent transporter as
well as σ/anti-σ factor pairs are found downstream of the isopeptidase gene [61–63,66–69],
homologous to the biosynthetic and regulatory system of siderophores to some extent
(Figure 10) [62,70]. Phylogenetic analysis exhibited that isopeptidase-containing clusters
are a unique clade distinct from BGCs only consisting of class-defining genes or plus
ABC-transporter genes. Meanwhile, the distinction between two clades in sequence com-
position preference and precursor amino acid conservation supported the two-clade model
and indicated different evolutional pressures exerted by nature [62]. Notably, the known
isopeptidase-containing lasso peptides, except astexin-1 with narrow spectrum activity [61],
lack any antimicrobial activity, which are in contrast to the pervasive self-immunity of
ABC-transporter-containing lasso peptides [62]. Unexpectedly, the BGC of recently char-
acterized rubrinodin features both an ABC transporter and an isopeptidase, along with
a Ton-B-dependent receptor and FecI-/FecR-like regulator pairs, representing an evolu-
tional intermediate of the two-clade model (Figure 10) [71]. It was hypothesized that the
hydrolysis of lasso peptides might contribute to the control of intracellular concentration
of bioactive lasso products, or isopeptidases may act as factors that combine and release
the cargo bound to lasso peptides, related to the roles of siderophores [62], yet the exact
biological functionalities of isopeptidase-containing lasso peptides still remain enigmatic.
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11. Conclusions and Perspectives

Miscellaneous PTMs have always been the highlight of RiPP characteristics, which
often bestow diversified generating strategies and improved functionalities on this class of
natural products, albeit derived from the limited proteinogenic amino acids. In consider-
ation of their unique lariat knot structure and resistance against thermal and proteolytic
inactivation, and especially the eximious physiological functions such as antimicrobial
activities against Gram-positive bacteria (e.g., arcumycin [18], LP2006 [22], etc.) and Gram-
negative bacteria (e.g., acinetodin, klebsidin [72], citrocin [73], etc.), antitumor activities
(e.g., ulleungdin [38], felipeptins [21], etc.), antiviral activities (e.g., MS-271, specialicin [14],
etc.) and receptor antagonistic activity (e.g., stlassin [24]), lasso peptides have attracted
much attention during the past few years with a notably increasing number of RiPPs of
this subclass.

Although no lasso peptides are currently used as marketed drugs or tested in clinical
trials as far as we know, it is noteworthy that two antitumor candidates termed LAS-103
and LAS-20x are under investigation by Lassogen, Inc., a company that aim to unlock the
potential of lasso peptides for cancer treatment [74]. These compounds further shed light
on the promising lasso-peptide-derived therapeutics, as the former is a potent antagonist
of ETBR to increase immune response for ETBR-driven malignancies and the latter inhibits
the activity of chemokine receptor CCR4 to reduce immunosuppression in the tumor
microenvironment [75]. Tailoring PTMs of lasso peptides provides a means to decorate these
privileged scaffolds via introducing specific functional groups or altering the structures of
the backbone, investigation of which leads to appreciation of the catalytic mechanisms and
prospects for bioengineering purposes.

The auxiliary PTMs such as phosphorylation, methylation, hydroxylation, and epimer-
ization recognize the linear precursors ahead of the removal of leader peptides [25,26,31],
of which the hydroxylation and epimerization have been confirmed to be promoted by the
B1 proteins [40,51]. The possibilities of the promotion by B1 proteins for phosphorylation
and methylation cannot be ruled out. We hypothesize that the protein–protein interactions
between B1 proteins and the unique post-translational enzymes assist the recognition of
precursor peptides. Chances are that the acetylation of albusnodin occurs on the precursor
peptide as well, as the absence of albT completely abolished the production of albusnodin
and no unacetylated intermediate was detected [37]. The succinimidation and linearization,
on the contrary, are carried out on the mature lasso rather than linear peptides [59,62,63,66].
There is no clue for the timing of the seemingly spontaneous disulfuration and the non-
specific citrullination, and further research is required.

The unusual PTMs mentioned further expand the structural diversity of lasso peptides.
The disulfide bridges in class I, III, and IV lasso peptides are of vital importance for the
knot-like threaded topology and bioactivities [4,5]. However, the functionalities for other
PTMs uncovered up to now, i.e., phosphorylation, methylation, acetylation, hydroxylation,
epimerization, citrullination, succinimidation, and linearization, are still to be completely
unraveled. It is likely that the test conditions set in vitro do not parallel the biological
context in which the PTMs evolved [76]. Since current evidence has affirmed D-amino
acids in the stability of peptide structures and resistibility for proteolysis [77], and the
antimicrobial activity for Gram-positive bacteria [53,56], the D-Trp residue in some class I
lasso peptides might play an analogic role.

The identification of unique PTMs is facilitated by the enzymes generally located
in the flanking of BGCs, and the types are relatively predictable through analysis of the
protein sequences. The uncovered tailoring enzymes of lasso peptides are limited com-
pared with other highly modified RiPPs, whereas tremendous uncharacterized enzymes
have been identified from steadily growing genomic data. The characterized tailoring
enzymes can be used as candidates in bioengineering of lasso peptides for optimizing
the properties and functionalities. Future study would not only focus on expansion of
novel post-translationally modified lasso peptides, but also their catalytic mechanisms,
especially for the recognition or interactions among tailoring enzymes, substrates, and other
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components such as B1 proteins. Moreover, mining peculiar physiological functionalities
and better understanding the interactions of tailored lasso peptides with their biological
targets would provide more information about the significance of these unusual PTMs.
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