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1 | INTRODUCTION

| Jose M. Sanchez-Bornot' | Paula L. McClean® |

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Abstract

Missing Alzheimer’s disease (AD) data is prevalent and poses significant challenges for
AD diagnosis. Previous studies have explored various data imputation approaches on AD
data, but the systematic evaluation of deep learning algorithms for imputing heterogeneous
and comprehensive AD data is limited. This study investigates the efficacy of denoising
autoencoder-based imputation of missing key features of heterogeneous data that com-
prised tau-PET, MRI, cognitive and functional assessments, genotype, sociodemographic,
and medical history. The authors focused on extreme (>40%) missing at random of key
features which depend on AD progression; identified as the history of a mother having
AD, APoE &4 alleles, and clinical dementia rating. Along with features selected using tradi-
tional feature selection methods, latent featutres extracted from the denoising autoencoder
are incorporated for subsequent classification. Using random forest classification with
10-fold cross-validation, robust AD predictive performance of imputed datasets (accu-
racy: 79%—85%; precision: 71%—85%) across missingness levels, and high recall values
with 40% missingness are found. Further, the feature-selected dataset using feature selec-
tion methods, including autoencoder, demonstrated higher classification score than that of
the original complete dataset. These results highlight the effectiveness and robustness of
autoencoder in imputing crucial information for reliable AD prediction in Al-based clinical
decision support systems.

offer a promising path [5]. However, when clinical data contains
missing values, it significantly impacts early diagnosis and treat-

Alzheimer’s disease (AD), the most common cause of demen-
tia, is a progressive brain disorder associated with memory
loss, affecting day-to-day activities and cognitive decline [1].
Detecting AD and its severity level at early stage can enable
better disease management and reduced care costs [2]. Further,
adopting the right measures in clinical diagnosis is essential for
timely treatment, care and disease management. Several assess-
ment strategies and markers are currently available, including
brain/blood-based biological assessment, medical and family
history, and neuropsychological assessments [3]. Due to the
variety of assessments and with symptoms overlapping with
normal ageing and other types of dementia [4], diagnosis of AD
remains challenging.

The implementation of technology-aided decision support
system, especially involving machine learning, for diagnosis may

ment, underscoring the importance of implementing effective
measures to uphold data quality and integrity [6]. In particu-
lar, missing data, if not handled appropriately, can potentially
delay treatment and lead to biased diagnostic results, including
in machine learning decisions.

Clinical data may be incomplete in different scenatios. For
instance, patients may not arrive for medical appointments or
be unable to complete surveys [6]. Incomplete data is highly
prevalent in cohort studies, especially within dementia and
AD studies, due to factors such as longer study requirements,
increased risk of mortality and cognitive decline among older
adults. These factors impede their ability to participate in studies
requiring multiple visits, leading to missing data [7]. More gen-
erally, missing data can be classified into three types: missing at
random (MAR) which is dependent on observed variables, such
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as when the proportion of missingness increases with demen-
tia severity; missing completely at random (MCAR), in which
the missingness is independent of any variables; and missing
not at random (MNAR), in which missingness is dependent
on unrecorded variables [8]. The trivial solution is to ignore
the missing portion, but that may lead to low statistical power
for the machine learning models. Therefore, it is imperative to
employ appropriate strategies for data imputation [0].

Previous studies have made use of different imputation meth-
ods on AD datasets in different contexts [6, 9—15]. However, the
data used were not sufficiently comprehensive [11, 12, 16], did
not involve brain tau pathology with superior diagnostic utility
[13, 14], or that traditional statistical or machine learning impu-
tation methods were used [0, 12, 13]. In the only study that
has used deep learning (autoencoders [15]) for AD data impu-
tation [16], the personal information did not include a family
history of AD and there was only one cognitive and functional
assessment (mini-mental state examination, MMSE); data was
not sufficiently detailed and comprehensive. Further, the type
of autoencoders used was also unspecified. Importantly, missing
data was not systematically evaluated in that study.

To address the limitations of previous studies on missing
data imputation for AD classification, in the current study,
we focused on the imputation of the missingness of the most
important AD data features with respect to predicting different
progressive stages of AD. These key data features were common
features identified from multiple feature selection methods,
including with an autoencoder to elucidate latent features. MAR
missing data were then systematically generated over different
proportions of missingness from a complete, comprehensive
and open dataset, with the latter acting as ground truth. This
was followed by the implementation of a denoising autoencoder
on the missing key features. Finally, three-class (control not-
mal CN, mild cognitive impairment MCI (a mixed group which
includes prodromal stage of AD), and AD) classification of the
imputed datasets by the random forest classifier was employed,
and the results were compared with those based on the clas-
sification of the original complete datasets and the subset of
selected features.

