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Aims Hypothesizing that aortic outflow velocity profiles contain more valuable information about aortic valve obstruction and
left ventricular contractility than can be captured by the human eye, features of the complex geometry of Doppler trac-
ings from patients with severe aortic stenosis (AS) were extracted by a convolutional neural network (CNN).

...................................................................................................................................................................................................
Methods
and results

After pre-training a CNN (VGG-16) on a large data set (ImageNet data set; 14 million images belonging to 1000
classes), the convolutional part was employed to transform Doppler tracings to 1D arrays. Among 366 eligible
patients [age: 79.8 ± 6.77 years; 146 (39.9%) women] with pre-procedural echocardiography and right heart cath-
eterization prior to transcatheter aortic valve replacement (TAVR), good quality Doppler tracings from 101
patients were analysed. The convolutional part of the pre-trained VGG-16 model in conjunction with principal
component analysis and k-means clustering distinguished two shapes of aortic outflow velocity profiles. Kaplan–
Meier analysis revealed that mortality in patients from Cluster 2 (n = 40, 39.6%) was significantly increased [hazard
ratio (HR) for 2-year mortality: 3; 95% confidence interval (CI): 1–8.9]. Apart from reduced cardiac output and
mean aortic valve gradient, patients from Cluster 2 were also characterized by signs of pulmonary hypertension,
impaired right ventricular function, and right atrial enlargement. After training an extreme gradient boosting algo-
rithm on these 101 patients, validation on the remaining 265 patients confirmed that patients assigned to Cluster 2
show increased mortality (HR for 2-year mortality: 2.6; 95% CI: 1.4–5.1, P-value: 0.004).

...................................................................................................................................................................................................
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Conclusion Transfer learning enables sophisticated pattern recognition even in clinical data sets of limited size. Importantly, it is
the left ventricular compensation capacity in the face of increased afterload, and not so much the actual obstruc-
tion of the aortic valve, that determines fate after TAVR.
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Introduction

In the dawning age of artificial intelligence, machine learning technol-
ogy is progressively implemented into medical research and clinical
decision support.1–6 Without the constraint of any a priori

assumption, machine learning algorithms iteratively learn from data,
typically requiring a myriad of information. Bedside research
embedded in clinical practice, however, is commonly based on
modest-sized patient cohorts, e.g. in the setting of rare diseases or
novel treatment strategies. Transfer learning holds the promise to

Graphical Abstract

M. Lachmann et al.154



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..alleviate the bottleneck of insufficient training data by acquiring fea-
ture extraction capacity from a large data set and applying it to a
related problem in the same domain.

Severe aortic stenosis (AS), which can trigger a deleterious cas-
cade including left heart dysfunction, pulmonary hypertension (PH),
and eventually right heart failure,7 and which is associated with a 2-
year mortality of up to more than 50% unless valve replacement is
performed promptly,8 is typically diagnosed by transthoracic echo-
cardiography.9 Besides an increasing gradient due to progressive nar-
rowing of the aortic valve, the aortic outflow velocity profile in
patients with severe AS changes from a triangular shape with an early
peak to a much more rounded form with a later peak.10

Furthermore, acceleration of flow velocity will eventually deteriorate
due to left ventricular decompensation, resulting in a ‘low flow, low
gradient AS’.11

Hypothesizing that the aortic outflow velocity profile contains
more valuable information about aortic valve obstruction and left
ventricular contractility than can be captured by human cognition,
this study sought to extract features of the complex geometry of
Doppler tracings by employing a convolutional neural network
(CNN). VGG-16 is a CNN with state-of-the-art feature extraction
capacity, which achieved 92.7% Top 5 test accuracy in a data set of
over 14 million regular natural images belonging to 1000 classes
(ImageNet data set).12 Adopting the concept of transfer learning, the
convolutional part of the pre-trained VGG-16 model was employed
to transform Doppler tracings from a small, but well-characterized
cohort of patients with severe AS to 1D arrays. After principal com-
ponent analysis (PCA) and k-means clustering of those 1D arrays,
practice-relevant evidence was assessed by relating cluster assign-
ment with all-cause 2-year mortality after transcatheter aortic valve
replacement (TAVR).

Methods

Patient recruitment
This is a post hoc analysis of prospectively and systematically collected
data from patients undergoing TAVR for severe AS at two tertiary care
centres in Munich, Germany, between January 2014 and December 2020.
The study was approved by the respective local ethics committees in
conformity with the Declaration of Helsinki, and all patients enrolled pro-
vided written informed consent. In total, the joint registry listed 2575
patients. Among 366 completely characterized patients with pre-
procedural echocardiography and right heart catheterization prior to
TAVR, good quality Doppler tracings with sharp, well-defined borders
from the intentionally small number of 101 patients were analysed, con-
stituting the derivation cohort (Figure 1A). The validation cohort was con-
sequently represented by the remaining 265 patients with complete data
from pre-procedural echocardiography and right heart catheterization,
yet without good quality Doppler tracings (or no available records at all).
As an elderly patient population approaching the end of life was studied,
post-procedural 2-year all-cause mortality was defined as a clinically
meaningful primary outcome measure. Survival data were obtained from
the German Civil Registry in case of patients being registered in Germany
(n = 354; 96.7%), or from general practitioners, hospitals, and practice
cardiologists for patients from foreign countries.

Transthoracic echocardiography
All echocardiographic studies were performed by experienced institu-
tional cardiologists during clinical routine using a commercially available
echocardiography system equipped with a 2.5-MHz multifrequency
phased-array transducer. The continuous wave Doppler-derived aortic
outflow velocity profiles were obtained from the apical four-chamber
view (Figure 2A). Only 101 aortic outflow velocity profiles were selected
for clustering depending on image quality—meaning that Doppler trac-
ings with insufficient contrast or with labelling within the aortic outflow
velocity profile were excluded (Figure 2B).

Statistical analysis
All statistical analyses were performed using R version 3.6.3 (R
Foundation for Statistical Computing, Vienna, Austria; see Supplementary
material online, Table S1 for a complete list of employed R packages). The
pre-trained VGG-16 model on the ImageNet data set was loaded from
the Keras deep learning library (R package ‘keras’), and the classifier part
of the VGG-16 model was omitted. After pre-processing (Figure 2A),
scaled Doppler tracings as input images were thus converted to a feature
tensor of shape as the output of the last layer of the convolutional part (R
packages ‘magick’ and ‘imager’). After transformation from feature tensor
of shape (7, 7, 512) to 1D array with 7 � 7 � 512 values per instance,
PCA and k-means clustering were applied (R packages ‘FactoMineR’, ‘fac-
toextra’, and ‘NbClust’). Notably, we expected two clusters to be segre-
gated. Survival was illustrated using Kaplan–Meier method, and a Cox
proportional hazards model was used to estimate hazard ratios (HRs) be-
tween identified clusters (R packages ‘survival’, ‘survminer’, and ‘ggforest’).
Missing values among variables that were identified as significant predic-
tors for 2-year mortality in initial univariate analysis were imputed by a
random forest algorithm (R package ‘missForest’)13 before proceeding
with multivariate analysis, but were not used hereinafter, e.g. for cluster
comparisons. Because the derivation cohort was unbalanced with regards
to cluster assignments, a technique to synthetically over-sample the mi-
nority class was applied (synthetic minority over-sampling technique;
SMOTE) (R package ‘DMwR’).14 After balancing, an extreme gradient
boosting algorithm (R package ‘xgboost’) was selected as the machine
learning technique of choice for cluster assignment in future patients, and
it was trained on a comprehensive set of functional and structural param-
eters from echocardiography and right heart catheterization. Again, miss-
ing values were imputed by a random forest algorithm. SHAP (SHapley
Additive exPlanations) values were calculated to compare the contribu-
tion of input variables to the model prediction (R package
‘SHAPforxgboost’).15 To sum up, this study was designed as a two-step
experiment:

