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Abstract: Organic nitrogen (ON) is an important part of atmospheric nitrogen deposition, but the
content and distribution of components other than urea and amino acids are the blind area of current
research. The deposition of organic amines (OA) in strategic water sources poses a great public health
risk to unspecified populations. In order to further reveal the composition of about 50% soluble
organic nitrogen, besides urea and amino acids, five functional sampling points (such as industrial
area, agricultural area, urban area, tourism area and forest area) were set in the reservoir area to
detect dissolved total nitrogen (DTN), dissolved organic nitrogen (DON) and OA components. The
results show that the total nitrogen concentration was 6.42–10.82 mg/m3 and the DON concentration
was 2.77–4.99 mg/m3. Ten kinds of OA were detected: dimethylamine (DMA), diethylamine (DEA),
propylamine (PA), butylamine (BA), pyrrolidine (PYR), dibutylamine (DBA), N-methylaniline (NMA),
2-ethylaniline (2-ELA), benzylamine (BMA), and 4-ethylaniline (4-ELA). The average concentrations
were 7.64, 26.35, 14.51, 14.10, 18.55, 7.92, 10.56, 12.84, 13.46 and 21.00 ng/m3, respectively. The total
concentration of ten OA accounted for 2.28–9.81% of DON in the current month, of which the content
of DEA was the highest, reaching 0.71%, the content of 4-ELA, PYR, PA and BA was 0.4–0.56%,
and the content of DMA, DBA and NMA was 0.2–0.36%. The sources of OA in the reservoir area
have significant seasonal differences. The content is the highest in spring, followed by autumn, and
lower in summer and winter. The rainfall in spring and autumn is small, the source of road dust is
relatively high, and the rainfall in summer is large. After the particles in the air are washed by rain,
the concentration of OA in the sample is the lowest. On account of spring and autumn being the time
of frequent agricultural activities, the concentration of OA is significantly higher than that in winter
and summer.

Keywords: atmospheric nitrogen deposition; strategic water sources; organic nitrogen; organic amines

1. Introduction

The effects of nitrogen deposition on ecological environment have multiple linkage
and amplification effects [1]. Proper nitrogen deposition contributes to the improvement of
ecosystem productivity, while excessive nitrogen deposition will have a significant impact
on ecosystem health, such as water eutrophication, loss of biodiversity, leaching of soil
nutrient elements, etc. [2]. At present, scholars in China and abroad have carried out a series
of studies on nitrogen deposition flux, deposition characteristics and ecological effects.
Among them, the research on terrestrial ecosystem is mainly focused on forests [3], grass-
lands [4], farmland [5], regions [6] and cities [7], and the research on nitrogen deposition
in water is mainly focused on oceans [8], lakes [9,10] and swamps [11]. At present, most
studies focus on inorganic nitrogen and ignore organic nitrogen, which leads to the general
underestimation of the total flux of nitrogen deposition, resulting in the underestimation of
the risk of nitrogen deposition in the ecosystem [12].
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Organic nitrogen (ON) is an important part of nitrogen deposition, and organic ni-
trogen accounts for about 15–30% of the total deposition flux [13]. In the existing studies,
the organic nitrogen component that can be quantified is less than 50% of the total organic
nitrogen. Although researchers have carried out a lot of work, the composition of organic
nitrogen is still unknown to a great extent, and there are many knowledge gaps. There are
few reports on the deposition of organic amine nitrogen in reservoirs.