2 | METHODS

2.1 | Data description

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, more specifically the ADNIMERGE-3 open repository,
was employed as the primary data source for this study. The
data was obtained from the https://adniloni.usc.edu portal as
per request and was accessed after approval by the Data Sharing
and Publication Committee of Image and Data Archive (IDA).
The dataset comprises clinical, neuropsychological assessments,
neuroimaging measures, and genetic markers collected from
participants diagnosed as healthy (CN), having mild cognitive
impairment (MCI), or Alzheimer’s disease (AD). The processed
neuroimaging (tau-PET and structural MRI) is available from a
previous study [17]. The final processed dataset consists of 559
samples (participants) encompassing a total of 224 features.

The processed dataset comprised 7 sociodemographic and
medical history features, 40 cognitive and functional assessment
(CFA) scores including their sub-assessments, and a relatively
extensive 177 neuroimaging features (from active tau-PET brain
regions via co-registering with structural MRI [17]). The class
labels for training the classification model were based on clini-
cian diagnosis, comprising 363 CN, 137 MCI and 59 AD cases.

The sociodemographic and medical or family background
features comprised age, gender, years of education, maternal
and paternal family history of AD, and the number of copies of
the APoE €4 alleles (hereafter referred simply as APoE4). The
CFA scores were derived from various measures, including the
Alzheimer’s Disease Assessment Scale (ADAS), Cognitive Bat-
tery Assessment, Clinical Dementia Rating (CDR), Mini-Mental
State Exam (MMSE), Modified Hachinski Ischemia Scale, Neu-
ropsychological Battery Test, logical memory immediate recall
test (LMIT), logical memory delayed recall test (LMDT), the
Neuropsychological Inventory (NPI), and the Geriatric Depres-
sion Scale (GDS). The dataset included individual question
scores from ADAS and individual subscales from NPI, while
other CFAs and individual CFA subscales from ADNI were
excluded due to significant missing data. The tau-PET neu-
roimaging data utilised the ['*F]AV-1451 tracer for detecting tau
deposition [18].

2.2 | Data preparation and preprocessing

As part of the preprocessing pipeline, the participant identifica-
tion (ID) column (‘RID’) was first removed. The gender column
(PTGENDER’) was standardised by subtracting 1 from its
values to ensure consistency in representation [19].

Certain columns in the dataset contained negative values,
which required adjustment to ensure compatibility with sub-
sequent processing steps. The columns with negative values
were identified; all of them were CFA columns including
COMP_MEM_SCORE, PHC_MEM, PHC_EXF, PHC_LAN,
and COMP_EXEC_FUNC_SCORE, and they were trans-
formed by adding the absolute value of their minimum to all val-
ues, effectively shifting the distribution to non-negative values.

Afterwards, normalisation [20] of features was performed
as a part of preprocessing using min—max scaling method
[21]. Features with a maximum value exceeding 1 were iden-
tified, excluding the target variable (AD_LABEL) and clinical
dementia rating (CDR). These features were then normalised
by subtracting their minimum value and dividing by the range
between the maximum and minimum values. The preprocessed
dataset was then used for feature selection.

2.3 | Feature selection

23.1 | Boruta (Method 1)

The Boruta algorithm [22] is a feature selection technique based
on random forests, designed to distinguish relevant features by
comparing their importance with that of random features. It
iteratively evaluates the significance of each feature and selects
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those that demonstrate significance above a predefined thresh-
old. This study selected the Boruta algorithm for its ability
to handle complex datasets with high-dimensional features.
Moreover, Boruta harnesses the collective learning strengths of
random forests, ensuring robust feature selection by considering
feature interdependencies [22].

232 | Logistic regression with L1 regularisation
(Method 2)

Logistic regression with L1 regularisation [23] is a linear model
that penalises the absolute magnitude of the coefficients and
produces sparse solutions, with certain coefficients being set to
zero. This property makes logistic regression with L1 regularisa-
tion suitable for feature selection by identifying and prioritising
the most relevant features while disregarding irrelevant ones
[24]. In this study, logistic with L1 regularisation regression was
employed to complement the Boruta algorithm and provide
additional insights into feature importance based on the model
coefficients.