(1) In a first step, we aimed to decipher meaningful echocardiographic
signatures and related cardiac phenotypes by analysing aortic out-
flow velocity profiles (Doppler tracings) from 101 patients with se-
vere AS undergoing TAVR by using a pre-trained CNN in
conjunction with PCA and k-means clustering (unsupervised ma-
chine learning experiment).

(2) Since the first experiment did not allow to assign future patients to
the just defined clusters, we additionally sought to employ an ex-
treme gradient boosting algorithm, which was trained on functional
and structural parameters of cardiopulmonary conditions from the
101 patients with good quality Doppler tracings (hereinafter
referred to as derivation cohort) to predict cluster assignments as
stemming from the first experiment, and which was then validated
on the remaining 265 patients (hereinafter referred to as validation
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Figure 1 General information about the study population from recruitment to follow-up. (A) A flowchart for patient recruitment in order to select
101 patients with best quality Doppler tracings. Notably, 56 out of 366 patients (15.3%) had no Doppler tracings as raw data available. (B) Kaplan–
Meier survival plot testing for differences in survival between derivation and validation cohorts. RHC, right heart catheterization; TAVR, transcatheter
aortic valve replacement.

Figure 2 Pre-processing of aortic outflow velocity profiles from patients with severe AS data input for the convolutional neural network. (A)
Schematic of the image pre-processing pipeline. One representative aortic outflow velocity profile per patient was extracted from records. Cropping
of the region of interest, i.e. during systole, was done manually. Since original echocardiographic images were recorded at different scales, but homo-
geneity of data input had to be provided, Doppler tracings were further manually scaled according to uniform time and velocity axes (see also
Supplementary material online, Figure S1 for a standard operation procedure explaining additional details to create the desired normalized profiles).
Neither image normalization nor histogram equalization was applied during pre-processing. Re-sizing to 224� 224 pixel format as the default input
size of the VGG-16 model was already part of the image processing R code after loading the folder with 101 scaled Doppler tracings. (B)
Representative Doppler tracings that were excluded due to insufficient contrast, or due to labelling within the aortic outflow velocity profile.
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..cohort) with regards to cluster-related survival after TAVR (super-
vised machine learning experiment).

Categorical variables are presented as numbers and frequencies (%),
whilst continuous variables are given as mean ± standard deviation (SD)
and 95% confidence interval (CI). Chi-square or Fisher’s exact test was
used to evaluate the association between categorical variables, and
independent-samples Wilcoxon test was used for comparison of con-
tinuous variables. For analysis of collinearity, Pearson’s correlation coeffi-
cients were calculated. A P-value <_0.05 was considered to indicate
statistical significance.

Results

One hundred and one patients with good
quality Doppler tracings illustrate the
problem of data scarcity in clinical
research
Importantly, aortic outflow velocity profiles from only 101 out of 366
patients were initially analysed (Figure 1A) to emphasize the problem
of data scarcity in clinical research. Therefore, to confirm the repre-
sentative nature of the small-sized derivation cohort at hand [mean
age: 79.3 ± 6.78; 95% CI: 78.0–80.7 years; 49 (48.5%) women], deriv-
ation and validation cohorts were initially compared with regards to
demographic, clinical, echocardiographic, and haemodynamic charac-
teristics (Supplementary material online, Tables S2 and S3). No signifi-
cant differences were found with regards to age, symptomatic
burden expressed as New York Heart Association (NYHA) function-
al class, obstruction of the aortic valve expressed as aortic valve area
(AVA), left ventricular systolic function, mean pulmonary artery pres-
sure (mPAP), and right ventricular dysfunction. In fact, a difference
was detected in the proportion of female patients, which were signifi-
cantly more often represented in the derivation cohort (48.5% vs.

36.6%, P-value: 0.0499). Presenting with a mean AVA of
0.804± 0.223 (95% CI: 0.760–0.848) cm2, and predominantly suffer-
ing from dyspnoea corresponding to NYHA functional Class III
(56.4%) (Tables 1 and 2) 2-year survival after TAVR among patients
from the derivation cohort ranged at 83.0% (95% CI: 75.1–91.7),
which was statistically indifferent compared to patients from the val-
idation cohort (P-value: 0.665) (Figure 1B).

Two distinct clusters of aortic outflow
velocity profiles can be distinguished,
reflecting different phenotypes with
subsequently differing mortality
The convolutional part of the pre-trained VGG-16 model (Figure 3A)
in conjunction with PCA and k-means clustering of the abstractions
of Doppler tracings enabled to distinguish two shapes of aortic out-
flow velocity profiles (Figure 3B). Interestingly, all patients from
Cluster 2 presented with a mean aortic valve gradient (AVGmean)
below 40 mmHg, whilst AVGmean from patients in Cluster 1 ranged
between 20 and 102 mmHg (Figure 3C). Kaplan–Meier analysis
revealed that mortality in patients from Cluster 2 (n = 40, 39.6%) was
significantly increased (HR for 2-year mortality: 3; 95% CI: 1–8.9)
(Figure 3D). Besides reduced cardiac output (4.57± 1.42; 95% CI:
4.17–5.04 L/min) and signs of PH (mPAP: 31.9 ± 12.2; 95% CI: 28.5–
35.7 mmHg), patients from Cluster 2 also presented with more se-
vere impairment of right ventricular function [tricuspid annular plane
systolic excursion (TAPSE): 18.1 ± 3.82; 95% CI: 17.3–19.2 mm] and
right atrial enlargement [right atrial (RA) area: 22.0 ± 8.28; 95% CI:
19.5–24.6 cm2] in comparison to patients from Cluster 1 (Figure 3E
and Table 2). Contrarily to the initial expectation, patients from
Cluster 1 with seemingly less extensive cardiac damage were diag-
nosed with a more severe obstruction of the aortic valve than
patients from Cluster 2 (AVA: 0.739± 0.211; 95% CI: 0.685–0.793
cm2 vs. 0.903 ± 0.205; 95% CI: 0.837–0.968 cm2, P-value: 0.0001).