Organic amines (OAs) are a kind of trace compound that exist widely in the atmo-
sphere and are one of the most important nitrogen-containing organic compounds [14].
At present, about 150 kinds of OA have been identified in the atmosphere, mainly in-
cluding 24 kinds of methylamine, DMA, trimethylamine, ethylamine, diethylamine, PA
and aniline [15]. OAs usually have a low olfactory threshold. When they reach a certain
concentration in the air, they are not only disgusting in smell, but also cause damage to
human health [16]. China stipulates that the allowable mass concentrations of methylamine,
DMA and trimethylamine in the air are 5 µg/m3, 10 µg/m3 and 5 µg/m3, respectively [17].
OAs are mainly divided into fatty amines and aromatic amines. It is found that the exposed
fatty amines enter the human body through inhalation, intake, or skin absorption, which
will cause damage to the eyes, skin, liver, kidney, respiratory system, cardiovascular system
and central nervous system, but most fatty amines will not cause cancer [18]. Some aromatic
amines (such as aniline, benzidine and aminobiphenyl) were found to be carcinogens, and the
mass concentration reaches 415.1 mg/m3 aniline, which can cause immediate death [19].

OAs come from a wide range of sources, which can be generally divided into natural
sources and man-made sources. Natural sources mainly include biomass combustion [20],
marine sources [21], soil sources and plant emissions, while human sources mainly include
livestock emissions, industrial sources, automobile exhaust, fertilizer use [22] and human
activities [23]. The existing forms of OA in the atmosphere are mainly divided into gaseous
and granular forms [24]. Studies have shown that due to the high water solubility of OA,
it is possible for OA to exist in aqueous aerosols [25]. The active nitrogen emitted from
emission sources will affect the ecosystem through atmospheric deposition. Pan et al. [26]
set up 10 stations in northern China and conducted field observation for 3 years to study
nitrogen deposition. The results show that the level of nitrogen deposition in northern
China is high, and the annual average flux is 6.06 × 103 kg·km−2·a−1. Granular nitrogen
accounts for 10% of the total flux of nitrogen deposition, and oxidizing substances account
for 21% of the total flux, suggesting that other forms of gaseous nitrogen such as ammonia
account for the dominant part of the total flux of nitrogen deposition. Han et al. [27] contin-
uously measured atmospheric ammonia in Xi’an, and obtained that the annual average
mass concentrations of ammonia in urban and suburban areas of Xi’an were 12.9 µg/m3

and 14.1 µg/m3, respectively, showing a trend of summer > spring > autumn > winter. Be-
cause there are few research results on atmospheric OA, the existing data are not enough to
estimate the national flux, especially various aromatic amines that are harmful to human
body. The research of Schade et al. [28] showed that animal husbandry, marine sources and
biomass combustion are the main contribution sources of methylamines, while sewage,
industrial emissions and automobile exhaust contribute less.

Although OAs have lately received great attention in recent years, due to the low
abundance of OA in the atmosphere and the constraints of measurement technology, there
is still a lack of understanding of their temporal and spatial distribution, sources and sinks
in the atmosphere.

The South to Water North Water Transfer projects originates from Danjiangkou Reser-
voir in Nanyang City, Henan Province, China. It is a large-scale inter-basin water transfer
project. Danjiangkou Reservoir has become a strategic water source to alleviate the shortage
of water resources in North China and promote regional coordinated development [29].
The water transmission trunk line of the middle route of the South-to-North Water Transfer
Project has a total length of 1432 km, and the annual water transfer is planned to be 9 billion
m3. It provides domestic, industrial and agricultural water to 19 large and medium-sized
cities and more than 100 counties in the North China Plain, including Beijing and Tian-
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jin [30]. The beneficiary population exceeds 200 million, making a great contribution to the
social development of the water-receiving area. The water environmental quality of the
headworks is directly related to the water safety and quality of the water receiving area.
Therefore, the study on the ecological security of the water source area of the water transfer
project is very significant to ensure the ecological construction and water supply security
of the water source area and realize the ecological security and sustainable development of
the water transfer area.

The water quality of the small Pacific water area (hereinafter referred to as Xichuan
reservoir area), exceeds the total nitrogen limits, which is reflected in the national monthly
report on surface water quality in recent years. The water quality is in a good quality as
class III or class II without nitrogen evaluation, but the deterioration of water quality to
class IV when introduced in the total nitrogen in the evaluation approach [31].