233 | Autoencoder (Method 3)

Autoencoder-based feature selection implements deep learning
techniques to learn the compact representations of high-
dimensional data. By training an autoencoder model to recon-
struct the input features, the encoder layer learns to capture
the essential information from the data, effectively performing
feature extraction [25]. In this approach, a three-layer autoen-
coder was utilized, comprising an input layer, an encoding layer,
and a decoding layer. The input layer defined the shape of the
input data, while the encoding layer, implemented as a dense
layer with encoding neurons and RelLU activation, learns to
encode the input features into a lower-dimensional representa-
tion, capturing the most important features. Subsequently, the
decoding layer, is composed of a dense layer with the same
number of neurons as the input layer. This autoencoder-based
feature selection was employed to unveil the latent features
that contribute significantly to the variability in the ADNI
dataset. Notably, this approach complements traditional feature
selection techniques by capturing nonlinear relationships and
revealing hidden patterns in the data.

2.4 | Generating missing data of selected
features

MAR is a common issue in AD data, influencing the reliabil-
ity of analyses and the effectiveness of predictive models [20].
To simulate MAR, we intentionally introduce varying degrees of
missingness (40%, 50%, 60% and 70%) individually in the three
pivotal variables of our dataset based on the selected key fea-
tures that were more likely to be missing with later progressive
stage of AD [6]. For example, we first identified the maternal
dementia history MOTHDEM) column as a key feature for

MAR generation. Then, to introduce a specific level of miss-
ingness in the MOTHDEM column, we devised a method that
relies on the relationship between MOTHDEM and another
pivotal variable, such as CDR, that is objectively and strongly
associated with AD diagnosis. Specifically, this method intro-
duces missingness in MOTHDEM based on CDR values. For
example, if CDR indicates MCI (CDR = 0.5), we randomly
select a fraction of observations and make the corresponding
MOTHDEM values missing; higher missingness fraction for
AD (CDR = 1). This approach allows us to simulate missing-
ness patterns in MOTHDEM that depend on the progressive
stage of AD indicated by CDR, thereby creating a more realis-
tic representation of MAR scenarios [6]. For missing CDR, we
tagged missingness levels with AD diagnosis.

2.5 | Imputation using denoising
autoencoder

Unlike traditional imputation techniques that depend solely on
statistical methods or simple interpolations, denoising autoen-
coders harness the capabilities of deep learning architectures to
learn the intricate patterns and relationships present in the data
[27]. The architecture of a denoising autoencoder comprises
an encoder, a decoder and a corruption process. The encoder
reduces the dimensionality of the input data, mapping it to a
latent space representation. The corruption process introduces
noise or distortions to the input data to make the autoencoder
learn robust features. The decoder then reconstructs the original
input from the compressed representation [28].

During training, denoising autoencoders strive to minimise
the reconstruction error between the input and its correspond-
ing reconstruction, typically employing mean squared error
as the optimisation metric. This iterative process enables the
model to adeptly learn meaningful representations of the data
by denoising and reconstructing inputs, rendering them invalu-
able for data-denoising tasks. By training the autoencoder on
the observed data while deliberately introducing noise or cor-
ruption, the model becomes proficient at reconstructing the
original, noise-free data. Consequently, denoising autoencoders
excel in effectively filling in missing values through the learned
representations [29].

This study, after synthetically generating varying proportion
of missingness intentionally in the columns of the selected
key features of the dataset, employs a denoising autoencoder
for all imputations. The architecture of the denoising autoen-
coder comprised an input layer with dimensions equivalent to
the number of input features in the dataset, followed by two
hidden layers with 126 and 63 neurons, respectively. Dropout
layers with a dropout rate of 0.2 were strategically incorporated
after each hidden layer to mitigate overfitting and enhance the
model’s robustness. Rectified linear unit (RelLU) activation func-
tions [30] were utilised in the hidden layers to capture nonlinear
relationships within the data effectively [31]. Gaussian noise
with a standard deviation of 0.1 was introduced to the input
layer to augment the denoising capability of the autoencoder,
facilitating the accurate reconstruction of missing values while
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mitigating noise. The output layer employed linear activation to
ensure continuous output values.

The autoencoder was trained using the mean squared error
(MSE) loss function and the Adam optimiser [32] over 50
epochs, with a batch size of 50 and a validation split of 20%.
Then the autoencoder was able to predict and impute miss-
ing values in the respective columns, thus contributing to the
restoration of data integrity and enhancing the reliability of
subsequent analyses.