...........................................................................................................................................

....................................................................................................................................................................................................................

Table 1 Demographic and clinical characteristics in accordance with cluster assignment (derivation cohort)

Class

All (n 5 101) Cluster 1 (n 5 61) Cluster 2 (n 5 40) P-value

Age (years), mean ± SD [95% CI] 79.3 ± 6.78 [78.0–80.7] 79.4 ± 5.88 [77.8–80.8] 79.3 ± 8.03 [76.8–81.6] 0.4067

Women, N (%) 49 (48.5%) 31 (50.8%) 18 (45.0%) 0.7123

BMI (kg/m2), mean ± SD [95% CI] 26.8 ± 4.28 [26.0–27.6] 26.9 ± 4.25 [25.8–28.0] 26.7 ± 4.36 [25.5–28.0] 0.8758

Arterial hypertension, N (%) 88 (87.1%) 51 (83.6%) 37 (92.5%) 0.3166

Diabetes mellitus, N (%) 23 (22.8%) 14 (23.0%) 9 (22.5%) 1

NYHA functional class, mean ± SD [95% CI] 2.61 ± 0.71 [2.47–2.75] 2.54 ± 0.72 [2.36–2.72] 2.72 ± 0.68 [2.53–2.93] 0.1896

NYHA functional Class III 57 (56.4%) 32 (52.5%) 25 (62.5%) 0.4294

NYHA functional Class IV 6 (5.9%) 3 (4.9%) 3 (7.5%) 0.9152

EuroSCORE (%), mean ± SD [95% CI] 17.1 ± 14.3 [14.3–20.0] 13.9 ± 8.94 [11.7–16.3] 22.1 ± 19.0 [16.5–27.6] 0.0694

eGFR (mL/min), mean ± SD [95% CI] 60.7 ± 21.4 [56.4–64.9] 65.4 ± 19.5 [60.1–70.2] 53.3 ± 22.3 [46.8–59.3] 0.0214

CAD, N (%) 85 (84.1%) 49 (80.3%) 36 (90.0%) 0.3061

COPD, N (%) 12 (11.9%) 7 (11.5%) 5 (12.5%) 1

Atrial fibrillation and/or flutter, N (%) 42 (41.6%) 19 (31.1%) 23 (57.5%) 0.0155

BMI, body mass index; CAD, coronary artery disease; CI, confidence interval; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; NYHA,
New York Heart Association; SD, standard deviation.
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Comorbidities, such as arterial hypertension, coronary artery disease,
and chronic obstructive pulmonary disease, were similarly prevalent
between Clusters 1 and 2. Yet, patients from Cluster 2 with failing
hearts showed a higher prevalence of atrial fibrillation and/or flutter
(57.5% vs. 31.1%, P-value: 0.0155), and parallelly suffered from
reduced renal function (estimated glomerular filtration rate:
53.3± 22.3; 95% CI: 46.8–59.3 mL/min vs. 65.4± 19.5; 95% CI: 60.1–
70.2 mL/min, P-value: 0.0214). Notably, no general association be-
tween deteriorating cardiac output and worsening of renal function
could be described by correlation analysis (R: 0.10, P-value: 0.3117),

nor did patients with reduced cardiac output generally display impair-
ments of renal function (Supplementary material online, Figure S2A
and B). An illustration of 20 exemplifying profiles per cluster is pro-
vided in Figure 3F.

Conventional dichotomization according
to AVGmean results in loss of prognostic
resolution
In order to compare unsupervised clustering of aortic outflow vel-
ocity profiles with a traditional approach of hand-crafted

..................................................................

....................................................................................................................................................................................................................

Table 2 Comparison of echocardiographic and haemodynamic characteristics in accordance with cluster assignment
(derivation cohort)

Class

All (n 5 101) Cluster 1 (n 5 61) Cluster 2 (n 5 40) P-value

AVA (cm2), mean ± SD [95% CI] 0.804 ± 0.223 0.739 ± 0.211 0.903 ± 0.205 0.0001

[0.760–0.848] [0.685–0.793] [0.837–0.968]

AVGmean (mmHg), mean ± SD [95% CI] 37.9 ± 17.0 47.7 ± 14.1 22.9 ± 7.37 4.6 � 10-15

[34.5–41.2] [44.4–51.3] [20.5–25.2]

Cardiac output (L/min), mean ± SD [95% CI] 5.08 ± 1.33 5.41 ± 1.17 4.57 ± 1.42 0.0006

[4.82–5.34] [5.11–5.70] [4.17–5.04]

LVEF (%), mean ± SD [95% CI] 53.0 ± 12.0 57.5 ± 6.43 46.2 ± 15.1 0.0001

[50.6–55.4] [55.6–58.8] [42.0–50.7]

LVEDD (mm), mean ± SD [95% CI] 47.2 ± 9.44 45.7 ± 7.70 49.7 ± 11.4 0.1028

[45.4–49.1] [43.8–47.7] [46.2–52.8]

mPCWP (mmHg), mean ± SD [95% CI] 17.8 ± 9.01 15.5 ± 8.40 21.4 ± 8.83 0.0007

[16.1–19.6] [13.3–17.6] [18.6–24.2]

mPAP (mmHg), mean ± SD [95% CI] 27.6 ± 11.5 24.7 ± 10.1 31.9 ± 12.2 0.0019

[25.3–29.8] [22.1–27.2] [28.5–35.7]

RV-RA gradient (mmHg), mean ± SD [95% CI] 34.0 ± 14.7 32.2 ± 13.8 37.0 ± 16.0 0.1302

[30.9–37.1] [28.5–35.9] [31.3–42.6]

PVR (WU), mean ± SD [95% CI] 2.10 ± 1.36 1.80 ± 0.997 2.56 ± 1.69 0.0050

[1.83–2.37] [1.55–2.06] [2.02–3.10]

TAPSE (mm), mean ± SD [95% CI] 19.8 ± 4.05 20.8 ± 3.89 18.1 ± 3.82 0.0014

[18.9–20.6] [19.8–21.7] [17.3–19.2]

Right midventricular diameter (mm), mean ± SD [95% CI] 29.0 ± 6.46 27.4 ± 5.82 31.1 ± 6.77 0.0088

[27.6–30.3] [25.8–29.0] [28.8–33.3]

LA area (cm2), mean ± SD [95% CI] 25.8 ± 8.21 24.8 ± 8.11 27.4 ± 8.21 0.1017

[24.2–27.5] [22.9–27.3] [24.8–30.1]

RA area (cm2), mean ± SD [95% CI] 19.5 ± 6.89 17.8 ± 5.17 22.0 ± 8.28 0.0133

[18.2–20.9] [16.6–18.9] [19.5–24.6]

Low gradient (AVGmean < 40 mmHg), N (%) 54 (53.5%) 14 (23.0%) 40 (100%) 1.5 � 10-13