In order to further reveal the composition of about 50% soluble organic nitrogen
besides urea and amino acids, the concentrations and contents of five fatty amines, one
heterocyclic amine and five aromatic amines in the atmospheric whole particle sampling
samples from October 2020 to November 2021 were determined by the combination of field
observation, field investigation and indoor and GC-MS analysis. The contribution rate of
10 kinds of OA to organic nitrogen was evaluated, the component characteristics of soluble
organic nitrogen were further clarified, and the main sources of OA were clarified based on
the regional concentration distribution law of OA, which provided data support for further
research on the environmental behavior of OA in the atmosphere, and provided support
for water-quality maintenance and environmental protection of strategic water sources.

2. Materials and Methods
2.1. Sampling Point Locations and Functional Areas

Five sampling points are set around the Xichuan reservoir area of Danjiangkou reser-
voir, as shown in Figure 1, namely Taocha (S1), Songgang (S2), Tumen (S3), Dangzikou
(S4), and Daguanyuan (S6). Atmospheric nitrogen deposition samples are collected and
analyzed to determine DTN, dissolved NH4

+-N and NO3
−-N. The DON deposition flux

cannot be detected directly, which can be obtained by DON = DTN-NH4
+-N-NO3

−-N.

Figure 1. Sampling point position and automatic sampler.

The automatic samplers were placed on the vary functional area. A sensor was installed
on the sampler to control the collection of deposition and wet deposition samples automatically.
The machine will automatically open the cover to collect wet deposition once it has rained.
The cover will be automatically closed within five minutes after the precipitation.

Standard sample information: there are 10 kinds of standard samples, including 5
kinds of fatty amines, including DMA (10 mg/mL methanol solution), PA, DEA, BA and
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DBA; 1 kind of heterocyclic amine, PYR, and 4 kinds of aromatic amines, including NMA,
BMA, 2-ELA and 4-ELA.

2.2. Sample Collection

The sampler brand is Qingdao Laoying 2021 TSP sampler, and the calibrated flow
before sampling is 100 L/min. The filter membrane brand is Whatman quartz microfiber
filters. Bake at 500 ◦C for 4 h before use. The constant temperature and humidity box (the
temperature is 25 ◦C, and the relative humidity is 50%) are balanced for 24 h and then
weighed. Samples are stored at low temperature for analysis, as shown in Figure 2.

Figure 2. Sample collection method.

In this study, full particle samples were collected at five field monitoring stations in the
Xichuan Reservoir area from October 2020 to November 2021, and each sample was collected
continuously for 48 h; the locations of each monitoring stations are shown in Figure 1.

2.3. Sample Pretreatment

Cut 1/4 or 1/2 of the sampling filter membrane and place it in a brown bottle. Add
20 mL of ultrapure water for 15–20 min. Repeat this process 3–4 times. Combine the
ultrasonic solution into a flat bottom flask, add about 4 mL of 10 mol/L NaOH solution and
1 mL of benzene sulfonyl chloride (BSC), seal it and stir it magnetically at room temperature
for 30 min. Add 5 mL of 10 mol/L NaOH solution to the flat-bottom flask, seal and stir
magnetically at 80 ◦C for 30 min. Place the flat bottom flask in ice water, slowly cool it to
room temperature, transfer the solution to the separating funnel, and adjust it to pH = 5.5
with 36.5% HCl. The organic phase was extracted with 10 mL of dichloromethane and
collected in a pear-shaped bottle. Wash the organic phase with 10 mL of 0.05 mol/L sodium
carbonate solution, dry it with anhydrous sodium sulfate roasted at high temperature, then
rotate and evaporate in vacuum at about 40 ◦C for 3–5 min to about 1 mL, transfer it to
the dissecting flask, blow dry or retain about 0.1 mL of the sample under nitrogen flow
with a nitrogen blower, and fix the volume with n-hexane to a specific volume (1 or 2 mL
according to the actual needs). The whole pretreatment process takes about 1H. GC-MS
analysis can then be performed. The sample pretreatment process is as shown in Figure 3.