Following the imputation process using the denoising
autoencoder, the performance of the imputation was evaluated
using two key metrics: root mean squared error (RMSE) [33]
and imputation accuracy [34]. RMSE was computed to quantify
the discrepancy between the actual values of the missing column
and the imputed values generated by the autoencoder. This met-
ric measures the average difference between the observed and
predicted values, thereby assessing the imputation accuracy on
a continuous scale. Additionally, imputation accuracy was calcu-
lated to assess the correctness of the imputed values produced
by the autoencoder. The imputation accuracy was computed
as the ratio of the number of correctly imputed values to the
total number of imputed values, providing a percentage value
indicative of the accuracy of the imputation process.

Following the imputation process, a visual compatison
between the actual and imputed values of the selected columns
was conducted using a scatter plot. Additionally, the feature
importance of the denoising autoencoder was examined by
analysing the weights of the first dense layer. This analysis
identified the most influential features for accurate imputa-
tion, contributing to a better understanding of the model’s
performance.

2.6 | Classification and model performance
evaluation

In the classification phase of the work, a random forest classi-
fier [35] was employed due to its capability to handle complex
data and mitigate overfitting. It also performs especially well in
heterogeneous AD data [36]. This ensemble learning technique
combines multiple decision trees, providing robustness to noisy
data and reducing the risk of overfitting,

We employed three-class classification for classifying the
three classes of the target variable AD-LABEL, namely, the
CN, MCI and AD groups. Additionally, imbalance observed
in the classes was handled by utilising the synthetic minority
over-sampling technique (SMOTE) [37] and ensured that the
classifier could effectively learn from all classes.

Evaluation of the random forest classifier was performed
using 10-fold cross-validation, to reduce sampling bias and
enhance generalisability. The classifier was trained on resam-
pled training datasets to mitigate the impact of biased sampling,
and its performance was assessed using the following metrics:
accuracy, precision, recall and F1-score. Additionally, the confu-
sion matrix and classification report were generated to provide
detailed insights into the classifier’s predictive performance for
each class label.

Full dataset

Feature selections

Generate missing
MAR data (40-70%)

Impute dataset
(denoaising autoencoder)

Key features from
autoencoder

AD classification
(RF, 10-fold CV)

FIGURE 1
MAR, missing at random; RF, random forest classifier.

Schematic of workflow of current study. CV, cross-validation;

We conducted classification using random forest classifier for
all imputed datasets as well as the original complete dataset.
Additionally, we evaluated the performance of classification
models using features selected from three different feature
selection methods: Boruta, logistic regression, and autoencoder.
Furthermore, we included features extracted from the denoising
autoencoder as part of our analysis. The overall process of the
current study is schematically shown in Figure 1.

2.7 | Software, and data and code availability
Google Colab (https://colab.google/), a cloud-based Jupyter
Notebook environment provided by Google, was utilised
for conducting the study, which included data preprocessing,
feature selection, missing data generation, imputation, classifica-
tion and validation tasks. Codes are available at https://github.
com/NamithaHaridas/Denoising AE_ADNI.

The original ADNI dataset was not included as part of this
repository. Requests to access the original datasets should be
directed to ADNI (http://adni.loni.usc.edu/).

3 | RESULTS

3.1 | MAR of consistently extracted features

Feature extractions were petformed using Boruta, logis-
tic regression with L1 regularisation and autoencoder with
respect to AD severity and the common top-ranked features
were extracted. Amongst the data comprising demographic,
CFAs, genetic, and neuroimaging markers, we identified
maternal dementia history (MOTHDEM) and gender as
influential factors, with maternal dementia history serving as
a potential genetic predisposition and gender reflecting sex-
related differences in AD risk. Further, the key neuroimaging
(region-of-interest, ROI) data features identified were the left


https://colab.google/
https://github.com/NamithaHaridas/Denoising_AE_ADNI
https://github.com/NamithaHaridas/Denoising_AE_ADNI
http://adni.loni.usc.edu/

456 |

HARIDAS ET AL.

hemispheric amygdala, white matter left hemispheric entorhinal
and inferiortemporal cortices, consistent with known neu-
rodegenerative changes associated with AD progression [38].
Additionally, the genetic biomarker APoE4 was identified,
highlighting its significant role as an AD risk factor, and the
clinical dementia rating (CDR), which has been shown to be
closely correlated with AD severity [39].