LV dysfunction (LVEF <_ 45%), N (%) 22 (21.8%) 5 (8.2%) 17 (42.5%) 0.0001

PH (mPAP >_ 25 mmHg), N (%) 52 (51.5%) 25 (41.0%) 27 (67.5%) 0.0162

RV dysfunction (TAPSE <_ 16 mm), N (%) 20 (20.4%) 6 (9.8%) 14 (23.0%) 0.0021

MR >_ III/IV� , N (%) 10 (9.90%) 4 (6.56%) 6 (15.0%) 0.1882

TR >_ III/IV� , N (%) 7 (6.93%) 2 (3.28%) 5 (12.5%) 0.1101

AVA, aortic valve area; AVGmean, mean aortic valve gradient; CI, confidence interval; LA area, left atrial area; LV dysfunction, left ventricular dysfunction; LVEDD, left ventricular
end-diastolic diameter; LVEF, left ventricular ejection fraction; mPAP, mean pulmonary artery pressure; mPCWP, mean postcapillary wedge pressure; MR, mitral regurgitation;
PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RA area, right atrial area; RV dysfunction, right ventricular dysfunction; SD, standard deviation; TAPSE, tricus-
pid annular plane systolic excursion; TR, tricuspid regurgitation.
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categorization, the derivation cohort was conventionally dichotom-
ized according to AVGmean (Figure 4A). Survival analysis confirmed
that patients with AVGmean <40 mmHg (n = 54, 53.5%) died earlier,
but no statistical significance was reached (HR for 2-year mortality:
1.8; 95% CI: 0.59–5.2) (Figure 4B). Apart from identifying well-
established predictors for mortality, such as deteriorating renal func-
tion, male sex, and EuroSCORE, univariate Cox regression analysis
also confirmed the prognostic value of left ventricular ejection frac-
tion, mPAP, and TAPSE. At the same time, no significant association
between AVGmean or AVGmax, on the one hand, and 2-year all-cause
mortality, on the other hand, could be detected by regression analysis
(Table 3).

An extreme gradient boosting algorithm
enables cluster assignment in future
patients and confirms that left
ventricular compensation capacity
rather than the actual obstruction of the
aortic valve determines fate after
transcatheter aortic valve replacement
To test whether the cluster-related phenotypes as detected by the
convolutional part of the pre-trained VGG-16 model in conjunction
with PCA and k-means clustering could also be found among the
remaining 265 patients with either poor quality or no available
Doppler tracings [56 (15.3%) of 366 patients had no Doppler tracings
as raw data available], an extreme gradient boosting algorithm was

trained on a comprehensive set of functional and structural parame-
ters from pre-procedural echocardiography and right heart catheter-
ization. In total, 12 variables, ideally covering all stages of cardiac and
pulmonary circulatory conditions as previously described,16 served
as input data. Moreover, the actual obstruction of the aortic valve
expressed as AVA was included as a thirteenth input variable
(Supplementary material online, Figure S3 for a complete list of input
variables). Since the derivation cohort was predominantly composed
of patients assigned to cluster 1 (60.4%), a minority class over-
sampling technique (SMOTE) was applied to create a balanced data
set (Figure 5). After application of SMOTE, a training and a test set
were randomly defined using a 0.75:0.25 split ratio, meaning that 120
‘patients’ were assigned to the training set and 40 ‘patients’ were
assigned to the test set. As a holdout data set, this test set was desig-
nated to finally assess the extreme gradient boosting algorithm’s per-
formance, before eventually using the trained algorithm for patient-
to-cluster assignment in the validation cohort. The purpose of the
validation cohort was to evaluate cluster-related survival differences
as they were observed for the clusters that have been segregated
during the first, unsupervised machine learning experiment among
the derivation cohort. In total, 2.44% of the 1313 data points related
to 101 patients from the derivation cohort had missing values for
those 13 variables (Supplementary material online, Figure S3A), and
the largest proportion of missing values was found for measurements
of right midventricular diameter (12.9% of values missing)
(Supplementary material online, Figure 3B). After imputing missing val-
ues, initially observed and later imputed values for right

Figure 3 A convolutional neural network followed by PCA and unsupervised k-means clustering provides the proof-of-principle that two sub-
groups of patients with severe AS can be distinguished according to the aortic outflow velocity profile. (A) VGG-16 network architecture (schematic).
The VGG-16 network can be split into two parts: 13 convolutional layers constitute the first part, through which each image is passed through for
feature extraction. The convolutional layers are followed by three fully connected layers for classification, and the last layer uses a softmax activation
function for final class prediction. Since the aortic outflow velocity profiles were no established class within the ImageNet data set, the classification
part of VGG-16 was omitted after pre-training, and hence only the model’s feature extraction capacity was exploited in order to transform aortic
outflow velocity profiles to 1D arrays (flatten layer), which were subsequently used for unsupervised clustering. (B) PCA of 1D arrays from 101 aortic
outflow velocity profiles. (C) Scatter plot including 95% confidence ellipse in order to illustrate cardiac output and mean aortic valve gradient in ac-
cordance with cluster assignment. (D) Kaplan–Meier survival analysis in accordance with cluster assignment. (E) Bee swarm plots for comparison of
baseline echocardiographic and haemodynamic data. (F) Representative aortic outflow velocity profiles in accordance with cluster assignment. AVA,
aortic valve area; AVGmean, mean aortic valve gradient; LA area, left atrial area; LVEDD, left ventricular end-diastolic diameter; mPAP, mean pulmon-
ary artery pressure; RA area, right atrial area; ReLU, Rectified Linear Unit; TAPSE, tricuspid annular plane systolic excursion.

Continued
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midventricular diameter displayed a similar distribution (29.0± 6.46;
95% CI: 27.6–30.3 mm vs. 27.6± 2.45; 95% CI: 26.1–29.1 mm, P-value:
0.5256) (Supplementary material online, Figure S3C and D).
Importantly, the main characteristics of Clusters 1 and 2 in terms of
cardiac output, AVGmean and AVA were preserved after over-
sampling (Figure 6A). An extreme gradient boosting algorithm for
cluster assignment was hereinafter trained on 58 instances for
‘Cluster 1’ and on 62 instances ‘Cluster 2’, respectively, and it reached
an accuracy of 97.5%, significantly outperforming the no information

rate (P-value: 1.4 � 10-9), as demonstrated in the test set of 40
‘patients’ (Figure 6B). Notably, AVGmean showed by far the highest
global feature importance for cluster prediction as determined by
SHAP values (Figure 6C). Applying the trained extreme gradient
boosting algorithm to the validation cohort of 265 patients (Figure 5)
enabled identification of patients belonging to high-risk Cluster 2.
Again, those patients were characterized by a functionally and struc-
turally failing left heart in conjunction with PH and right heart impair-
ment (Table 4). Compared to patients from Cluster 1, survival was

Figure 3 (Continued)
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subsequently reduced (Figure 6D), and the hazard ratio for 2-year
mortality after TAVR was significantly increased (2.6, 95% CI: 1.4–5.1,
P-value: 0.004). Importantly, a less severe obstruction of the aortic
valve was found again in patients assigned to high-risk cluster 2 (AVA:
0.839 ± 0.219, 0.789–0.889 in Cluster 2 vs. 0.742 ± 0.186, 0.715–
0.769 in Cluster 1, P-value: 0.0007) (Table 4), confirming the initially
surprising finding from the derivation cohort (Figure 6E).