Figure 3. Sample pretreatment process.
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2.4. Preparation of Standard Sample Solution

Firstly, 10 kinds of OA standard samples were prepared into mixed standard sample
(100 µg/mL) with methanol, then 1–2 mL was taken for derivatization, and the derivatized
solution was finally fixed to 1–2 mL constant volume. The standard sample after derivati-
zation was diluted into different concentration gradients, which were 0.05, 0.1, 0.2, 0.5, 1.0,
2.0, 5.0, 8.0, 10, 15 and 20 µg/mL, respectively.

2.5. Chromatographic Conditions

The main contents include: 7890A-5979C gas chromatography-mass spectrometer,
DB-5MS chromatographic column; Temperature rise procedure of chromatographic column:
80 ◦C (1 min), 5 °C/min→ 180 ◦C, 10 ◦C/min→ 240 ◦C, 25 ◦C/min→ 290 ◦C (10 min);
Injection port temperature: 290 ◦C, gas mass transmission line temperature: 290 ◦C; Carrier
gas: high purity helium; Flow: 1.56 mL/min; injection mode: no split injection; mass
spectrometry ion source: electron bombardment source (EI, 70 ev); Mass spectrum scanning
quality range: m/z 50~m/z 450.

3. Results
3.1. OA Types and Concentration

The concentrations of total nitrogen, organic nitrogen and OA in the atmosphere from
December 2020 to November 2021 were detected. The concentrations of ten OA in the
atmosphere of the study area in recent one year were measured to provide a basis for
analyzing the impact of human activities.

The concentration range of total nitrogen is 6.42–10.82 mg/m3, and the concentration
of DON is 2.77–4.99 mg/m3. The annual average concentrations of DMA, DEA, PA, BA,
PYR, N-DBA, NMA, 2-ELA, BMA and 4-ELA were 7.64, 26.35, 14.51, 14.10, 18.55, 7.92,
10.56, 12.84, 13.46 and 21.00 ng/m3, respectively, as shown in Figure 4.
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Figure 4. DTN and DON concentration (December 2020–November 2021).

As shown in Figure 5, The average concentration of ten types of OA reaches the highest
value 24.89 ng/m3 in spring, followed by 14.17 ng/m3 in autumn, 11.97 ng/m3 in winter
and 7.73 ng/m3 in summer.
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Figure 5. OA types and concentration (December 2020–November 2021).

The sources of OA have significant seasonal differences. The rainfall in spring and
autumn is small, the windy weather is frequent, and the proportion of road dust sources is
relatively high. Moreover, because spring and autumn are the time of frequent agricultural
activities, the concentration of OA is significantly higher than that in winter and summer.
The rainfall in summer is large, and the particles in the air are washed by rain, resulting in
the lowest concentration of OA in the sample.

The average concentration of ten types of OA reaches the highest value 24.89 ng/m3 in
spring, followed by 14.17 ng/m3 in autumn, 11.97 ng/m3 in winter and 7.73 ng/m3 in summer.

The temporal and spatial variation characteristics of 10 types of OA are discussed below.

3.2. Characteristics of DMA

From the perspective of time, the annual average concentration of DMA was 7.64 ng/m3

from December 2020 to November 2021. The concentration of DMA in the atmosphere
was high in March, May, October and November, which were 22.57, 25.29, 18.25 and
17.33 ng/m3, respectively, as shown in Figure 6.

Spatially, the concentration of DMA in winter: S4 > S6 > S3 > S1 > S2; Spring:
S1 > S4 > S6 > S3 > S2; Summer: S2 > S3 > S6 > S4 > S1; Autumn: S4 > S3 > S1 > S2 > S6.

The concentration of DMA was the highest in S4 (orange yard) in the southwest in
winter and autumn. In spring, the concentration was the highest at S1 (Urban Area). In
summer, the concentration of S2 (Industrial Zone) was the largest position.

3.3. Characteristics of DEA

The annual average concentration of DEA was 26.35 ng/m3. The concentration of
DEA in the atmosphere was higher in March, May and October, which were 49.23, 40.73
and 39.75 ng/m3, respectively, as shown in Figure 7.