Amongst these extracted features, MOTHDEM, APoE4 and
CDR are more likely to be affected by AD severity. For instance,
with more severe AD, the patients may not remember their
mother had AD. Patients with more severe AD may also be less
likely to undergo genetic screening, which requires specialised
technical facilities. As CDR takes about 90 min to administer
[40], relatively long amongst the considered CFAs, it is more
probable that patients with severe AD will not have the patience
or ability to undergo such a long assessment. Although it is
plausible that patients with overt AD may also be less likely to
undergo PET scans, the processed dataset was dominated by
PET-MRT’s active ROIs and it is in practice unlikely that individ-
ual imaging ROI features would be missing, Hence, we did not
remove any PET-MRI features in this study. Nevertheless, even
without this, our proposed columnar missingness approach
could incur substantial reduction in classification accuracy (see
below).

For the MOTHDEM and APoE4 variables, missing data of
MAR type were generated based on the clinical dementia rating
(CDR) values on the samples (rows) with CDR values of 0.5 or
1 (the higher the value, the more severe the condition) at the
probability of missingness (0.4, 0.5, 0.6, 0.7). Similarly, for the
CDR variable, missing data of MAR type was introduced, but
this time it was based on the clinical diagnosis (AD_LABEL),
where samples (rows) labelled as MCI or AD were more likely to
have missing CDR values at the probability of missingness (0.4,
0.5, 0.6, 0.7). See Section 2.4 for further details. Although we
focused on only the missingness of these three variables, which
had a strong influence on detecting AD severity (via feature
selection), we generated large proportions of missingness within
these variables (from 40% to 70% missing data per variable) and
classification was substantially poorer (see below).

3.2 | Imputation with denoising autoencoder

Next, denoising autoencoder was employed separately to pet-
form the imputation of missingness introduced at 40%, 50%,
60% and 70% for the pivotal columns MOTHDEM, APoE4
and CDR. Further to visualise the accuracy and reliability of
our imputation, we plotted scatter plots comparing the actual
and imputed values and showed their similarities (Figure S1).
To gain deeper insights, we extracted important features from
the dense layer of the autoencoders by calculating the feature
importance from each imputed dataset. Table 1 shows the full
list of the commonly selected features using the employed tra-
ditional feature-selection methods and denoising autoencoders,
consistent with previous work [17].

By quantifying the RMSE of the actual versus imputed value
differences, Figure 2 shows the RMSE scores and imputation

TABLE 1

methods and denoising autoencoder’s latent features.

Common features selected from traditional feature selection

Feature category Commonly selected features

Sociodemographic MOTHDEM (history of mother with AD)
FATHDEM (history of father with AD)

PTGENDER (gender)

Genetic APoE4

Cognitive and ADAS_Q10SCORE (ADAS sub-assessment score),
functional CDR (clinical dementia rating)

assessment

Brain imaging
(active tau-PET
ROI) middletemporal cortex, corpus callosum (central,

left amygdala, left entorhinal (white matter),
left inferiortemporal (white matter), right

mid-anterior, mid-posterior, right white matter),
right precentral (white matter), right medial
orbitofrontal (white matter), right posterior
cingulate cortex, brain.stem,

right ventral diencephalon, right supramarginal
cortex, right transverse temporal (white matter),
right cerebellum cortex, left precentral (white
matter), right lingual (white matter), left inferior
temporal (white matter), right amygdala, left
thalamus proper, right lateral orbitofrontal cortex

accuracy (ratio of the number of correctly imputed values to the
total number of imputed values) at different missingness levels
of the three key AD features. This indicated that our meth-
ods of implementing missing values and autoencoder-based
imputation were conforming to expectation.

3.3 | Robust AD classification of CN MCI
and AD of imputed data

After the imputation process, random forest classification with
10-fold cross validation was performed on the original dataset,
and imputed datasets with 40%, 50%, 60% and 70% missing-
ness in MOTHDEM, CDR and APoE4. We also performed the
same classification for a dataset with only the common features
selected using the three feature selection methods and included
the important features that were performed during each impu-
tation process from the denoising autoencoder in it (see Table
ST for details).

These results revealed the accuracy, precision, recall, and F1
score as 0.85, 0.85, 0.85, and 0.84, respectively, for the origi-
nal dataset, indicating robust classification performance. These
metrics underscore the efficacy of the random forest classifier
in accurately predicting AD classes using the original dataset.