Discussion

Transfer learning exploiting big data
could be key to overcome the obstacle of
data scarcity as commonly encountered
in clinical reality, and learning from a
related problem aids in gaining novel
insights into phenotypic presentations of
patients with severe aortic stenosis
Identifying patients at risk is a core element in the practice of
medicine, but risk stratification for patients with severe AS in
contemporary clinical practice is often limited by hypothesis-
driven selection of a few factors typically regarded in isolation,
by suggesting a model of orderly progression of accumulated
pathologies upstream of the causative AS, or by the assumption
of a parametric linear relationship between predictor variable
and outcome. This study demonstrates that prognostic reso-
lution of survival in patients with severe AS undergoing TAVR
can be refined by harnessing the intriguing feature extraction
capacity from an established CNN pre-trained on big data in
order to subsequently recognize complex geometries in aortic
outflow velocity profiles, which integrate crucial information
about left ventricular contractility and aortic valve obstruction.
Thus, two major phenotypes with important clinical implications

could be unravelled. The main messages from our study are
therefore as follows (Graphical Abstract):

(1) Transfer learning has the potential to unearth hidden gems even in
clinical data sets of limited size.

(2) Not so much the actual stenosis of the aortic valve expressed as
AVA determines the prognosis after TAVR, but the left ventricular
compensation capacity and subsequent development of PH and
right heart failure stratify patients into low-risk and high-risk
cohorts.

On the drawbacks of traditional methods
for risk assessment—and how machine
learning technology can pave the way to
personalized risk stratification prior to
transcatheter aortic valve replacement
In order to illustrate the almost ubiquitous problem of data scarcity
in medical research on the one hand, and the vast potential of trans-
fer learning, on the other hand, the number of aortic outflow velocity
profiles to be analysed was intentionally kept small. Possibly, differen-
ces in survival after dichotomization according to AVGmean would
have become statistically significant, if more patients were included.
Nonetheless, dichotomization of continuous variables is prone to
reducing statistical power without notable benefit (oversimplifica-
tion), and physicians in a real-world scenario therefore rarely rely on
a single variable’s dichotomy for decision-making or prognostic as-
sessment, but rather prefer context-specific interpretation of exten-
sive (raw) data. Aiming to detect predictors of mortality among a
similar cohort of patients with severe AS undergoing TAVR, Weber
et al.17 analysed a set of echocardiographic and haemodynamic data,
and identified presence of combined pre- and post-capillary PH, and
a lower AVGmean as independent predictors by using multivariate
Cox regression analysis. However, traditional regression models as-
sume a parametric linear function relating the predictor variables
with the response. This assumption might not hold true in the natural

Figure 4 Conventional dichotomization of the study population in accordance with elevation in mean aortic valve gradient. (A) Scatter plot illustrat-
ing cardiac output and mean aortic valve gradient after dichotomization in accordance with elevation in mean aortic valve gradient. (B) Kaplan–Meier
survival analysis in accordance with elevation in mean aortic valve gradient. AVGmean, mean aortic valve gradient.
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course of AS, since the AVGmean initially increases with progressive
narrowing of the AVA, but later decreases as the left ventricle
decompensates (‘low flow, low gradient AS’). If patients on the transi-
tion from moderate to severe AS were analysed by logistic regression
analysis, an increasing AVGmean would clearly be interpreted as an in-
dicator for disease progression, and hence serve as a marker for
worsened prognosis.18 The beauty of the hereby established ap-
proach lays in the improvement to identify and segregate patients
with similar characteristics firstly without applying any a priori assump-
tion and secondly without restricting the analysis to human-selected
patient characteristics as data features. At the same time, many
Doppler tracings were not suitable to be analysed by a CNN due to
poor echocardiographic acquisition or due to suboptimal alignment

with the jet and hence inadequate recording of the true transvalv-
ular gradient. So, how can our assignment to distinct clusters and
its clinical implication be generalized to the majority of patients?
Ideally, this study is not only perceived as a proof-of-concept valid
for selected patients, but as yet another step along the road to im-
plementation of artificial intelligence in clinical decision-making.
We have therefore decided to additionally train an extreme gradi-
ent boosting algorithm on functional and structural data from pre-
procedural echocardiography and right heart catheterization, thus
opening the avenue for other cardiologists to stratify their
patients according to our beforehand created classification gener-
ated by transfer learning. Upon loading the trained extreme gradi-
ent boosting algorithm and adding the requested input data into

.............................................................. ..................................................................

....................................................................................................................................................................................................................

Table 3 Univariate and multivariate cox regression analysis with 2-year mortality as a dependent variable (derivation
cohort)

Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age 0.96 (0.89–1) per year 0.21

Sex (female) 0.26 (0.074–0.95) 0.042 0.20 (0.04–1.02) 0.0531

BMI 0.93 (0.81–1.1) per kg/m2 0.26

Arterial hypertension 1.9 (0.24–14) 0.55

Smoking 1 (0.33–3) 1

Diabetes mellitus 1.9 (0.62–5.5) 0.27

NYHA functional class 1.4 (0.57–3.2) per class 0.49

EuroSCORE 1 (1–1.1) per % 0.0017 1.03 (0.99–1.08) per % 0.1374

eGFR 0.97 (0.95–1) per mL/min 0.024 0.97 (0.94–1.00) per mL/min 0.0831

Hb 1 (0.75–1.4) per g/dL 0.95

CAD 0.91 (0.2–4.1) 0.91

COPD 2.1 (0.6–7.7) 0.24

Atrial fibrillation and/or flutter 3.7 (1.2–12) 0.026 1.71 (0.35–8.50) 0.5099

AVA 1.4 (0.16–13) per cm2 0.75

AVGmax 0.98 (0.96–1) per mmHg 0.13

AVGmean 0.97 (0.94–1) per mmHg 0.11

Cardiac output 0.66 (0.42–1) per L/min 0.064

LVEF 0.94 (0.9–0.97) per % 0.0004 0.96 (0.84–1.09) per % 0.4913

LVEDD 1.1 (1–1.1) per mm 0.0056 0.95 (0.87–1.05) per mm 0.3149

mPAP 1 (1–1.1) per mmHg 0.04 1.00 (0.94–1.08) per mmHg 0.9269

mPCWP 1 (1–1.1) per mmHg 0.073

PVR 1.3 (1–1.6) per WU 0.045 0.81 (0.47–1.40) per WU 0.4539

TAPSE 0.85 (0.73–1) per mm 0.045 0.85 (0.67–1.09) per mm 0.1967

Right midventricular diameter 1.1 (1–1.2) per mm 0.02 1.06 (0.96–1.18) per mm 0.2344