Spatially, in winter: S2 > S3 > S4 > S6 > S1; Spring: S1 > S6 > S2 > S3 > S4; Summer:
S6 > S1 > S2 > S4 = S3; Autumn: S2 > S3 > S1 > S4 > S6.

The concentration of DEA was the highest in S2 (Industrial Zone) in the southwest in
winter and autumn. In spring, the concentration was the highest at S1 (Urban Area). In
summer, the concentration of S6 (Forest Area) was the largest position.
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Figure 6. Spatial variation of DMA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

Figure 7. Spatial variation of DEA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

3.4. Characteristics of PA

The annual average concentration of PA was 14.51 ng/m3. The concentration of PA in
the atmosphere was higher in December of 2020 and April and May of 2021, which were
21.47, 21.41 and 27.28 ng/m3, respectively, as shown in Figure 8.

Spatially, in winter: S2 > S1 > S3 = S4 > S6; Spring: S1 > S6 > S4 > S2 > S3; Summer:
S4 > S1 = S6 > S3 > S2; Autumn: S1 > S2 > S3 > S4 = S6.
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Figure 8. Spatial variation of PA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

The concentration of PA was the highest in S2 (Industrial Area) in the southwest in
winter. In spring and autumn, the concentration was the highest at S1 (Urban Area). In
summer, the concentration was the highest at S4 (Orange yard) position.

3.5. Characteristics of BA

From December 2020 to November 2021, the annual average concentration of BA was
14.10 ng/m3. The concentration of BA in the atmosphere was only higher in May, with a
concentration of 30.33 ng/m3, as shown in Figure 9.

Figure 9. Spatial variation of BA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.
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Spatially, in winter: S4 > S6 > S2 > S1 > S3; Spring: S6 > S2 > S1 > S3 > S4; Summer:
S4 > S3 > S6 > S2 > S1; Autumn: S1 > S3 > S2 > S4 > S6.

The concentration of BA was the highest in S4 (Orange yard) in the southwest in
winter and summer. In spring, the concentration was the highest at S6 (Forest Area). In
autumn, the concentration was the highest at S1 (Urban Area).

3.6. Characteristics of PYR

From the perspective of time, the annual average concentration of PYR was 18.55 ng/m3,
which was higher in March and May, 40.77 ng/m3 and 45.55 ng/m3, respectively, as shown
in Figure 10.

Figure 10. Spatial variation of PYR concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

Spatially, in winter: S2 > S3 > S4 > S6 > S1; Spring: S6 > S1 > S3 > S4 > S2; Summer:
S2 > S4 > S3 > S6 > S1; Autumn: S3 > S2 > S1 > S4 > S6.

PYR concentration was the highest in winter and summer and at S2 (Industrial Zone)
in the southwest. In spring, the concentration was the highest at S6 (Forest Area). The
concentration was the highest in S3 (Agricultural Area) in autumn.

3.7. Characteristics of DBA

From the perspective of time, the annual average concentration of DBA was 7.92 ng/m3,
which was higher in February, May, July and September, which were 15.50, 17.78, 11.38 and
11.36 ng/m3, respectively, as shown in Figure 11.

Spatially, in winter: S4 > S2 > S6 > S1 > S3; Spring: S6 > S2 > S4 > S1 > S3; Summer:
S4 > S1 = S6 > S2 > S3; Autumn: S1 > S2 > S3 > S4 > S6.

The concentration of DBA was the highest in S4 (Orange yard) in the southwest in
winter and summer. In spring, the concentration was the highest at S6 (Forest Area). In
autumn, the concentration was the highest at S1 (Urban Area).