Subsequently, the imputed datasets showed consistent classi-
fication accuracies, ranging from 0.71 to 0.83 across different
missingness levels (Table S1), indicating that the denoising
autoencoder effectively imputed missing values without com-
promising classification performance. Additionally, classifiers
trained on feature-selected datasets exhibited higher classifi-
cation performance (0.89), suggesting that feature-selection
techniques retained relevant information for AD prediction,
contributing to the classifiet’s robustness.



HARIDAS ET AL.

457

0.5

B MOTHDEM
mm APOE
B CDR

0.4

RMSE Score
=}
w

e
N)

0.11

0.0
40 50

0.89

60 70

Percentage of Missingness

FIGURE 2
dementia rating (CDR) after imputation.

We further evaluated the random forest classification’s pre-
cision, recall and F1 score of each of the three classes of the
target variable AD_LABEL (with classes CN, MCI and AD).
Figure 3 summarises the results for each dataset highlighting the
F1 scores of the three classes (see Table S2 for details, including
precision and recall).

Focusing on the F1 scores of each class (CN, MCI, and AD),
we examined the classifier’s ability to accurately classify indi-
viduals with different disease progressive stages. In the original
dataset, the random forest classifier demonstrated strong per-
formance, with F1 scores of 0.91 for CN, 0.69 for MCI, and 0.85
for AD. This indicates robust classification across all progressive
stages, which demonstrate the effectiveness of the classifier on
the complete dataset (see Table S2 for further details). Notice-
ably, there was a higher detriment to the F1 scores with missing
CDR than MOTHDEM and APoEA4.

4 | DISCUSSION

Missing data is a common issue in healthcare datasets, and its
presence can significantly impact the performance of predic-
tive models, particularly in the context of AD diagnosis where
accurate identification of relevant features is crucial. This study
focused on missing at random (MAR) patterns of key AD data
features. Previous studies did not consider such systematically
selected features for data imputation evaluation. Specifically,
we employed a denoising autoencoder, a powerful nonlinear
unsupervised learning technique, for imputing missing values
in critical AD features: demographics MOTHDEM), genotype
(APoE4), and CFA (CDR).

Root mean squared error (RMSE) scores and imputation accuracy of the key features maternal AD history MOTHDEM), APoE4 and clinical

For the imputed datasets, particulatly those with 40% miss-
ingness, exhibited robust performance in terms of recall,
precision, and F1 score, suggesting that denoising autoencoder
effectively imputed missing values without significantly com-
promising classification performance. In a previous study [10],
an accuracy of 78.67% in AD classification of the imputed
AD dataset was obtained, but they did not specify the miss-
ing percentage of the imputation performed. In comparison, we
achieved an overall accuracy of 79%—-85% in AD classification
for our MAR datasets.

The random forest classifier used here for the three-class
classification provided key insights into the performance of
different datasets in identifying individuals with AD. The orig-
inal dataset exhibited a high F1 score (0.85) for the AD
class, indicating its ability to effectively identify and accurately
predict AD cases. Similarly, the feature-selected dataset demon-
strated a higher F1 score (0.89), suggesting that feature-selection
techniques retained crucial information for AD prediction.
Interestingly, the performances were slightly higher than that for
the original dataset, due to a reduction in model complexity with
only the relevant features.

Generally, we observed a trend of decreasing F1 scores with
increasing levels of missingness in the imputed datasets. In the
case of MOTHDEM, the F1 scores for CN and MCI exhibited
gradual decrease as the percentage of missingness increased,
while the F1 score for AD remained relatively stable. This sug-
gests that the imputation process had a more pronounced effect
on the classification of CN and MCI individuals compared to
those with AD. Similarly, for APoE and CDR, we observed
fluctuations in F1 scores across different classes with increasing
levels of missingness. These variations highlight the importance
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FIGURE 3  F1 scores after three-class classification of the imputed datasets. (a) Maternal AD history MOTHDEM); (b) APoE4; (c) clinical dementia rating

(CDR). AD, Alzheimer’s disease; CN, control normal; MCI, mild cognitive impairment.
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of carefully considering imputation strategy for heterogeneous
and types of missing data.

There are notable limitations in the current study. Firstly,
our analysis was confined to a single dataset, and the general-
isability of our findings to other datasets may be limited. This
should be addressed in future studies. Future studies should
also explore the integration of multiple imputation methods to
enhance imputation accuracy and mitigate potential biases.

In conclusion, our study highlights the importance of
using an autoencoder for robust data imputation for high-
performance machine classification across different disease
progressive stages, underscoring its potential diagnostic utility
in clinical decision-making and disease management.
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