LA area 1.1 (1–1.1) per cm2 0.011 1.03 (0.93–1.14) per cm2 0.5449

RA area 1.1 (1.1–1.2) per cm2 7.7 � 10-5 1.04 (0.94–1.16) per cm2 0.4110

Low gradient (AVGmean < 40 mmHg) 1.8 (0.59–5.2) 0.314

LV dysfunction (LVEF <_ 45%) 4.7 (1.6–14) 0.0052 0.44 (0.03–7.33) 0.5663

PH (mPAP >_ 25 mmHg) 1.6 (0.53–4.7) 0.42

RV dysfunction (TAPSE <_ 16 mm) 2.3 (0.77–6.8) 0.14

Assignment to Cluster 2 3 (1–8.9) 0.04 1.12 (0.29–4.37) 0.8676

AVA, aortic valve area; AVGmax, maximum aortic valve gradient; AVGmean, mean aortic valve gradient; BMI, body mass index; CAD, coronary artery disease; CI, confidence
interval; COPD, chronic obstructive pulmonary disease; GFR, glomerular filtration rate; HR, hazard ratio; IVS, interventricular septum thickness; LA area, left atrial area;
LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic diameter; mean RV pressure, mean right ventricular
pressure; mPAP, mean pulmonary artery pressure; mPCWP, mean postcapillary wedge pressure; NYHA, New York Heart Association; PVR, pulmonary vascular resistance;
PW, posterior wall thickness; RA area, right atrial area; RA pressure, right atrial pressure; TAPSE, tricuspid annular plane systolic excursion.
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the corresponding R code (both available from the corresponding
author; see Supplementary material online, Figure S4 for a preview
of the R code), future patients can be assigned to either Cluster 1
(good prognosis) or Cluster 2 (poor prognosis).

The extent of cardiac damage is already
mirrored in the aortic outflow velocity
profile, and it is the left ventricular
response to the increased afterload that
determines fate in patients with severe
aortic stenosis
Capturing the complexity of cardiac damage subsequent to severe
AS is key to sophisticated risk stratification prior to TAVR. This is
particularly true, as PH and right ventricular dysfunction can persist
in a substantial number of cases after TAVR, and persistence

translates into distressing mortality.19–21 G�en�ereux et al.7 therefore
established a staging classification, which considers disease progres-
sion beyond the compensation capacity of the left ventricle. This
divisive, top-down staging classification is driven by the hypothesis
that extravalvular damages to the heart and pulmonary circulation
subsequent to severe AS occur in a sequential order of left heart
failure, PH, and right heart dysfunction. Despite its simplicity, this
staging classification cannot be easily implemented into clinical
practice, as clinicians commonly encounter disparities between AS-
induced haemodynamic burden and extravalvular damages (pos-
sibly influenced by comorbidities, such as atrial fibrillation and
chronic obstructive pulmonary disease, or by genetic predispos-
ition).16,22,23 Failure of left ventricular compensation capacity and
subsequent backwards transmission of elevated left-sided filling
pressures was more frequently observed in Cluster 2 than in
Cluster 1 (mean post-capillary wedge pressure: 21.4 ± 8.83, 95% CI:

Figure 5 A flowchart illustrating the application of SMOTE to create a balanced data set for training of the extreme gradient boosting algorithm.
CNN, convolutional neural network; SMOTE, synthetic minority over-sampling technique; XGB algorithm, extreme gradient boosting algorithm.
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.18.6–24.2 mmHg vs. 15.5 ± 8.40, 95% CI: 13.3–17.6 mmHg, P-value:
0.0007), whilst patients in Cluster 1 presented with a more severe
obstruction of the aortic valve, indicating a longer disease progres-
sion, yet resulting in less cardiopulmonary impairments. This insight
into disease progression in patients with severe AS emphasizes the
importance of the complex pathophysiologic valvular-ventricular
interactions, which obviously vary among individuals. In the con-
temporary ‘one-size-fits-all’ practice of medicine, the timing of
intervention mainly focuses on the aortic valve. Our study may alter
the perception of ideal timing of intervention as well as it may facili-
tate the development of individualized treatment, as an earlier
intervention in patients from Cluster 2 might have had prevented
further aggravation of left heart decompensation, PH, and right
heart dysfunction. Addressing a similar issue, a study investigating
the benefit of early intervention in patients with moderate AS and
impaired left ventricular function has already been initialized [TAVR
UNLOAD (Transcatheter Aortic Valve Replacement to Unload
the Left Ventricle in Patients with Advanced Heart Failure) trial].24

Moreover, it will be interesting to analyse future echocardiographic
follow-up studies in accordance with cluster assignment, since recov-
ery from cardiopulmonary damages that cannot be totally attributed
to the obstruction of the aortic valve seems questionable. Thus,
suspected persistence of PH and right heart dysfunction despite

correction of severe AS by TAVR could emerge as an unmodifiable
(?) driver for increased mortality in patients from Cluster 2.

Unsupervised clustering could reveal
diversity of aortic stenosis phenotypes
with unprecedented precision, but
extensive quality control is mandatory
before unleashing machine learning
algorithms in clinical practice
Extending this proof-of-principle study based on good quality
Doppler tracings from 101 patients to a larger cohort could reveal
even more diversity in aortic outflow velocity profiles by unravelling
additional clusters. Even nowadays, AS with discordant markers of se-
verity, such as severely reduced AVA and low AVGmean, but pre-
served left ventricular ejection fraction (‘paradoxical low-gradient
AS’)25 remains a conundrum in diagnosis and treatment.26 It will be
interesting to see whether contemporary classifications of AS pheno-
types will be mirrored by unsupervised clustering, or if distinct clinical
presentations will emerge. Admittedly, involvement of artificial intelli-
gence in clinical decision-making is still frowned upon due to the
‘black box’ nature, and the potential for a flawed machine learning al-
gorithm to induce iatrogenic harm is vast. The opaqueness in the

Figure 6 An extreme gradient boosting algorithm opens the perspective to assign patients to beforehand defined clusters by a comprehensive set
of functional and structural parameters of cardiac and pulmonary circulatory conditions. (A) Bee swarm plots for comparison of key characteristics
between clusters after over-sampling (SMOTE). (B) Confusion matrix (test set). (C) Shedding light on the black box of extreme gradient boosting al-
gorithm-mediated cluster assignment by calculating SHAP (SHapley Additive exPlanations) values for its input variables. The y-axis represents the in-
put variables in descending order of global feature importance, whilst the x-axis indicates the adjustment to the predicted cluster. Moreover, each
dot in this sina plot represents an observation, i.e. a patient from the derivation cohort, and the gradient colour denotes the value of the respective in-
put variable. Therefore, if the dots on one side of the central line are increasingly yellow or purple, that suggests that increasing values or decreasing
values, respectively, move the predicted cluster in the respective direction (left: Cluster 1; right: Cluster 2). For instance, higher values of AVGmean