Spatially, in winter: S2 > S6 > S3 > S4 > S1; Spring: S6 > S1 > S4 > S3 > S2; Summer:
S6 > S4 > S1 > S3 > S2; Autumn: S3 > S2 > S1 > S4 = S6.
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Figure 11. Spatial variation of DBA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

3.8. Characteristics of NMA

From the perspective of time, the annual average concentration of NMA was 10.56 ng/m3,
which was higher in January, March and May, 24.74, 41.18 and 38.70 ng/m3, respectively,
as shown in Figure 12.

Figure 12. Spatial variation of NMA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

The concentration of NMA is the highest in S2 (Industrial Zone) in the southwest in
winter. In spring and summer, the concentration was the highest at S6 (Forest Area). The
concentration was the highest in S3 (Agricultural Area) in autumn.
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3.9. Characteristics of 2-ELA

From the perspective of time, the annual average concentration of 2-ELA was 12.84
ng/m3, which was higher in March and May, 33.15 and 33.99 ng/m3, respectively, as shown
in Figure 13.

Figure 13. Spatial variation of 2-ELA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

Spatially, in winter: S3 > S2 > S1 > S4 > S6. Spring: S6 > S1 > S4 > S3 > S2. Summer:
S4 > S3 > S6 > S2 > S1. Autumn: S4 > S6 > S2 > S1 > S3.

The concentration of 2-ELA was the highest in S3 (Agricultural Area) in winter. In
spring, the concentration was the highest at S6 (Forest Area). The concentration was the
highest at S4 (Orange yard) in summer and autumn.

3.10. Characteristics of BMA

From the perspective of time, the annual average concentration of BMA was 13.46 ng/m3,
which was higher in March, May and October, 39.14, 40.13 and 34.08 ng/m3, respectively,
as shown in Figure 14.

Spatially, in winter: S1 > S2 > S3 > S6 > S4; Spring: S4 > S3 > S6 > S2 > S1; Summer:
S6 > S4 > S3 > S2 > S1; Autumn: S4 > S1 > S3 > S2 > S6.

The concentration of BMA was the highest in S1 (Urban Area) in winter. In spring
and autumn, the concentration was the highest at S4 (Orange yard). In summer, the
concentration was the highest at S6 (Forest Area).

3.11. Characteristics of 4-ELA

From the perspective of time, the annual average concentration of 4-ELA was 21.00 ng/m3,
which was higher in March, May, October and November, 45.59, 34.87, 32.36 and 32.36 ng/m3,
respectively, as shown in Figure 15.
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Figure 14. Spatial variation of concentration of benzamine. (a) Winter; (b) spring; (c) summer;
(d) autumn.

Figure 15. Spatial variation of 4-ELA concentration. (a) Winter; (b) spring; (c) summer; (d) autumn.

Spatially, in winter: S2 > S1 > S6 > S3 > S4; Spring: S6 > S1 > S3 > S2 > S4; Summer:
S2 > S6 > S4 > S1 > S3; Autumn: S1 > S4 > S3 > S2 > S6.

The concentration of 4-ELA was the highest in S2 (Industrial Zone) in the southwest
in winter and summer. In spring, the concentration was the highest at S6 (Forest Area). In
autumn, the concentration was the highest at S1 (Urban Area).
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4. Discussion

In this study, the concentrations of OA in atmospheric particulate matter were com-
pared. The concentrations of methylamine, ethylamine, DMA, trimethylamine and ben-
zenamine in atmospheric particulate matter are about several to tens of 1 ng·m−3. The
concentrations of 10 types of OA measured in Danjiangkou Reservoir area are within this
level, but they belong to the area with high concentration, which is mainly related to the
industrial activities in the study area, as shown in Table 1.

Table 1. Comparison of OA concentration in atmospheric particulate matter.