(purple dots) are associated with assignment to Cluster 1. (D) Kaplan–Meier survival analysis in accordance with extreme gradient boosting-algo-
rithm-mediated cluster assignment (validation cohort). (E) Comparison of clusters as defined by the CNN in conjunction with PCA and k-means clus-
tering (derivation cohort; red) or as determined by the trained extreme gradient boosting algorithm (validation cohort; blue). The central line in each
box plot denotes the median value, while the box contains all values ranging between the 25th and 75th percentiles of the data set. The black
whiskers mark the 5th and 95th percentiles, and values falling beyond these upper and lower bounds are considered outliers, plotted as black dots.
AVA, aortic valve area; AVGmean, mean aortic valve gradient; LA area, left atrial area; LVEDD, left ventricular end-diastolic diameter; mPAP, mean pul-
monary artery pressure; mPCWP, mean postcapillary wedge pressure; PVR, pulmonary vascular resistance; RA area, right atrial area; RA pressure,
right atrial pressure; RV pressuremean, mean right ventricular pressure; TAPSE, tricuspid annular plane systolic excursion.

Continued

M. Lachmann et al.164



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..determination of output has therefore fuelled demands for explain-
ability as expressed in the European Union’s General Data
Protection Regulation.27 Gradient-weighted class activation mapping
(GRAD-CAM) visualizations from the tool box of explainable artifi-
cial intelligence are typically applied in order to inspect images and to
get insights into CNN decisions.28 Yet, GRAD-CAM visualizations
connecting the raw image to the decision of a classifier were not used
in this study for two reasons:

(1) Patient-to-cluster assignment was based on PCA and k-means clus-
tering of Doppler tracings, which represents a form of unsupervised
learning, and which is different from assignment by means of a
trained classifier, which would have represented a form of super-
vised learning.

(2) Training a classifier in terms of fully connected layers following the
convolutional part of the pre-trained VGG-16 network would have
required thousands of Doppler tracings, which could have only
been collected in a labour-intensive, multicentric effort.

It, therefore, remains enigmatic which characteristics of the aortic
outflow velocity profile would result in assignment to either Cluster
1 or 2. As shown by the PCA (Figure 3B), there cannot be a single
‘most important’ feature that defines the echocardiographic signature
of patients assigned to Cluster 1 or 2, as the first two dimensions of
the PCA explain only 10.72% and 8.96% of the variation among all

transformed aortic outflow velocity profiles, respectively. This gap in
mechanistic inference can be perceived as a limitation to this study,
but it also demonstrates the strengths of neural networks, which en-
able to identify novel relationships in complex and finely nuanced
data sets and which therefore go beyond (simplified) stratification in
accordance with human-selected features.29 To explain at least par-
tially which feature within the aortic outflow velocity profiles drive
the differences between Clusters 1 and 2, the 20 most distant
Doppler tracings (hereinafter referred to as ‘top 10’ and ‘bottom 10’
Doppler tracings) along PCA dimension #1 were identified
(Supplementary material online, Figure S5A–C) and related echocar-
diographic and haemodynamic characteristics were compared
(Supplementary material online, Figure S5D and Table S4): among the
studied characteristics, the strongest difference in terms of statistical
significance expressed as the respective P-value level was found for
AVGmean (59.5± 15.6; 95% CI: 48.3–70.7 mmHg among Top 10
Doppler tracings vs. 17.9 ± 7.62; 95% CI: 12.4–23.4 mmHg among
bottom 10 Doppler tracings, P-value: 0.0002). This finding was con-
firmed by direct comparison of top 10 and bottom 10 Doppler trac-
ings (Supplementary material online, Figure S5E).

Scrutinizing the generalizability of our findings as generated on 101
selected patients, we decided to test if cluster-related phenotypes
could also be detected among the initially excluded 265 patients due

Figure 6 (Continued)
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..to poor or missing Doppler tracings. The cluster-related clinical
implications could be confirmed by an extreme gradient boosting al-
gorithm, and calculation of SHAP values as a state-of-the-art metric
to quantify the contribution of input variables to model prediction
highlighted the importance of transvalvular gradients, incorporating
information about both aortic valve obstruction and left ventricular
contractility. Notably, continuous wave Doppler echocardiography
in combination with the Bernoulli equation to assess transvalvular
pressure gradients is based on oversimplification of human haemo-
dynamics, as for instance a column of flow with uniform velocity dis-
tribution is assumed, which is clearly not the case in patients with
severe AS.30 The analysis of the spatio-temporal pattern of the ejec-
tion jet, e.g. by three-dimensional cardiovascular magnetic resonance
imaging, could therefore reveal novel insights into AS phenotypes.

Limitations: on the prohibitive costs of
poor image quality, and why you should
not trust artificial intelligence implicitly
Machine learning algorithms per se learn from data, meaning that
insufficient data quality or systematic bias during data collection
would hamper the algorithm to identify any consistent and

generalizable patterns. The accuracy of a CNN therefore strictly
relies on the input data quality. Physicians in a real-world scenario
yet commonly encounter difficulties in examining patients with se-
vere AS, as they typically present dyspnoeic and are hence less
suited for optimal positioning for echocardiography. It was, there-
fore, important to demonstrate that the subset of 101 patients
with good quality Doppler tracings was representative of the en-
tire study population of 366 patients (Supplementary material on-
line, Tables S2 and S3). Moreover, we had to ensure by
cumbersome manual cropping that the Doppler tracings serving as
input images contain no other information than the aortic outflow
velocity profile of interest (Figure 2). An example of a seemingly
high-performance machine learning algorithm flawed by shortcuts
in the training set is a model that is supposed to distinguish a wolf
from a husky by animal characteristics but eventually reveals to de-
rive its performance from the simple, but undesired identification
of patches of snow on the photograph.31 Moreover, the unscruti-
nized synthesis of training data from separate data sets of COVID-
19-negative and COVID-19-positive images was demonstrated to
introduce near worst-case confounding and thus abundant oppor-
tunity for machine learning algorithms to learn shortcuts due to
variations in image acquisition and radiographic projection.32

...................................................................

....................................................................................................................................................................................................................