Place
Sampling

Type
Sampling Date
(Year~Month)

Concentration/ng·m−3 Analytical
Method

MA EA DMA TMA AN

Nanjing Industrial
park

12 2017~01 2018 9.6 ± 5 2.6 ± 1.4 12.6 ± 4.8 5.5 ± 2 2.5 ± 1.1

IC
03 2018~04 2018 12.3 ± 3.9 5.8 ± 1.9 15.3 ± 5.6 7.6 ± 1.6 5.1 ± 1.7
07 2018~08 2018 16.9 ± 5.6 10.8 ± 4.6 26.6 ± 14 12.3 ± 3.9 10.6 ± 4.2
10 2018~11 2018 14.2 ± 9 6.9 ± 4 22.2 ± 13.6 9.5 ± 4.6 6.3 ± 4.3

Guangzhou Mountain
area

10 2016 8.79 ± 7.80 - 2.37 ± 3.15 - - GC—MS [32]05 2017~06 2017 11.9 ± 9.77 - 5.03 ± 2.23 - -
Nanjing,

Yangzhou Urban area 11 2015~04 2016 5.7 ± 3.2 20.3 ± 16.6 7.9 ± 5.4 - - HPLC [33]

Beijing Urban area 01 2013~02 2013 31 ± 10.8 14.8 ± 6.5 4.3 ± 1.7 - 5.7 ± 2.2

HPLC [34]
Xi’an Urban area 01 2013~02 2013 24.7 ± 9.7 12.6 ± 5.6 3.8 ± 1.6 - 5.1 ± 2.2

Xiamen Urban area 01 2013~02 2013 10.2 ± 2.0 5.3 ± 1.4 1.7 ± 0.4 - 2.5 ± 0.8
HongKong,

China Urban area 01 2013~02 2013 12.1 ± 2.4 4.5 ± 1.1 1.5 ± 0.5 - 2.0 ± 0.6

Eastern China Ocean
08 2015 - - 34.2 ± 5.4 55.8 ± 7.8 -

IC [35]04 2015 - - 9.9 ± 5.4 16.8 ± 9.8 -

Xi’an Urban area

03 2009~05 2009 16.9 ± 5.5 9.7 ± 3.9 - - -

HPLC [36]06 2009~08 2009 6.2 ± 2 3.8 ± 1.4 - - -
09 2008~11 2008 14.7 ± 9.9 8.4 ± 4.2 - - -
12 2008~02 2009 22.3 ± 10.4 11.5 ± 4.1 - - -

Zonguldak
Province, Turkey Ocean

10 2006~04 2007 4.48 ± 1.75 4.37 ± 2.27 4.58 ± 2.28 - 5.52 ± 2.05
HPLC [37]05 2007~09 2007 2.33 ± 1.30 2.19 ± 1.13 2.79 ± 1.55 - 3.63 ± 2.36

Tampa
Province, USA Ocean 06 2005~08 2005 - - 31 ± 28 - - IC [38]

Jeju Island,
Korea Ocean 03 2001~04 2001 13.5 3.1 - - - HPLC [39]

OAs come from a variety of sources, mainly including anthropogenic sources and
natural sources. In terms of main contribution, natural source is the main source of OA
emission, but in large and medium-sized urban areas with dense human distribution,
anthropogenic source is an important emission path of OA. At present, the known anthro-
pogenic sources of OA include animal husbandry emissions, industry and combustion,
composting, automobile exhaust emissions and human activities.

As shown in Figure 16, the total concentration of ten OA accounted for 2.28–9.81% of
DON in the current month, with the highest in March and May, exceeding 8%.

As shown in Figure 17, Among the ten tested OA, the content of DEA is the highest,
reaching 0.71%, the contents of 4-ELA, PYR, PA and BA are between 0.4–0.56%, and the
contents of DMA, DBA and NMA are between 0.2–0.36%.

As is known to all, NOx is one of the main harmful components of automobile exhaust,
and NOx may also lead to the formation of nitrosamines, resulting in the production of
amines. In addition, the discharge of urine or wastewater from human activities will
become the discharge source of OA. There is evidence that DMA widely exists in human
urine and is released into the atmosphere, and hydroxylamine and amide can also be
detected in wastewater treatment. DMA has a good correlation with Na and Mg, indicating
that DMA mainly comes from primary sources, possibly from microbial degradation in
soil and emissions from animal feeding plants. Methylamine has good correlation with Zn,
Pb and S. It is speculated that methylamine is the main source of automobile exhaust, coal
combustion and industrial emission.
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Like the emission principle of animal husbandry, garbage accumulation treatment
will produce many anaerobic biological fermentations, which is also an important way to
discharge amine. The research shows that nitrogen-containing compounds are an important
component of all VOCs produced in the composting process.

The OA ratio and concentration are varying with season. In summer, high temperature,
high humidity, strong light and other meteorological conditions cause surface temperature
rise, which is suitable for the reproduction of microorganisms in soil and other environ-
ments, resulting in the production and volatilization of more OA into the atmosphere.

Ethylamine mainly comes from secondary sources and motor vehicle emissions. DMA
mainly comes from biomass combustion, and some comes from motor vehicle emissions
and secondary sources. It shows that aniline mainly comes from industrial emission and
biomass combustion.

For the emission source of OA in the atmosphere, livestock emission is particularly
important. Near livestock facilities, the gas-phase concentration of low molecular weight
alkyl amines is as high as hundreds of micrograms per cubic meter. In the atmospheric
monitoring of cattle farms, DMA was found to be the main fatty amine. In addition,
the study also found that anaerobic bacteria can produce amine through decarboxylation
reaction in animal gastrointestinal tract and feces. Therefore, animal husbandry has become
an important source of OA in rural areas.
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Industrial and combustion emissions of amines include food factory processing, leather
processing, fuel and waste combustion, etc. Fish processing is the main emission source
of amines in food processing, and the identified amines are mainly fatty amines such
as trimethylamine, methylamine, DMA, DEA and PA. Aromatic amines are the main
emissions in the leather chemical processing industry. Similarly, polymer combustion and
waste combustion will also release some aromatic amines.

In addition, microorganisms contained in the soil can fix N2 and convert it into soil
nitrogen, and finally discharge it into the atmosphere in the form of ammonia and nitrate.
In this process, many nitride products such as methylamine and BMA will volatilize or
enter the atmosphere under human influence. Vegetation emission itself is the main source
of ammonia, but it may also be the source of amine. Early studies identified OA such as
trimethylamine, DEA and methylamine in the air around vegetation.

In addition to the large release of industrial processing, daily cooking and barbecue
will also release amines existing in meat or cooked food. In addition, tobacco smoke is also
a common emission source of fatty amines. At present, hundreds of nitrogen-containing
compounds have been identified in tobacco smoke, including pyrrole, pyridine, pyrazine
and some amides in addition to fatty amines and aromatic amines.

5. Conclusions

(1) Ten types of OA were detected in the atmospheric particle samples collected in five
field monitoring stations around Xichuan Reservoir Area, namely DMA, DEA, PA, BA,
PYR, DBA, NMA, 2-ELA, BMA and 4-ELA. The annual average concentrations were
7.64, 26.35, 14.51, 14.10, 18.55, 7.92, 10.56, 12.84, 13.46 and 21.00 ng/m3, respectively.

(2) The proportion of OA in organic nitrogen was different, the total nitrogen concentra-
tion was 6.42–10.82 mg/m3, and the DON concentration was 2.77–4.99 mg/m3. The
total concentration of ten kinds of OA accounted for 2.28–9.81% of DON in the current
month, of which the content of DEA was the highest, reaching 0.71%, the content of
4-ELA, PYR, PA and BA were 0.4–0.56%, and the content of DMA, DBA and NMA
was 0.2–0.36%.

(3) The sources of OA in the reservoir area have significant seasonal differences. The
content of OA was the highest in spring, followed by autumn, and lower in summer
and winter. The rainfall in spring and autumn is small, windy weather is frequent,
and the source of road dust is relatively high. Because spring and autumn are the time
of frequent agricultural activities, the concentration of OA is significantly higher than
that in winter and summer. This shows that agricultural activities have a significant
impact on the emission of OA. The rainfall in summer is large, and the particles in the
air are washed by rain, resulting in the lowest concentration of OA in the sample.
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