Table 4 Comparison of echocardiographic and haemodynamic characteristics in accordance with cluster assignment
(validation cohort)

Class

All (n 5 265) Cluster 1 (n 5 189) Cluster 2 (n 5 76) P-value

AVA (cm2), mean ± SD [95% CI] 0.770 ± 0.201 0.742 ± 0.186 0.839 ± 0.219 0.0007

[0.746–0.794] [0.715–0.769] [0.789–0.889]

AVGmean (mmHg), mean ± SD [95% CI] 40.4 ± 15.3 47.1 ± 12.3 23.5 ± 6.00 <2.2 � 10-16

[38.5–42.2] [45.3–48.9] [22.1–24.9]

Cardiac output (L/min), mean ± SD [95% CI] 4.86 ± 1.19 5.04 ± 1.23 4.42 ± 0.970 5.9 � 10-5

[4.72–5.01] [4.86–5.22] [4.19–4.64]

LVEF (%), mean ± SD [95% CI] 52.6 ± 10.8 55.5 ± 8.05 45.4 ± 13.1 4.6 � 10-10

[51.3–53.9] [54.3–56.7] [42.4–48.4]

LVEDD (mm), mean ± SD [95% CI] 46.9 ± 8.16 45.4 ± 7.41 50.4 ± 8.86 0.0001

[45.8–47.9] [44.3–46.5] [48.2–52.5]

LA area (cm2), mean ± SD [95% CI] 26.5 ± 8.33 25.3 ± 7.85 29.3 ± 8.82 0.0009

[25.4–27.6] [24.1–26.5] [27.2–31.4]

mPCWP (mmHg), mean ± SD [95% CI] 17.3 ± 8.28 16.6 ± 7.56 19.2 ± 9.66 0.0499

[16.3–18.3] [15.5–17.6] [17.0–21.4]

mPAP (mmHg), mean ± SD [95% CI] 28.5 ± 11.4 27.5 ± 10.8 31.1 ± 12.5 0.0331

[27.1–29.9] [25.9–29.0] [28.2–34.0]

PVR (WU), mean ± SD [95% CI] 2.48 ± 1.59 2.34 ± 1.58 2.83 ± 1.57 0.0033

[2.29–2.67] [2.11–2.56] [2.47–3.19]

TAPSE (mm), mean ± SD [95% CI] 19.6 ± 5.36 21.0 ± 5.10 16.3 ± 4.53 2.7 � 10-10

[18.9–20.3] [20.2–21.7] [15.3–17.4]

Right midventricular diameter (mm), mean ± SD [95% CI] 29.7 ± 6.65 29.0 ± 6.89 31.3 ± 5.81 0.0085

[28.8–30.5] [28.0–30.1] [29.9–32.6]

RA area (cm2), mean ± SD [95% CI] 21.0 ± 7.68 19.9 ± 6.95 23.5 ± 8.75 0.0022

[20.0–22.0] [18.9–21.0] [21.4–25.6]

AVA, aortic valve area; AVGmean, mean aortic valve gradient; CI, confidence interval; LA area, left atrial area; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricu-
lar ejection fraction; mPAP, mean pulmonary artery pressure; mPCWP, mean postcapillary wedge pressure; PVR, pulmonary vascular resistance; RA area, right atrial area; RV
dysfunction, right ventricular dysfunction; SD, standard deviation; TAPSE, tricuspid annular plane systolic excursion.
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.
Claiming to have found a reasonable echocardiographic signature
among patients presenting with severe AS, it was therefore of
paramount importance to us to validate (and finally confirm) the
clinical implications of related phenotypes in a second cohort by
yet another machine learning algorithm. Obviously, we cannot
guarantee that the algorithms employed in this study would out-
perform all other algorithms in clustering patients (unsupervised
learning experiment) and in assigning patients to clusters (super-
vised learning experiment). In the commonly accepted absence of
any a priori guarantee that one machine learning technique is super-
ior to all others,33 the only way to determine which algorithms
works best for the given data structure is to evaluate them all.
However, this is practically impossible, innovative and more
powerful algorithms might emerge in the future, and it ultimately
also relies on the programmer’s ability to tune the hyperparameter
of respective models to perfection. As a matter of fact, we applied
hierarchical agglomerative clustering to the transformed aortic
outflow velocity profiles, hence testing yet another popular clus-
tering algorithm equivalent to k-means clustering. Hierarchical ag-
glomerative clustering also facilitated to identify a cluster with
significantly reduced AGVmean; however, the two segregated clus-
ters were vastly overlapping as demonstrated by the first two
dimensions of a PCA as well as by a correlation plot depicting
AGVmean and cardiac output, and subsequently, 2-year survival dif-
ferences did not reach statistical significance (Supplementary ma-
terial online, Figure S6). Importantly, AS represents a progressive
disease with a continuous transition of stages of disease severity.
Unlike clustering of e.g. bone marrow cells of distinct haematopoi-
etic lineages (where you would expect clearly defined clusters of
e.g. erythrocytes and lymphatic cells based on their gene expres-
sion profiles), it is practically impossible to distinguish any clearly
separated clusters among patients with severe AS and their re-
spective aortic outflow velocity profiles. This is reflected by the sil-
houette diagram (Supplementary material online, Figure S7)
revealing a mean silhouette coefficient of only 0.0689 ± 0.0459
among the clusters as defined by k-means clustering. Moreover,
we acknowledge that the accuracy of the extreme gradient boost-
ing algorithm was evaluated on a test set that was at least partially
composed of synthetic data. We have therefore added an alterna-
tive experimental design with a test set containing only real and un-
seen patients (explicitly no synthetic data) (Supplementary
material online, Figure S8A). Thus, we could confirm the satisfying
accuracy of the extreme gradient boosting algorithm for patient-
to-cluster assignment based on 13 variables from pre-procedural
echocardiography and right heart catheterization (accuracy: 92.0%;
95% CI: 74.0–99.9%) (Supplementary material online, Figure S8B).
Applying the algorithm trained under the alternative experimental
design to the validation cohort of patients with poor quality or no
available Doppler tracings also confirmed the increased risk of
mortality for patients assigned to Cluster 2 in comparison to
Cluster 1 (HR for 2-year mortality: 2.1; 95% CI: 1.1–4.1, P-value:
0.022) (Supplementary material online, Figure S8C). Again, patients
assigned to Cluster 2 were characterized by a relatively larger
AVA (0.824 ± 0.214; 95% CI: 0.779–0.870 cm2) and also by a
reduced left ventricular function (left ventricular ejection fraction:
47.5 ± 13.3; 95% CI: 44.7–50.4%) and by a lower AVGmean

(25.6 ± 8.14, 95% CI: 23.9–27.4 mmHg) (Supplementary material
online, Figure S8D and Table S5).

Conclusion

In summary, this is the first study to demonstrate the usefulness of
transfer learning for unsupervised clustering of aortic outflow vel-
ocity profiles in patients with severe AS. Since the perception of
patients presenting with severe AS is in a state of flux from a valve-
centred perspective to a personalized comprehensive view covering
all aspects of co-developed cardiopulmonary impairments, the unrav-
elled phenotypes in this study hold the promise to better stratify
patients into low-risk and high-risk cohorts. Importantly, it is the left
ventricular response to the increased afterload, not so much the ac-
tual obstruction of the aortic valve, that determines fate after TAVR.
As a new arrow in the quiver from interventional cardiologists to re-
fine prognostic assessment prior to TAVR, the trained extreme gradi-
ent boosting algorithm for individual cluster assignment in future
patients can be requested from the corresponding author.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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